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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 2125

Number of Logic Elements/Cells 17000

Total RAM Bits 716800

Number of I/O 133

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 125°C (TJ)

Package / Case 256-BGA

Supplier Device Package 256-FTBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lae3-17ea-6lftn256e

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/lae3-17ea-6lftn256e-4483601
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


2-7

Architecture
LA-LatticeECP3 Automotive Family Data Sheet

Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LA-LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 

CLKFB
Divider

RST

CLKFB

CLKI

LOCK

CLKOP

CLKOS

RSTK

WRDEL

FDA[3:0]

CLKOK2

CLKOK

CLKI
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PFD VCO/
Loop Filter
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Duty Trim

Duty Trim
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Detect

3
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Table 2-5. DLL Signals

LA-LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the low-
est EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed 
adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset

ALUHOLD I Active high freezes the ALU

UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing

CLKOP O The primary clock output 

CLKOS O The secondary clock output with fine delay shift and/or division by 2 or by 4

LOCK O Active high phase lock indicator

INCI I Incremental indicator from another DLL via CIB.

GRAYI[5:0] I Gray-coded digital control bus from another DLL in time reference mode.

DIFF O Difference indicator when DCNTL is difference than the internal setting and update is needed.

INCO O Incremental indicator to other DLLs via CIB.

GRAYO[5:0] O Gray-coded digital control bus to other DLLs via CIB

CLKOP

CLKOS

LOCK

GRAY_OUT[5:0]

INC_OUT

DIFF

DCNTL[5:0]*

CLKO (to edge clock
muxes as CLKINDEL)Slave Delay Line

LatticeECP3
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CIB (CLK)
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Internal from CLKOP
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4
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* This signal is not user accessible. It can only be used to feed the slave delay line.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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PLL/DLL Cascading 
LA-LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allow-
able combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LA-LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. 
PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL 
and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LA-LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are 
next to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LA-LatticeECP3 Devices

Clock Dividers
LA-LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These 
are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, 
÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed 
clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the 
Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources 
and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces 
all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information 
on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 
shows the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-21. 

Figure 2-21. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LA-LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-
performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LA-LatticeECP3, on the other hand, has many DSP slices that support different data 
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Figure 2-24. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LA-LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LA-LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-26 
shows the MAC sysDSP element.

Figure 2-26. MAC DSP Element
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Input signals are fed from the sysI/O buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock.

The input block allows three modes of operation. In single data rate (SDR) the data is registered with the system 
clock by one of the registers in the single data rate sync register block. 

In DDR mode, two registers are used to sample the data on the positive and negative edges of the modified DQS 
(ECLKDQSR) in the DDR Memory mode or ECLK signal when using DDR Generic mode, creating two data 
streams. Before entering the core, these two data streams are synchronized to the system clock to generate two 
data streams.

A gearbox function can be implemented in each of the input registers on the left and right sides. The gearbox func-
tion takes a double data rate signal applied to PIOA and converts it as four data streams, INA, IPA, INB and IPB. 
The two data streams from the first set of DDR registers are synchronized to the edge clock and then to the system 
clock before entering the core. Figure 2-29 provides further information on the use of the gearbox function.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures ade-
quate timing when data is transferred to the system clock domain from the ECLKDQSR (DDR Memory Interface 
mode) or ECLK (DDR Generic mode). The DDRLAT signal is used to ensure the data transfer from the synchroni-
zation registers to the clock transfer and gearbox registers. 

The ECLKDQSR, DDRCLKPOL and DDRLAT signals are generated in the DQS Read Control Logic Block. See 
Figure 2-36 for an overview of the DQS read control logic.

Further discussion about using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-36. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LA-LatticeECP3 family contains dedicated cir-
cuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations 
at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is 
registered in the synchronizing registers in the input register block. This requires evaluation at the start of each 
READ cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LA-LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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Table 2-14. Available SERDES Quads per LA-LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-40 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-40. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-40, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package LAE3-17 LAE3-35

256 ftBGA 1 1

328 csBGA 2 channels —

484 fpBGA 1 1

672 fpBGA — 1
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Deserializer
1:8/1:10
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sysI/O Single-Ended DC Electrical Characteristics

Input/Output 
Standard

VIL VIH  VOL
Max. (V)

VOH
Min. (V) IOL

1 (mA) IOH
1 (mA)Min. (V) Max. (V) Min. (V) Max. (V)

LVCMOS33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS25 -0.3 0.7 1.7 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS18 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 16, 12, 

8, 4
-16, -12,

-8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS15 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 8, 4 -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS12 -0.3 0.35 VCC 0.65 VCC 3.6
0.4 VCCIO - 0.4 6, 2 -6, -2

0.2 VCCIO - 0.2 0.1 -0.1

LVTTL33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

PCI33 -0.3 0.3 VCCIO 0.5 VCCIO 3.6 0.1 VCCIO 0.9 VCCIO 1.5 -0.5

SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 3.6 0.4 VCCIO - 0.4 6.7 -6.7

SSTL18_II
(DDR2 Memory) -0.3 VREF - 0.125 VREF + 0.125 3.6 0.28 VCCIO - 0.28

8 -8

11 -11

SSTL2_I -0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62
7.6 -7.6

12 -12

SSTL2_II
(DDR Memory) -0.3 VREF - 0.18 VREF + 0.18 3.6 0.35 VCCIO - 0.43

15.2 -15.2

20 -20

SSTL3_I -0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8

SSTL3_II -0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16

SSTL15 
(DDR3 Memory) -0.3 VREF - 0.1 VREF + 0.1 3.6 0.3

VCCIO - 0.3 7.5 -7.5

VCCIO * 0.8 9 -9

HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
4 -4

8 -8

HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
8 -8

12 -12

HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 -16

1. For electromigration, the average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end 
of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND 
connections or between the last VCCIO and GND in a bank and the end of a bank. 
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, 2Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond design tool are worst case num-
bers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much 
better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular 
temperature and voltage.



3-16

DC and Switching Characteristics
LA-LatticeECP3 Automotive Family Data Sheet

LA-LatticeECP3 External Switching Characteristics1, 2

Over Recommended Operating Ranges

Parameter Description Device
-6 / -6L

Units
Min. Max.

Clocks

Primary Clock 6

fMAX_PRI Frequency for Primary Clock Tree LAE3-35EA — 375 MHz

tW_PRI Pulse Width for Primary Clock LAE3-35EA 1 — ns

tSKEW_PRI Primary Clock Skew Within a Device LAE3-35EA — 360 ps

tSKEW_PRIB Primary Clock Skew Within a Bank LAE3-35EA — 300 ps

fMAX_PRI Frequency for Primary Clock Tree LAE3-17EA — 375 MHz

tW_PRI Pulse Width for Primary Clock LAE3-17EA 1 — ns

tSKEW_PRI Primary Clock Skew Within a Device LAE3-17EA — 370  ps

tSKEW_PRIB Primary Clock Skew Within a Bank LAE3-17EA — 240  ps

Edge Clock 6

fMAX_EDGE Frequency for Edge Clock LAE3-35EA — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock LAE3-35EA 1.2 — ns

tSKEW_EDGE_DQS Edge Clock Skew Within an Edge of the 
Device

LAE3-35EA — 220 ps

fMAX_EDGE Frequency for Edge Clock LAE3-17EA — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock LAE3-17EA 1.2 — ns

tSKEW_EDGE_DQS Edge Clock Skew Within an Edge of the 
Device

LAE3-17EA — 220 ps

Generic SDR

General I/O Pin Parameters (using dedicated clock input Primary Clock without PLL) 2

tCO Clock to Output - PIO Output Register LAE3-35EA - 4.54 ns

tSU Clock to Data Setup - PIO Input Register LAE3-35EA 0.00 - ns

tH Clock to Data Hold - PIO Input Register LAE3-35EA 1.62 - ns

tSU_DEL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-35EA 1.48 - ns

tH_DEL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-35EA 0.00 - ns

fMAX_IO Clock Frequency of I/O and PFU Register LAE3-35EA - 375 Mhz

tCO Clock to Output - PIO Output Register LAE3-17EA - 4.34 ns

tSU Clock to Data Setup - PIO Input Register LAE3-17EA 0.00 - ns

tH Clock to Data Hold - PIO Input Register LAE3-17EA 1.62 - ns

tSU_DEL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-17EA 1.48 - ns

tH_DEL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-17EA 0.00 - ns

fMAX_IO Clock Frequency of I/O and PFU Register LAE3-17EA - 375 Mhz
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Parameter Description Device
-6 / -6L

Units
Min. Max.

General I/O Pin Parameters (using dedicated clock input Primary Clock with PLL with clock injection removal setting) 2

tCOPLL Clock to Output - PIO Output Register LAE3-35EA - 2.72 ns

tSUPLL Clock to Data Setup - PIO Input Register LAE3-35EA 0.81 - ns

tHPLL Clock to Data Hold - PIO Input Register LAE3-35EA 0.37 - ns

tSU_DELPLL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-35EA 1.82 - ns

tH_DELPLL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-35EA 0.00 - ns

tCOPLL Clock to Output - PIO Output Register LAE3-17EA - 2.49 ns

tSUPLL Clock to Data Setup - PIO Input Register LAE3-17EA 0.81 - ns

tHPLL Clock to Data Hold - PIO Input Register LAE3-17EA 0.37 - ns

tSU_DELPLL Clock to Data Setup - PIO Input Register 
with Data Input Delay

LAE3-17EA 1.82 - ns

tH_DELPLL Clock to Data Hold - PIO Input Register 
with Input Data Delay

LAE3-17EA 0.00 - ns

Generic DDR12

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_RX.SCLK.Centered) Using PCLK 
Pin for Clock Input

tSUGDDR Data Setup Before CLK All Devices 480 — ps

tHOGDDR Data Hold After CLK All Devices 480 — ps

fMAX_GDDR DDRX1 Clock Frequency All Devices — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.PLL.Aligned) Using 
PLLCLKIN Pin for Clock Input

Data Left, Right, and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All Devices — 0.225 UI

tDVECLKGDDR Data Hold After CLK All Devices 0.775 — UI

fMAX_GDDR DDRX1 Clock Frequency All Devices — 250 MHz

Generic DDRX1 Inputs with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX1_RX.SCLK.Aligned) Using DLL - 
CLKIN Pin for Clock Input

Data Left, Right and Top Sides and Clock Left and Right Sides

tDVACLKGDDR Data Setup Before CLK All Devices - 0.225 UI

tDVECLKGDDR Data Hold After CLK All Devices 0.775 - UI

fMAX_GDDR DDRX1 Clock Frequency All Devices - 250 MHz
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Figure 3-6. Generic DDRX1/DDRX2 (With Clock and Data Edges Aligned)
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tHBE_EBR Byte Enable Hold Time to EBR Output Register 0.080 - ns

PLL Parameters

tRSTREC_GPLL Reset Recovery to Rising Clock 1.00 — ns

DSP Block Timing2, 3

tSUI_DSP Input Register Setup Time 0.39 — ns

tHI_DSP Input Register Hold Time  -0.21 — ns

tSUP_DSP Pipeline Register Setup Time 2.39 — ns

tHP_DSP Pipeline Register Hold Time -1.16 — ns

tSUO_DSP Output Register Setup Time 3.37 — ns

tHO_DSP Output Register Hold Time -1.86 — ns

tCOI_DSP Input Register Clock to Output Time — 3.77 ns

tCOP_DSP Pipeline Register Clock to Output Time — 1.66 ns

tCOO_DSP Output Register Clock to Output Time — 0.63 ns

tSUOPT_DSP Opcode Register Setup Time 0.39 — ns

tHOPT_DSP Opcode Register Hold Time -0.27 — ns

tSUDATA_DSP Cascade_data through ALU to Output Register Setup Time 2.16 — ns

tHPDATA_DSP Cascade_data  through ALU to Output Register Hold Time -0.98 — ns

1. Internal parameters are characterized but not tested on every device.
2. These parameters apply to LA-LatticeECP3 devices only.
3. DSP Block is configured in Multiply Add/Sub 18x18 Mode.

LA-LatticeECP3 Internal Switching Characteristics1

Over Recommended Operating Conditions

Parameter Description

-6 / -6L

UnitsMin. Max.
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SERDES High-Speed Data Transmitter1 
Table 3-8. Serial Output Timing and Levels

Symbol Description Frequency Min. Typ. Max. Units

VTX-DIFF-P-P-1.44 Differential swing (1.44V setting)1, 2 0.15 to 3.125 Gbps 1150 1440 1730 mV, p-p

VTX-DIFF-P-P-1.35 Differential swing (1.35V setting)1, 2 0.15 to 3.125 Gbps 1080 1350 1620 mV, p-p

VTX-DIFF-P-P-1.26 Differential swing (1.26V setting)1, 2 0.15 to 3.125 Gbps 1000 1260 1510 mV, p-p

VTX-DIFF-P-P-1.13 Differential swing (1.13V setting)1, 2 0.15 to 3.125 Gbps 840 1130 1420 mV, p-p

VTX-DIFF-P-P-1.04 Differential swing (1.04V setting)1, 2 0.15 to 3.125 Gbps 780 1040 1300 mV, p-p

VTX-DIFF-P-P-0.92 Differential swing (0.92V setting)1, 2 0.15 to 3.125 Gbps 690 920 1150 mV, p-p

VTX-DIFF-P-P-0.87 Differential swing (0.87V setting)1, 2 0.15 to 3.125 Gbps 650 870 1090 mV, p-p

VTX-DIFF-P-P-0.78 Differential swing (0.78V setting)1, 2 0.15 to 3.125 Gbps 585 780 975 mV, p-p

VTX-DIFF-P-P-0.64 Differential swing (0.64V setting)1, 2 0.15 to 3.125 Gbps 480 640 800 mV, p-p

VOCM Output common mode voltage — VCCOB
-0.75

VCCOB
-0.60

VCCOB
-0.45 V

TTX-R Rise time (20% to 80%) — 145 185 265 ps

TTX-F Fall time (80% to 20%) — 145 185 265 ps

ZTX-OI-SE
Output Impedance 50/75/HiZ Ohms 
(single ended) — -20% 50/75/

Hi Z  +20% Ohms

RLTX-RL Return loss (with package) — 10  dB

TTX-INTRASKEW
Lane-to-lane TX skew within a 
SERDES quad block (intra-quad) — — — 200 ps

1. All measurements are with 50 ohm impedance.
2. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for actual binary settings and the min-max range.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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SERDES External Reference Clock 
The external reference clock selection and its interface are a critical part of system applications for this product. 
Table 3-14 specifies reference clock requirements, over the full range of operating conditions.

Figure 3-13. SERDES External Reference Clock Waveforms

Table 3-14. External Reference Clock Specification (refclkp/refclkn) 

Symbol Description Min. Typ. Max. Units

FREF Frequency range 15 — 320 MHz 

FREF-PPM Frequency tolerance1 -1000 — 1000 ppm

VREF-IN-SE Input swing, single-ended clock2 200 — VCCA mV, p-p

VREF-IN-DIFF Input swing, differential clock 200 — 2*VCCA
mV, p-p 

differential

VREF-IN Input levels 0 — VCCA + 0.3 V

DREF Duty cycle3 40 — 60 %

TREF-R Rise time (20% to 80%) 200 500 1000 ps

TREF-F Fall time (80% to 20%) 200 500 1000 ps

ZREF-IN-TERM-DIFF Differential input termination -20% 100/2K +20% Ohms

CREF-IN-CAP Input capacitance — — 7 pF

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as 
described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain 
at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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XAUI/Serial Rapid I/O Type 3/CPRI LV E.30 Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-15. Transmit

Over Recommended Operating Conditions

Table 3-16. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
2, 3, 4 Output data deterministic jitter — — 0.17 UI

JTX_TJ
1, 2, 3, 4 Total output data jitter — — 0.35 UI

1. Total jitter includes both deterministic jitter and random jitter.
2. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz 
to 3.125 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz 
to 3.125 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
1, 2, 3 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
1, 2, 3 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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Pin Information Summary 
Pin Information Summary ECP3-17EA ECP3-35EA

Pin Type 256 ftBGA
328

csBGA 484 fpBGA 256 ftBGA 484 fpBGA 672 fpBGA

General Purpose 
Inputs/Outputs per Bank

Bank 0 26 20 36 26 42 48

Bank 1 14 10 24 14 36 36

Bank 2 6 7 12 6 24 24

Bank 3 18 12 44 16 54 59

Bank 6 20 11 44 18 63 61

Bank 7 19 26 32 19 36 42

Bank 8 24 24 24 24 24 24

General Purpose Inputs 
per Bank

Bank 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0

Bank 2 2 2 2 2 4 4

Bank 3 0 0 0 2 4 4

Bank 6 0 0 0 2 4 4

Bank 7 4 4 4 4 4 4

Bank 8 0 0 0 0 0 0

General Purpose Out-
puts per Bank

Bank 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0

Bank 2 0 0 0 0 0 0

Bank 3 0 0 0 0 0 0

Bank 6 0 0 0 0 0 0

Bank 7 0 0 0 0 0 0

Bank 8 0 0 0 0 0 0

Total Single-Ended User I/O 133 116 222 133 295 310

VCC 6 16 16 6 16 32

VCCAUX 4 5 8 4 8 12

VTT 4 7 4 4 4 4

VCCA 4 6 4 4 4 8

VCCPLL 2 2 4 2 4 4

VCCIO

Bank 0 2 3 2 2 2 4

Bank 1 2 3 2 2 2 4

Bank 2 2 2 2 2 2 4

Bank 3 2 3 2 2 2 4

Bank 6 2 3 2 2 2 4

Bank 7 2 3 2 2 2 4

Bank 8 1 2 2 1 2 2

VCCJ 1 1 1 1 1 1

TAP 4 4 4 4 4 4

GND, GNDIO 51 126 98 51 98 139

NC 0 0 73 0 0 96

Reserved1 0 0 2 0 2 2

SERDES 26 18 26 26 26 26

Miscellaneous Pins 8 8 8 8 8 8

Total Bonded Pins 256 328 484 256 484 672
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Package Pinout Information
Package pinout information can be found under “Data Sheets” on the LatticeECP3 product pages on the Lattice 
website at www.latticesemi.com/products/fpga/ecp3 and in the Diamond software tool. To create a pin information 
file from within Diamond select Tools > Spreadsheet View or Tools >Package View; then, select File > Export
and choose a type of output file. See Diamond Help for more information.

Thermal Management 
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal 
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. 
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not 
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package 
specific thermal values.

For Further Information
For further information regarding Thermal Management, refer to the following:

• Thermal Management document

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• Power Calculator tool included with the Diamond design tool, or as a standalone download from 
www.latticesemi.com/software

www.latticesemi.com/dynamic/view_document.cfm?document_id=32321
www.latticesemi.com/dynamic/view_document.cfm?document_id=210
http://www.latticesemi.com/products/designsoftware/index.cfm
http://www.latticesemi.com/products/fpga/ecp3/

