E. Lattice Semiconductor Corporation - LAE3-17EA-6LFN484E Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	716800
Number of I/O	222
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lae3-17ea-6lfn484e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-5. DLL Signals

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	DLL feed input from DLL output, clock net, routing or external pin
RSTN	I	Active low synchronous reset
ALUHOLD	I	Active high freezes the ALU
UDDCNTL	I	Synchronous enable signal (hold high for two cycles) from routing
CLKOP	0	The primary clock output
CLKOS	0	The secondary clock output with fine delay shift and/or division by 2 or by 4
LOCK	0	Active high phase lock indicator
INCI	I	Incremental indicator from another DLL via CIB.
GRAYI[5:0]	I	Gray-coded digital control bus from another DLL in time reference mode.
DIFF	0	Difference indicator when DCNTL is difference than the internal setting and update is needed.
INCO	0	Incremental indicator to other DLLs via CIB.
GRAYO[5:0]	0	Gray-coded digital control bus to other DLLs via CIB

LA-LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between Banks 6 and 7 and Banks 2 and 3.

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

* This signal is not user accessible. It can only be used to feed the slave delay line.

Figure 2-15. Per Region Secondary Clock Selection

Slice Clock Selection

Figure 2-16 shows the clock selections and Figure 2-17 shows the control selections for Slice0 through Slice2. All the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-16. Slice0 through Slice2 Clock Selection

Figure 2-17. Slice0 through Slice2 Control Selection

Tristate Register Block

The tristate register block registers tri-state control signals from the core of the device before they are passed to the sysl/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The output of this register is used as a tristate control.

ISI Calibration

The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control logic block.

For more information about this topic, please see the list of technical documentation at the end of this data sheet.

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block.

DDR Memory Support

Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges

The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory interfaces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-34 shows the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS control logic block.

Bottom Edge

PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces.

Top Edge

PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR memories that support 10 bits of data.

Figure 2-34. DQS Grouping on the Left, Right and Top Edges

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock

Figure 2-39. SERDES/PCS Quads (LA-LatticeECP3-35)

Table 2-13. LA-LatticeECP3 SERDES Standard Support

Standard	Data Rate (Mbps)	Number of General/Link Width	Encoding Style
PCI Express 1.1	2500	x1, x2, x4	8b10b
Gigabit Ethernet	1250, 2500	x1	8b10b
SGMII	1250	x1	8b10b
XAUI	3125	x4	8b10b
Serial RapidIO Type I, Serial RapidIO Type II, Serial RapidIO Type III	1250, 2500, 3125	x1, x4	8b10b
CPRI-1, CPRI-2, CPRI-3, CPRI-4	614.4, 1228.8, 2457.6, 3072.0	x1	8b10b
SD-SDI (259M, 344M)	143 ¹ , 177 ¹ , 270, 360, 540	x1	NRZI/Scrambled
HD-SDI (292M)	1483.5, 1485	x1	NRZI/Scrambled
3G-SDI (424M)	2967, 2970	x1	NRZI/Scrambled
SONET-STS-3 ²	155.52	x1	N/A
SONET-STS-12 ²	622.08	x1	N/A
SONET-STS-48 ²	2488	x1	N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.

2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

LA-LatticeECP3 Automotive Family Data Sheet DC and Switching Characteristics

June 2013

Advance Data Sheet DS1041

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC} 0.5 to 1.32V
Supply Voltage V _{CCAUX}
Supply Voltage V _{CCJ}
Output Supply Voltage V _{CCIO} 0.5 to 3.75V
Input or I/O Tristate Voltage Applied ⁴ 0.5 to 3.75V
Storage Temperature (Ambient)65 to 150°C
Junction Temperature (T _J)+125°C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice <u>Thermal Management</u> document is required.

3. All voltages referenced to GND.

Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions¹

Symbol	Parameter	Min.	Max.	Units
V _{CC} ²	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{2, 4}	Auxiliary Supply Voltage, Terminating Resistor Switching Power Supply (SERDES)	3.135	3.465	V
V _{CCPLL}	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
V_{REF1} and V_{REF2}	Input Reference Voltage	0.5	1.7	V
V _{TT} ⁵	Termination Voltage	0.5	1.3125	V
t _{AUTO}	Junction Temperature, Automotive Operation	-40	125	°C
SERDES External Power Supply ⁶				
Mar	Input Buffer Power Supply (1.2V)	1.14	1.26	V
V CCIB	Input Buffer Power Supply (1.5V)	1.425	1.575	V
V	Output Buffer Power Supply (1.2V)	1.14	1.26	V
* CCOB	Output Buffer Power Supply (1.5V)	1.425	1.575	V
V _{CCA}	Transmit, Receive, PLL and Reference Clock Buffer Power Supply	1.14	1.26	V

1. For correct operation, all supplies except V_{REF} and V_{TT} must be held in their valid operation range. This is true independent of feature usage.

2. If V_{CCIO} or V_{CCJ} is set to 1.2V, they must be connected to the same power supply as $V_{CC.}$ If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX} .

3. See recommended voltages by I/O standard in subsequent table.

4. V_{CCAUX} ramp rate must not exceed 30mV/µs during power-up when transitioning between 0V and 3.3V.

5. If not used, V_{TT} should be left floating.

6. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for information on board considerations for SERDES power supplies.

^{© 2013} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

SERDES Power Supply Requirements^{1, 2, 3}

Symbol	Description	Тур.	Max.	Units			
Standby (Power Down)							
I _{CCA-SB}	V _{CCA} current (per channel)	3	5	mA			
I _{CCIB-SB}	Input buffer current (per channel)	—	—	mA			
I _{CCOB-SB}	Output buffer current (per channel)	—	—	mA			
Operating (Data F	Rate = 3.2 Gbps)		•				
I _{CCA-OP}	V _{CCA} current (per channel)	68	77	mA			
I _{CCIB-OP}	Input buffer current (per channel)	5	7	mA			
I _{CCOB-OP}	Output buffer current (per channel)	19	25	mA			
Operating (Data F	Rate = 2.5 Gbps)		•				
I _{CCA-OP}	V _{CCA} current (per channel)	66	76	mA			
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA			
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA			
Operating (Data F	Rate = 1.25 Gbps)		•				
I _{CCA-OP}	V _{CCA} current (per channel)	62	72	mA			
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA			
I _{CCOB-OP}	Output buffer current (per channel)	15	18	mA			
Operating (Data F	Rate = 250 Mbps)		•				
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA			
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA			
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA			
Operating (Data F	Rate = 150 Mbps)		•				
I _{CCA-OP}	V _{CCA} current (per channel)	55	65	mA			
I _{CCIB-OP}	Input buffer current (per channel)	4	5	mA			
I _{CCOB-OP}	Output buffer current (per channel)	14	17	mA			

1. Equalization enabled, pre-emphasis disabled.

2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, pre-emphasis disabled, equalization enabled).

3. Pre-emphasis adds 20mA to ICCA-OP data.

sysl/O Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{II}	4	Voi	Vou			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} 1 (mA)	I _{OH} ¹ (mA)	
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4	
			0.2	V _{CCIO} - 0.2	0.1	-0.1			
LVCMOS15	-0.3	0.35 Vaga	0.65 Veele	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4	
EV ONICO 13	-0.0	0.00 0.00	0.03 4 CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
	-0.3	0.35 Vaa	0.65 Vac	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2	
EVONIOOTZ	-0.5	0.00 VCC	0.00 VCC	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4	
					0.2	V _{CCIO} - 0.2	0.1	-0.1	
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5	
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7	
SSTL18_II	0.2	V 0.125	V 10105	2.6	0.29	V 0.28	8	-8	
(DDR2 Memory)	-0.5	V _{REF} - 0.123	V _{REF} + 0.123	5.0	0.20	V CCIO - 0.20	11	-11	
	-0.3	V018	V \ 0.18	3.6	0.54	V	7.6	-7.6	
551L2_1	-0.5	V _{REF} - 0.18	V _{REF} + 0.18	3.0	0.54	VCCIO - 0.02	12	-12	
SSTL2_II	-0.3	V018	V \ 0.18	3.6	0.35	V	15.2	-15.2	
(DDR Memory)	-0.5	V _{REF} - 0.10	V _{REF} + 0.10	5.0	0.00	V CCIO - 0.43	20	-20	
SSTL3_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8	
SSTL3_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16	
SSTL15	0.2	V 01	V + 0.1	26	0.2	V _{CCIO} - 0.3	7.5	-7.5	
(DDR3 Memory)	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	3.0	0.5	V _{CCIO} * 0.8	9	-9	
	-0.3	V01	V \ 0.1	3.6	0.4	V 0 4	4	-4	
1131215_1	-0.3	.3 V _{REF} - 0.1	VREF + 0.1	3.0	3.0	0.4	VCCIO - 0.4	8	-8
	-0.3	V 0.1	V 0 1	3.6	0.4	V 0.4	8	-8	
	-0.5	VREF - 0.1	* REF + 0.1	5.0	0.4	V CCIO - 0.4	12	-12	
HSTL18_II	-0.3	V _{REF} - 0.1	V _{BFF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16	

1. For electromigration, the average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND connections or between the last VCCIO and GND in a bank and the end of a bank.

DC and Switching Characteristics LA-LatticeECP3 Automotive Family Data Sheet

Demonstern	Description	Device	-6 /	11			
Parameter	Description	Device	Min.	Max.	Units		
Memory Interface							
DDR/DDR2 I/O F	Pin Parameters (Input Data are Strobe Edg	e Aligned, Outpu	t Strobe Edge	is Data Center	ed) ⁴		
t _{DVADQ}	Data Valid After DQS (DDR Read)	All Devices	-	0.225	UI		
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All Devices	0.64	-	UI		
t _{DQVBS}	Data Valid Before DQS	All Devices	0.25	-	UI		
t _{DQVAS}	Data Valid After DQS	All Devices	0.25	-	UI		
f _{MAX_GDDR}	DDR Clock Frequency	All Devices	95	166	MHz		
f _{MAX_GDDR2}	DDR2 Clock Frequency	All Devices	125	166	MHz		
DDR3 (Using PL	L for SCLK) I/O Pin Parameters						
t _{DVADQ}	Data Valid After DQS (DDR Read)	All Devices	-	0.225	UI		
t _{DVEDQ}	Data Hold After DQS (DDR Read)	All Devices	0.64	-	UI		
t _{DQVBS}	Data Valid Before DQS	All Devices	0.25	-	UI		
t _{DQVAS}	Data Valid After DQS	All Devices	0.25	-	UI		
f _{MAX_DDR3}	DDR3 Clock Frequency	All Devices	266	300	MHz		
DDR3 Clock Tim	hing						
t _{CH}	Average High Pulse Width	All Devices	0.47	0.53	UI		
t _{CL}	Average Low Pulse Width	All Devices	0.47	0.53	UI		
t _{JIT}	Output Clock Period Jitter During DLL Locking Period	All Devices	-90	90	ps		
t _{JIT}	Output Cycle-to-Cycle Period Jitter During DLL Locking Period	All Devices	-	180	ps		

1. Automotive timing numbers are shown.

2. General I/O timing numbers based on LVCMOS 2.5, 12mA, Fast Slew Rate, 0pf load.

3. Generic DDR timing numbers based on LVDS I/O.

4. DDR timing numbers based on SSTL25. DDR2 timing numbers based on SSTL18.

5. DDR3 timing numbers based on SSTL15.

6. Uses LVDS I/O standard.

7. Maximum clock frequencies are tested under best case conditions. System performance may vary upon the user environment.

8. Using settings generated by IPexpress.

9. These numbers are generated using best case PLL located in the center of the device.

10. Uses SSTL25 Class II Differential I/O Standard.

11. All numbers are generated with Diamond 2.x software.

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LA-LatticeECP3 Family Timing Adders ^{1, 2, 3, 4, 5}

Over	Recommended	Operating	Conditions
0101	neovonnenaca	operating	Contaitions

Buffer Type	Description	-6 / -6L	Units		
Input Adjusters					
LVDS25E	LVDS, Emulated, VCCIO = 2.5V	-0.04	ns		
LVDS25	LVDS, VCCIO = 2.5V	-0.04	ns		
BLVDS25	BLVDS, Emulated, VCCIO = 2.5V	-0.04	ns		
MLVDS25	MLVDS, Emulated, VCCIO = 2.5V	-0.04	ns		
RSDS25	RSDS, VCCIO = 2.5V	-0.04	ns		
PPLVDS	Point-to-Point LVDS	-0.04	ns		
TRLVDS	Transition-Reduced LVDS	-0.04	ns		
НҮРТ	HyperTransport	-0.04	ns		
Mini MLVDS	Mini LVDS	-0.04	ns		
LVPECL33	LVPECL, Emulated, VCCIO = 3.0V	-0.04	ns		
HSTL18_I	HSTL_18 class I, VCCIO = 1.8V	0.14	ns		
HSTL18_II	HSTL_18 class II, VCCIO = 1.8V	0.14	ns		
HSTL18D_I	Differential HSTL 18 class I	0.14	ns		
HSTL18D_II	Differential HSTL 18 class II	0.14	ns		
HSTL15_I	HSTL_15 class I, VCCIO = 1.5V	0.14	ns		
HSTL15D_I	Differential HSTL 15 class I	0.14	ns		
SSTL33_I	SSTL_3 class I, VCCIO = 3.0V	0.30	ns		
SSTL33_II	SSTL_3 class II, VCCIO = 3.0V	0.30	ns		
SSTL33D_I	Differential SSTL_3 class I	0.30	ns		
SSTL33D_II	Differential SSTL_3 class II	0.30	ns		
SSTL25_I	SSTL_2 class I, VCCIO = 2.5V	0.17	ns		
SSTL25_II	SSTL_2 class II, VCCIO = 2.5V	0.17	ns		
SSTL25D_I	Differential SSTL_2 class I	0.17	ns		
SSTL25D_II	Differential SSTL_2 class II	0.17	ns		
SSTL18_I	SSTL_18 class I, VCCIO = 1.8V	0.04	ns		
SSTL18_II	SSTL_18 class II, VCCIO = 1.8V	0.04	ns		
SSTL18D_I	Differential SSTL_18 class I	0.04	ns		
SSTL18D_II	Differential SSTL_18 class II	0.04	ns		
SSTL15	SSTL_15, VCCIO = 1.5V	0.03	ns		
SSTL15D	Differential SSTL_15	-0.04	ns		
LVTTL33	LVTTL, VCCIO = 3.0V	0.05	ns		
LVCMOS33	LVCMOS, VCCIO = 3.0V	0.05	ns		
LVCMOS25	LVCMOS, VCCIO = 2.5V	0.00	ns		
LVCMOS18	LVCMOS, VCCIO = 1.8V	0.11	ns		
LVCMOS15	LVCMOS, VCCIO = 1.5V	0.26	ns		
LVCMOS12	LVCMOS, VCCIO = 1.2V	0.09	ns		
PCI33	PCI, VCCIO = 3.0V	0.05	ns		
Output Adjusters		· · ·			
LVDS25E	LVDS, Emulated, VCCIO = 2.5V	0.16	ns		
LVDS25	LVDS, VCCIO = 2.5V	0.01	ns		
BLVDS25	BLVDS, Emulated, VCCIO = 2.5V	-0.04	ns		

Table 3-13. Periodic Receiver Jitter Tolerance Specification

Description	Frequency	Condition	Min.	Тур.	Max.	Units
Periodic	2.97 Gbps	600 mV differential eye		_	0.24	UI, p-p
Periodic	2.5 Gbps	600 mV differential eye	_	—	0.22	UI, p-p
Periodic	1.485 Gbps	600 mV differential eye	_	—	0.24	UI, p-p
Periodic	622 Mbps	600 mV differential eye		—	0.15	UI, p-p
Periodic	150 Mbps	600 mV differential eye		_	0.5	UI, p-p

Note: Values are measured with PRBS 2⁷-1, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, room temperature.

SERDES External Reference Clock

The external reference clock selection and its interface are a critical part of system applications for this product. Table 3-14 specifies reference clock requirements, over the full range of operating conditions.

Symbol	Description	Min.	Тур.	Max.	Units
F _{REF}	Frequency range	15	—	320	MHz
F _{REF-PPM}	Frequency tolerance ¹	-1000	—	1000	ppm
V _{REF-IN-SE}	Input swing, single-ended clock ²	200	—	V _{CCA}	mV, p-p
V _{REF-IN-DIFF}	Input swing, differential clock	200	_	2*V _{CCA}	mV, p-p differential
V _{REF-IN}	Input levels	0		V _{CCA} + 0.3	V
D _{REF}	Duty cycle ³	40	—	60	%
T _{REF-R}	Rise time (20% to 80%)	200	500	1000	ps
T _{REF-F}	Fall time (80% to 20%)	200	500	1000	ps
Z _{REF-IN-TERM-DIFF}	Differential input termination	-20%	100/2K	+20%	Ohms
C _{REF-IN-CAP}	Input capacitance	—	—	7	pF

Table 3-14. External Reference Clock Specification (refclkp/refclkn)

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as described in TN1176, <u>LatticeECP3 SERDES/PCS Usage Guide</u>.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

Figure 3-13. SERDES External Reference Clock Waveforms

Figure 3-14. Jitter Transfer – 3.125 Gbps

Figure 3-15. Jitter Transfer – 2.5 Gbps

Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics

AC and DC Characteristics

Table 3-17. Transmit

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
T _{RF} ¹	Differential rise/fall time	20%-80%	_	80	-	ps
Z _{TX_DIFF_DC}	Differential impedance		80	100	120	Ohms
J _{TX_DDJ} ^{3, 4, 5}	Output data deterministic jitter		_	_	0.17	UI
J _{TX_TJ} ^{2, 3, 4, 5}	Total output data jitter		—	_	0.35	UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.

2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.

3. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).

4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

5. Values are measured at 2.5 Gbps.

Table 3-18. Receive and Jitter Tolerance

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
RL _{RX_DIFF}	Differential return loss	From 100 MHz to 2.5 GHz	10	_	_	dB
RL _{RX_CM}	Common mode return loss	From 100 MHz to 2.5 GHz	6	—	—	dB
Z _{RX_DIFF}	Differential termination resistance		80	100	120	Ohms
J _{RX_DJ} ^{2, 3, 4, 5}	Deterministic jitter tolerance (peak-to-peak)		_	—	0.37	UI
J _{RX_RJ} ^{2, 3, 4, 5}	Random jitter tolerance (peak-to-peak)		_	—	0.18	UI
J _{RX_SJ} ^{2, 3, 4, 5}	Sinusoidal jitter tolerance (peak-to-peak)		_	—	0.10	UI
J _{RX_TJ} ^{1, 2, 3, 4, 5}	Total jitter tolerance (peak-to-peak)		_	—	0.65	UI
T _{RX_EYE}	Receiver eye opening		0.35	—	—	UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.

2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.

3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.

4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled. 5. Values are measured at 2.5 Gbps.

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
f _{MAX}	TCK clock frequency	_	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	_	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	_	ns
t _{BTS}	TCK [BSCAN] setup time	10	_	ns
t _{BTH}	TCK [BSCAN] hold time	8	_	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	ns
t _{BTCRH}	BSCAN test capture register hold time	25	_	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Figure 3-28. JTAG Port Timing Waveforms

Switching Test Conditions

Figure 3-29 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-26.

Figure 3-29. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

Table 3-26.	Test Fixture Red	quired Components,	Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
		8		LVCMOS 3.3 = 1.5V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞		0pF	LVCMOS 1.8 = $V_{CCIO}/2$	—
				LVCMOS 1.5 = $V_{CCIO}/2$	—
				LVCMOS 1.2 = $V_{CCIO}/2$	—
LVCMOS 2.5 I/O (Z -> H)	8	1MΩ	0pF	V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> L)	1MΩ	x	0pF	V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	8	100	0pF	V _{OH} - 0.10	—
LVCMOS 2.5 I/O (L -> Z)	100	8	0pF	V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Point-to-Point LVDS (PPLVDS)

Over Recommended Operating Conditions

Description	Min.	Тур.	Max.	Units
Output driver events $(1/5\%)$	3.14	3.3	3.47	V
Output driver supply (+/- 5%)	2.25	2.5	2.75	V
Input differential voltage	100	—	400	mV
Input common mode voltage	0.2	—	2.3	V
Output differential voltage	130	—	400	mV
Output common mode voltage	0.5	0.8	1.4	V

RSDS

Over Recommended Operating Conditions

Parameter Symbol	Description	Min.	Тур.	Max.	Units
V _{OD}	Output voltage, differential, R _T = 100 ohms	100	200	600	mV
V _{OS}	Output voltage, common mode	0.5	1.2	1.5	V
I _{RSDS}	Differential driver output current	1	2	6	mA
V _{THD}	Input voltage differential	100	—	-	mV
V _{CM}	Input common mode voltage	0.3	—	1.5	V
T _R , T _F	Output rise and fall times, 20% to 80%	—	500		ps
T _{ODUTY}	Output clock duty cycle	35	50	65	%

Note: Data is for 2mA drive. Other differential driver current options are available.

Signal Descriptions (Cont.)

Signal Name	I/O	Description
D7/SPID0	I/O	Parallel configuration I/O. SPI/SPIm data input. Open drain during configura- tion.
DI/CSSPI0N/CEN	I/O	Serial data input for slave serial mode. SPI/SPIm mode chip select.
Dedicated SERDES Signals ³		
PCS[Index]_HDINNm	I	High-speed input, negative channel m
PCS[Index]_HDOUTNm	0	High-speed output, negative channel m
PCS[Index]_REFCLKN	Ι	Negative Reference Clock Input
PCS[Index]_HDINPm	I	High-speed input, positive channel m
PCS[Index]_HDOUTPm	0	High-speed output, positive channel m
PCS[Index]_REFCLKP	Ι	Positive Reference Clock Input
PCS[Index]_VCCOBm	_	Output buffer power supply, channel m (1.2V/1.5)
PCS[Index]_VCCIBm	_	Input buffer power supply, channel m (1.2V/1.5V)

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, care must be given.

2. These pins are dedicated inputs or can be used as general purpose I/O.

3. m defines the associated channel in the quad.

Pin Information Summary (Cont.)

Pin Information Summary			ECP3-17EA		ECP3-35EA			
Pin Type		256 ftBGA	328 csBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	
	Bank 0	13	10	18	13	21	24	
	Bank 1	7	5	12	7	18	18	
	Bank 2	2	2	4	1	8	8	
Emulated Differential I/O per	Bank 3	4	2	13	5	20	19	
Dank	Bank 6	5	1	13	6	22	20	
	Bank 7	6	9	10	6	11	13	
	Bank 8	12	12	12	12	12	12	
	Bank 0	0	0	0	0	0	0	
	Bank 1	0	0	0	0	0	0	
	Bank 2	2	2	3	3	6	6	
Highspeed Differential I/O per Bank	Bank 3	5	4	9	4	9	12	
Dank	Bank 6	5	4	9	4	11	12	
	Bank 7	5	6	8	5	9	10	
	Bank 8	0	0	0	0	0	0	
	Bank 0	26/13	20/10	36/18	26/13	42/21	48/24	
	Bank 1	14/7	10/5	24/12	14/7	36/18	36/18	
Tatal Qinada Ended/ Tatal	Bank 2	8/4	9/4	14/7	8/4	28/14	28/14	
Differential I/O per Bank	Bank 3	18/9	12/6	44/22	18/9	58/29	63/31	
	Bank 6	20/10	11/5	44/22	20/10	67/33	65/32	
	Bank 7	23/11	30/15	36/18	23/11	40/20	46/23	
	Bank 8	24/12	24/12	24/12	24/12	24/12	24/12	
	Bank 0	2	1	3	2	3	4	
	Bank 1	1	0	2	1	3	3	
	Bank 2	0	0	1	0	2	2	
DDR Groups Bonded per	Bank 3	1	0	3	1	3	4	
Bank ²	Bank 6	1	0	3	1	4	4	
	Bank 7	1	2	2	1	3	3	
	Configuration Bank 8	0	0	0	0	0	0	
SERDES Quads		1	1	1	1	1	1	

1. These pins must remain floating on the board.

2. Some DQS groups may not support DQS-12. Refer to the device pinout (.csv) file.