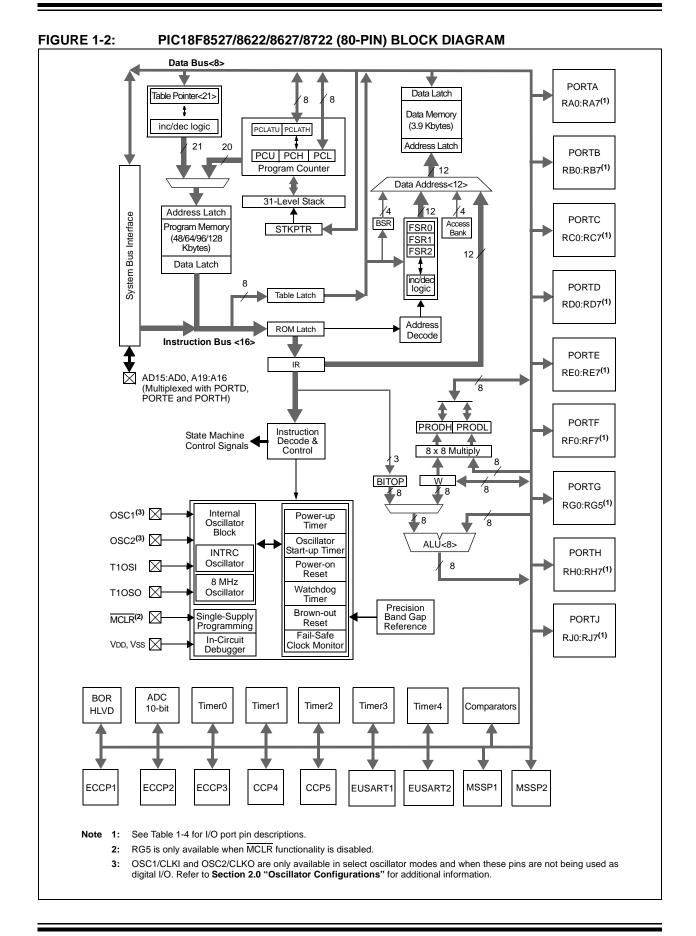


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8627-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Description			
Description			
ΓG is a bidirectional I/O port.			
gital I/O. hanced Capture 3 input/Compare 3 output/ VM 3 output.			
CCP3 PWM output A.			
gital I/O. JSART2 asynchronous transmit. JSART2 synchronous clock (see related RX2/DT2).			
gital I/O. JSART2 asynchronous receive. JSART2 synchronous data (see related TX2/CK2).			
gital I/O. apture 4 input/Compare 4 output/PWM 4 output. CCP3 PWM output D.			
gital I/O. apture 5 input/Compare 5 output/PWM 5 output. CCP1 PWM output D.			
RG5/MCLR/VPP pin.			
nd reference for logic and I/O pins.			
ve supply for logic and I/O pins.			
nd reference for analog modules.			
ve supply for analog modules.			
ti JI			

TABLE 1-3: PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)

= $I^2C/SMBus$ input buffer = Power Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

I²C™

Р

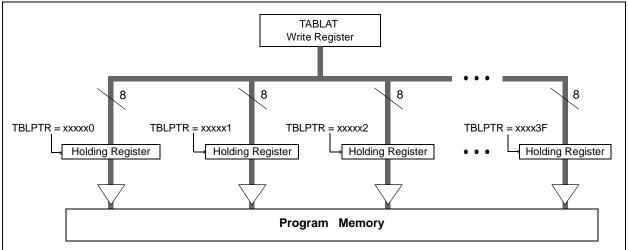
FIGURE 5-2: MEMORY MAPS FOR PIC18F8722 FAMILY PROGRAM MEMORY MODES

_	Microprocessor Mode		Microprocessor with Boot Block Mode		Microcontroller Mode ⁽⁵⁾		Extended Microcontroller Mode				
Program Space Execution	000000h	External Program Memory	On-Chip Program Memory (No access)	000000h 0007FFh ⁽⁶⁾ or 000FFFh ⁽⁶⁾ or 001FFFh ⁽⁶⁾ or 001000h ⁽⁶⁾ or 002000h ⁽⁶⁾	External Program Memory	On-Chip Program Memory	000000h 0BFFFh ⁽¹⁾ 0FFFFh ⁽²⁾ 017FFFh ⁽³⁾ 01FFFFh ⁽⁴⁾ 0C000h ⁽¹⁾ 010000h ⁽²⁾ 018000h ⁽³⁾ 020000h ⁽⁴⁾	On-Chip Program Memory Reads '0's	020000h ⁽⁴⁾	External Program Memory	On-Chip Program Memory
	1FFFFFh	External Memory	On-Chip Flash	1FFFFfh	External Memory	On-Chip Flash	1FFFFFh	On-Chip Flash		External Memory	On-Chip Flash
No	ote 1: 2: 3: 4: 5: 6:	PIC18F66 PIC18F66 PIC18F67 This is the		8F8622. 8F8627.							

6.5 Writing to Flash Program Memory

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 holding registers before executing a write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the row erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write for TIW (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

An example of the required code is shown in Example 6-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3:

16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	i

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES<3:0>). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

R	RES3:RES0=ARG1H:ARG1L • ARG2H:ARG2L
	$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

-		WOLI	IFLI KOUTINE
	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF		; products
	ADDWFC	RES2, F	;
		WREG	;
		RES3, F	;
;			
	MOVF	ARG1H, W	;
		ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
		RES1, F	; Add cross
	MOVF		; products
		RES2, F	;
		WREG	;
		RES3, F	;
;			
	BTESS	ARG2H, 7	; ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	; no, check ARG1
		ARG1L, W	;
	SUBWF	RES2	;
	MOVF	ARG1H, W	;
	SUBWFB		
;	502112	11200	
	N_ARG1		
		ARG1H, 7	; ARG1H:ARG1L neg?
	BRA	CONT_CODE	; no, done
		ARG2L, W	;
	SUBWF	RES2	;
		ARG2H, W	;
	SUBWFB		
;	SODMI D	1000	
	T_CODE		
CON	:		

15.2 Timer3 16-bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 15-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer3 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

15.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in **Section 13.0** "Timer1 Module".

15.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

15.5 Resetting Timer3 Using the CCP Special Event Trigger

If any of the CCP modules are configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer3. ECCP2 can also start an A/D conversion if the A/D module is enabled (see **Section 17.3.4 "Special Event Trigger"** for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

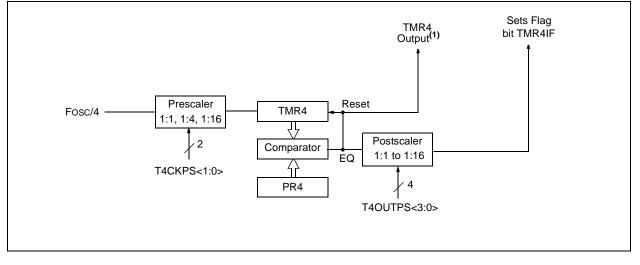
In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Note: The Special Event Triggers from the CCPx module will not set the TMR3IF interrupt flag bit (PIR2<1>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR2	OSCFIF	CMIF	_	EEIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	60
PIE2	OSCFIE	CMIE	_	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	60
IPR2	OSCFIP	CMIP	_	EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP	60
TMR3L	Timer3 Register Low Byte							59	
TMR3H	Timer3 Register High Byte						59		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	58
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	59

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.


16.2 Timer4 Interrupt

The Timer4 module has an 8-bit Period register, PR4, which is both readable and writable. Timer4 increments from 00h until it matches PR4 and then resets to 00h on the next increment cycle. The PR4 register is initialized to FFh upon Reset.

FIGURE 16-1: TIMER4 BLOCK DIAGRAM

16.3 Output of TMR4

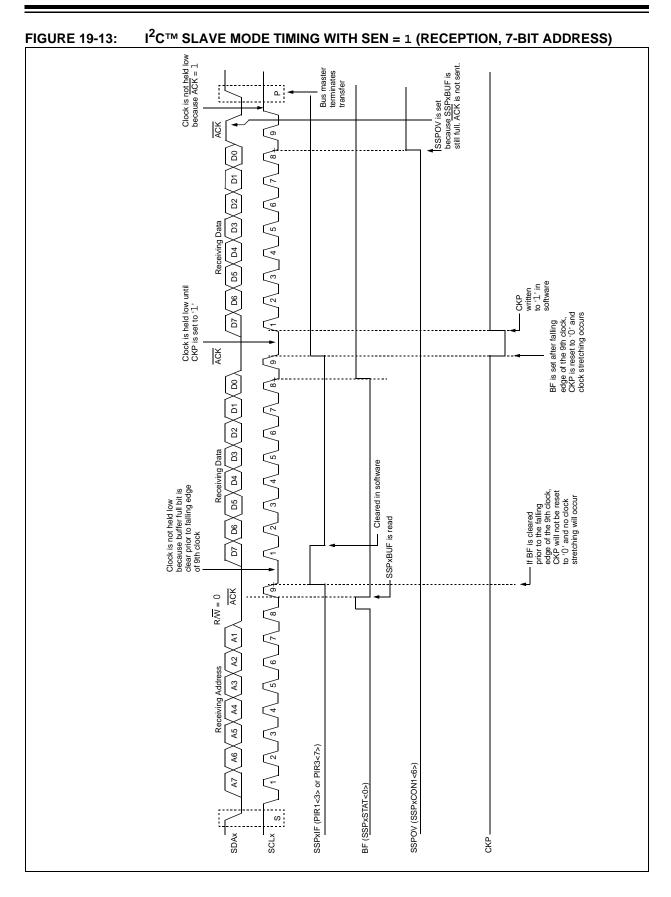

The output of TMR4 (before the postscaler) is used only as a PWM time base for the CCP modules. It is not used as a baud rate clock for the MSSP, as is the Timer2 output.

TABLE 16-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER

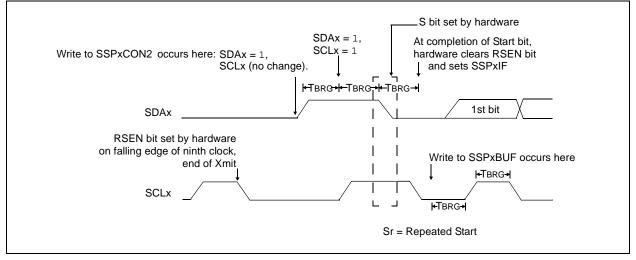
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	57
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	60
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	60
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	60
TMR4	Timer4 Register								61
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	61
PR4	Timer4 Period Register								61

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0'. Shaded cells are not used by the Timer4 module.

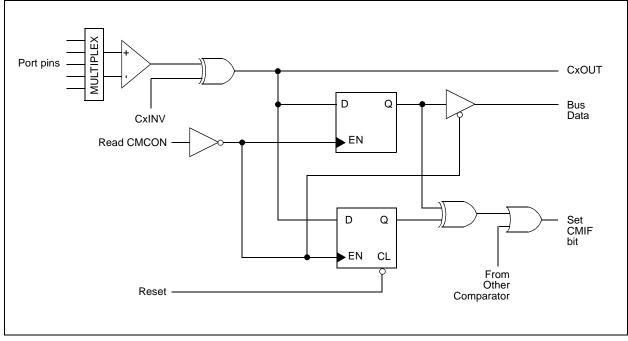
19.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

19.4.9.1 WCOL Status Flag


If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 19-20: REPEATED START CONDITION WAVEFORM

22.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register
	(C1OUT or C2OUT) should occur when a
	read operation is being executed (start of
	the Q2 cycle), then the CMIF (PIR2
	register) interrupt flag may not get set.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

22.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

22.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RF3 through RF6) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is also determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

REGISTER 25-13: DEVID1: DEVICE ID REGISTER 1 FOR THE PIC18F8722 FAMILY

R	R	R	R	R	R	R	R	
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	
bit 7							bit (
Legend:								
R = Reada	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 7-5	DEV<2:0>: [Device ID bits						
	001 = PIC18	F8722						
	111 = PIC18	F8627						
	101 = PIC18	F8622						
011 = PIC18F8527								
	000 = PIC18	F6722						
	110 = PIC18	F6627						
	100 = PIC18	F6622						
	010 = PIC18	F6527						

	010 = PIC 10 F 0027
bit 4-0	REV<4:0>: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 25-14: DEVID2: DEVICE ID REGISTER 2 FOR THE PIC18F8722 FAMILY

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **DEV<10:3>:** Device ID bits⁽¹⁾

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

0001 0100 = PIC18F6722/8722 devices

0001 0011 = PIC18F6527/6622/6627/8527/8622/8627 devices

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

25.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can always read data EEPROM under normal operation, regardless of the protection bit settings.

25.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

25.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

25.7 In-Circuit Serial Programming

The PIC18F8722 family of devices can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.8 In-Circuit Debugger

When the $\overline{\text{DEBUG}}$ Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 25-4 shows which resources are required by the background debugger.

	TABLE 25-4:	DEBUGGER RESOURCES
--	-------------	--------------------

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to RG5/MCLR/VPP, VDD, Vss, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

25.9 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as Low-Voltage ICSP Programming or LVP). When Single-Supply Programming is enabled, the microcontroller can be programmed witho<u>ut requiring high voltage being applied to the</u> RG5/MCLR/VPP pin, but the RB5/KBI1/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

While programming, using single-<u>supply</u> programming mode, VDD is applied to the RG5/MCLR/VPP pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH to the MCLR pin.
 - 2: By default, Single-Supply ICSP is enabled in unprogrammed devices (as supplied from Microchip) and erased devices.
 - **3:** When Single-Supply Programming is enabled, the RB5 pin can no longer be used as a general purpose I/O pin.
 - 4: When LVP is enabled, externally pull the PGM pin to Vss to allow normal program execution.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RB5/KBI1/PGM then becomes available as the digital I/O pin, RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the RG5/ MCLR/VPP pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required. If a block erase is to be performed when using Low-Voltage Programming, the device must be supplied with VDD of 4.5V to 5.5V.

POP		Рор Тор о	f Retur	n Stack	1	
Synta	ax:	POP				
Oper	ands:	None				
Oper	ation:	$(TOS) \rightarrow b$	it bucke	et		
Statu	s Affected:	None				
Enco	ding:	0000	0000	000	0	0110
Description: The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.						
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	C	23		Q4
	Decode	No operation	POP va	TOS lue	ор	No eration
<u>Exan</u>	nple:	POP GOTO	NEW			
Before Instruction TOS Stack (1 level d			= =	0031A2 014332		
	After Instructic TOS PC	n	= =	014332 NEW	2h	

PUS	н	Push Top o	of Ret	urn Stac	k			
Synta	ax:	PUSH						
Oper	ands:	None						
Oper	ation:	$(PC + 2) \rightarrow$	тоѕ					
Statu	is Affected:	None						
Enco	oding:	0000	0000	000	0	0101		
Desc	ription:	The PC + 2 the return s value is pus This instruc software sta then pushin	tack. shed c tion a ack by	The prev lown on llows imp modifyir	ious the s blem ng Tr	TOS stack. lenting a OS and		
Word	ds:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2		Q3		Q4		
	Decode	PUSH PC + 2 onto return stack		No ration	ор	No peration		
Exan	nple:	PUSH						
	Before Instruc TOS PC	tion	= =	345Ah 0124h				
After Instruction PC TOS Stack (1 level down)			= = =	0126h 0126h 345Ah				

SUB	WFB	Subtract	W from f	with Bor	·ow				
Synta	ax:	SUBWFB	f {,d {,a}	}					
$\begin{array}{llllllllllllllllllllllllllllllllllll$									
•	ation:		$-(\overline{C}) \rightarrow de$	st					
	s Affected:	N, OV, C,	DC, Z		·				
Enco	-	0101	10da	ffff	ffff				
Desc	ription:	Subtract W and the Carry flag (borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).							
		If 'a' is '1',		s used to	s selected. select the				
		set is ena in Indexed mode whe Section 2 Bit-Orien	and the ex bled, this i d Literal O enever f ≤ 26.2.3 "By ted Instru	nstructior ffset Addr 95 (5Fh). te-Orient ctions in	n operates essing See ed and Indexed				
Word	ls:	1							
Cycle		1							
QC	ycle Activity:	0.0		_	.				
	Q1 Decode	Q2 Read	Q: Proce		Q4 Write to				
	Decoue	register 'f'	Dat		estination				
<u>Exan</u>	nple 1:	SUBWFB	REG,	1, 0					
	Before Instruct	ion							
	REG W C	= 19h = 0Dh = 1	(000 (000	1 1001) 0 1101)					
	After Instructio								
	REG W C Z	= 0Ch = 0Dh = 1 = 0	(000 (000	0 1011) 0 1101)					
	N	= 0 = 0	; resu	lt is posit	ve				
Exan	nple 2:	SUBWFB	REG, 0	, 0					
	Before Instruct								
	REG W C	= 1Bh = 1Ah = 0		1 1011) 1 1010)					
	After Instructio REG W	= 1Bh = 00h	(000	1 1011)					
	C Z N	= 1 = 1 = 0	; resu	lt is zero					
	nple 3:	SUBWFB	REG,	1, 0					
	Before Instruct REG W C	ion = 03h = 0Eh = 1		0 0011) 0 1101)					
	After Instructio REG	= F5h		1 0100) comp]					
	W C Z N	= 0Eh = 0 = 0	(000	0 1101)					
	N	= 1	; resu	lt is nega	tive				

SWAPF	Swap f							
Syntax:	SWAPF f	{,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]						
Operation:	(f<3:0>) → (f<7:4>) →							
Status Affected:	None							
Encoding:	0011	10da	ffff	ffff				
Description:	'f' are exch is placed ir	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).						
	If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR	is used to					
	If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriento Literal Offi	led, this i Literal O never f ≤ 5.2.3 "By ed Instru	nstruction ffset Addro 95 (5Fh). te-Oriento ctions in	operates essing See ed and Indexed				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Proce Data		Vrite to stination				
Example:	SWAPF I	REG, 1,	0					
Before Instruction								
REG = 53h After Instruction REG = 35h								

27.11 PICSTART[®] Plus Development Programmer

The PICSTART[®] Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

27.12 PICkit[™] 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

27.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

28.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (Vι < 0 or Vι > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows: Pdia = V(ap + x)(ap - x)(ap + x)(ap +

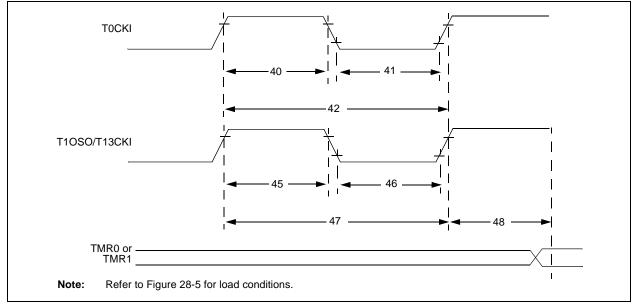
- $\mathsf{Pdis} = \mathsf{VDD} \times \{\mathsf{IDD} \sum \mathsf{IOH}\} + \sum \{(\mathsf{VDD} \mathsf{VOH}) \times \mathsf{IOH}\} + \sum (\mathsf{VOL} \times \mathsf{IOL})$
- 2: Voltage spikes below Vss at the RG5/MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the RG5/MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

			,				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	_	—	2	ms	
F13	∆CLK	CLKO Stability (Jitter)	-2	—	+2	%	

TABLE 28-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


TABLE 28-8:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18F6X27/6X22/8X27/8X22 (INDUSTRIAL, EXTENDED)PIC18LF6X27/6X22/8X27/8X22 (INDUSTRIAL)

	F6X27/6X22/8X27/8X22 ustrial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
	6 X27/6X22/8X27/8X22 ustrial, Extended)	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device		Тур	Max	Units	C	onditions		
	INTOSC Accuracy @ Freq = 8 M	Hz, 4 MH	z, 2 MHz,	1 MHz, 5	500 kHz,	250 kHz, 125 kHz ⁽¹⁾			
	PIC18LF6X27/6X22/8X27/8X22	-2	+/-1	2	%	+25°C VDD = 2.7-3.3V			
		-5	+/-1	5	%	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F6X27/6X22/8X27/8X22	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V		
		-5	+/-1	5	%	-40°C to +85°C VDD = 4.5-5.5V			
	INTRC Accuracy @ Freq = 31 kHz								
	PIC18LF6X27/6X22/8X27/8X22	26.562	—	35.938	kHz	-40°C to +85°C VDD = 2.7-3.3V			
	PIC18F6X27/6X22/8X27/8X22	26.562	+/-8	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

FIGURE 28-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions	
40	T⊤0H	T0CKI High	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns		
				With prescaler	10	_	ns		
41	T⊤0L	T0CKI Low	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns		
				With prescaler	10	—	ns		
42	T⊤0P	T0CKI Peri	bd	No prescaler	Tcy + 10	—	ns		
				With prescaler	Greater of: 20 ns or (TcY + 40)/N		ns	N = prescale value (1, 2, 4,, 256)	
45	T⊤1H	T13CKI	Synchronous, no	o prescaler	0.5 Tcy + 20	_	ns		
		High Time	Synchronous, with prescaler	PIC18FXXXX	10	—	ns		
				PIC18LFXXXX	25	—	ns	VDD = 2.0V	
			Asynchronous	PIC18FXXXX	30	_	ns		
				PIC18LFXXXX	50	_	ns	VDD = 2.0V	
46	T⊤1L	T13CKI	Synchronous, no	o prescaler	0.5 TCY + 5	_	ns		
		Low Time	Synchronous,	PIC18FXXXX	10	_	ns		
			with prescaler Asynchronous	with prescaler	PIC18LFXXXX	25	_	ns	VDD = 2.0V
				PIC18FXXXX	30	_	ns		
				PIC18LFXXXX	50	_	ns	VDD = 2.0V	
47	TT1P	T13CKI Input Period	Synchronous		Greater of: 20 ns or (TcY + 40)/N		ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		60	_	ns		
	F⊤1	T13CKI Os	cillator Input Freq	uency Range	DC	50	kHz		
48	TCKE2TMRI	Delay from Timer Incre	External T13CKI ment	Clock Edge to	2 Tosc	7 Tosc			

TABLE 28-13:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---------------------	---

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
102	TR	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽¹⁾	—	300	ns		
103 Tf		SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽¹⁾	—	100	ns		
90	TSU:STA	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for Repeated Start condition	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	After this period, the first clock pulse is generated	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms		
106	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	ms		
			1 MHz mode ⁽¹⁾	TBD		ns		
107	TSU:DAT	AT Data Input Setup Time	100 kHz mode	250		ns	(Note 2)	
			400 kHz mode	100		ns		
				1 MHz mode ⁽¹⁾	TBD		ns	
92	Tsu:sto		Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode		3500	ns		
			400 kHz mode	—	1000	ns		
			1 MHz mode ⁽¹⁾		_	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free	
			400 kHz mode	1.3	—	ms	before a new transmission can start	
			1 MHz mode ⁽¹⁾	TBD	—	ms		
D102	Св	Bus Capacitive Lo	bading	_	400	pF		

TABLE 28-23: MASTER SSP I²C[™] BUS DATA REQUIREMENTS

Legend: TBD = To Be Determined

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before the SCLx line is released.

NOTES: