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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Table 2-5. DLL Signals

LA-LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the low-
est EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed 
adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset

ALUHOLD I Active high freezes the ALU

UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing

CLKOP O The primary clock output 

CLKOS O The secondary clock output with fine delay shift and/or division by 2 or by 4

LOCK O Active high phase lock indicator

INCI I Incremental indicator from another DLL via CIB.

GRAYI[5:0] I Gray-coded digital control bus from another DLL in time reference mode.

DIFF O Difference indicator when DCNTL is difference than the internal setting and update is needed.

INCO O Incremental indicator to other DLLs via CIB.

GRAYO[5:0] O Gray-coded digital control bus to other DLLs via CIB
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* This signal is not user accessible. It can only be used to feed the slave delay line.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LA-LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The 
primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock 
sources are connected to these muxes. Figure 2-11 shows the clock routing for one quadrant. Each quadrant mux 
is identical. If desired, any clock can be routed globally.

Figure 2-11. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-11).

Figure 2-12 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-12. DCS Waveforms
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-21. 

Figure 2-21. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LA-LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-
performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LA-LatticeECP3, on the other hand, has many DSP slices that support different data 
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Figure 2-24. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LA-LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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MMAC DSP Element
The LA-LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In 
this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value 
and with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the 
output. The user can enable the input and pipeline registers, but the output register is always enabled. The output 
register is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A 
registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MMAC sysDSP element. 

Figure 2-27. MMAC sysDSP Element
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MULTADDSUB DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-28 
shows the MULTADDSUB sysDSP element.

Figure 2-28. MULTADDSUB
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Input signals are fed from the sysI/O buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system 
clock by one of the registers in the single data rate sync register block. 

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS 
(ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data 
streams. Before entering the core, these two data streams are synchronized to the system clock to generate two 
data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox func-
tion takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. 
The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system 
clock before entering the core. Figure 2-29 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures ade-
quate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface 
mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchroni-
zation registers to the clock transfer and gearbox registers. 

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See 
Figure 2-36 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-33. Output and Tristate Block for Left and Right Edges

Tristate Register Block 
The tristate register block registers tri-state control signals from the core of the device before they are passed to the 
sysI/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 
mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The 
output of this register is used as a tristate control.

ISI Calibration
The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only 
available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-
12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern 
consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are 
quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will 
cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the 
block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control 
logic block. 

For more information about this topic, please see the list of technical documentation at the end of this data sheet.
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Control Logic Block 
The control logic block allows the selection and modification of control signals for use in the PIO block. 

DDR Memory Support 
Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, 
DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges
The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory inter-
faces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-34 shows 
the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS 
control logic block.

Bottom Edge
PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces. 

Top Edge
PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the 
output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Addi-
tional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR 
data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR 
memories that support 10 bits of data.

Figure 2-34. DQS Grouping on the Left, Right and Top Edges

DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
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(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-34) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-36, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-35 and Figure 2-36 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LA-LatticeECP3 devices, see the list of technical documentation at the 
end of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LA-LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards 
can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 
1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configura-
tion options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) 
and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards sup-
ported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Tran-
sition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer 
to support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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transmit reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter 
specifications.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LA-LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage 
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. 

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration 
All LA-LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port 
(TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configu-
ration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 
1532 In- System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with 
the remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more informa-
tion about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LA-LatticeECP3 device:

1. JTAG

2. Standard Serial Peripheral Interface (SPI and SPIm modes) - interface to boot PROM memory

3. System microprocessor to drive a x8 CPU port (PCM mode)

4. System microprocessor to drive a serial slave SPI port (SSPI mode)

5. Generic byte wide flash with a MachXO™ device, providing control and addressing

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration 
port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any 
time after power-up by sending the appropriate command through the TAP port. 

LA-LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash 
device (slave mode) with the SPI port of the FPGA to perform read-write operations.

Enhanced Configuration Options

LA-LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and 
dual-boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
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MLVDS25
The LA-LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using comple-
mentary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-7. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/-5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/-1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/-1%) 50.00 70.00 

RTR Receiver Termination (+/-1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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Parameter Description Device
-6 / -6L

Units
Min. Max.

General I/O Pin Parameters (using dedicated clock input Primary Clock with PLL with clock injection removal setting) 2

tCOPLL Clock to Output - PIO Output Register LAE3-35EA - 2.72 ns

tSUPLL Clock to Data Setup - PIO Input Register LAE3-35EA 0.81 - ns

tHPLL Clock to Data Hold - PIO Input Register LAE3-35EA 0.37 - ns

tSU_DELPLL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-35EA 1.82 - ns

tH_DELPLL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-35EA 0.00 - ns

tCOPLL Clock to Output - PIO Output Register LAE3-17EA - 2.49 ns

tSUPLL Clock to Data Setup - PIO Input Register LAE3-17EA 0.81 - ns

tHPLL Clock to Data Hold - PIO Input Register LAE3-17EA 0.37 - ns

tSU_DELPLL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-17EA 1.82 - ns

tH_DELPLL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-17EA 0.00 - ns

Generic DDR12

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_RX.SCLK.Centered) Using PCLK 
Pin for Clock Input

tSUGDDR Data Setup Before CLK All Devices 480 — ps

tHOGDDR Data Hold After CLK All Devices 480 — ps

fMAX_GDDR DDRX1 Clock Frequency All Devices — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.PLL.Aligned) Using 
PLLCLKIN Pin for Clock Input

Data Left, Right, and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All Devices — 0.225 UI

tDVECLKGDDR Data Hold After CLK All Devices 0.775 — UI

fMAX_GDDR DDRX1 Clock Frequency All Devices — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.Aligned) Using DLL - 
CLKIN Pin for Clock Input

Data Left, Right and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All Devices - 0.225 UI

tDVECLKGDDR Data Hold After CLK All Devices 0.775 - UI

fMAX_GDDR DDRX1 Clock Frequency All Devices - 250 MHz
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tHBE_EBR Byte Enable Hold Time to EBR Output Register 0.080 - ns

PLL Parameters

tRSTREC_GPLL Reset Recovery to Rising Clock 1.00 — ns

DSP Block Timing2, 3

tSUI_DSP Input Register Setup Time 0.39 — ns

tHI_DSP Input Register Hold Time  -0.21 — ns

tSUP_DSP Pipeline Register Setup Time 2.39 — ns

tHP_DSP Pipeline Register Hold Time -1.16 — ns

tSUO_DSP Output Register Setup Time 3.37 — ns

tHO_DSP Output Register Hold Time -1.86 — ns

tCOI_DSP Input Register Clock to Output Time — 3.77 ns

tCOP_DSP Pipeline Register Clock to Output Time — 1.66 ns

tCOO_DSP Output Register Clock to Output Time — 0.63 ns

tSUOPT_DSP Opcode Register Setup Time 0.39 — ns

tHOPT_DSP Opcode Register Hold Time -0.27 — ns

tSUDATA_DSP Cascade_data through ALU to Output Register Setup Time 2.16 — ns

tHPDATA_DSP Cascade_data  through ALU to Output Register Hold Time -0.98 — ns

1. Internal parameters are characterized but not tested on every device.
2. These parameters apply to LA-LatticeECP3 devices only.
3. DSP Block is configured in Multiply Add/Sub 18x18 Mode.

LA-LatticeECP3 Internal Switching Characteristics1

Over Recommended Operating Conditions

Parameter Description

-6 / -6L

UnitsMin. Max.



3-26

DC and Switching Characteristics
LA-LatticeECP3 Automotive Family Data Sheet

Timing Diagrams
Figure 3-9. Read/Write Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-10. Read/Write Mode with Input and Output Registers
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Table 3-25. Master SPI Configuration Waveforms

Opcode Address

0    1    2    3      …    7    8    9   10    …   31  32  33  34    …   127  128

VCC

PROGRAMN

DONE

INITN

CSSPIN

CCLK

SISPI

SOSPI

Capture CFGxCapture CR0

Ignore Valid Bitstream
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals3

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. These pins are dedicated inputs or can be used as general purpose I/O.
3. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 
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LA-LatticeECP3 Devices, Green and Lead-Free Packaging
The following devices may have associated errata. Specific devices with associated errata will be notated with a 
footnote.

Part Number Voltage Grade Package Pins Temp. LUT (Ks)

LAE3-17EA-6FTN256E 1.2 6 Lead-Free ftBGA 256 Auto 17

LAE3-17EA-6LFTN256E 1.2 6L Lead-Free ftBGA 256 Auto 17

LAE3-17EA-6MG328E 1.2 6 Green csBGA 328 Auto 17

LAE3-17EA-6LMG328E 1.2 6L Green csBGA 328 Auto 17

LAE3-17EA-6FN484E 1.2 6 Lead-Free fpBGA 484 Auto 17

LAE3-17EA-6LFN484E 1.2 6L Lead-Free fpBGA 484 Auto 17

LAE3-35EA-6LFTN256E 1.2 6L Lead-Free ftBGA 256 Auto 35

LAE3-35EA-6FN484E 1.2 6 Lead-Free fpBGA 484 Auto 35

LAE3-35EA-6LFN484E 1.2 6L Lead-Free fpBGA 484 Auto 35

LAE3-35EA-6FN672E 1.2 6 Lead-Free fpBGA 672 Auto 35

LAE3-35EA-6LFN672E 1.2 6L Lead-Free fpBGA 672 Auto 35
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com
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