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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 125°C (TJ)

Package / Case 328-LFBGA, CSBGA

Supplier Device Package 328-CSBGA (10x10)
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Figure 2-2. PFU Diagram

Slice 
Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For 
PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. 
Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they 
enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as 
LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/
asynchronous), clock select, chip-select and wider RAM/ROM functions. 

Table 2-1. Resources and Modes Available per Slice

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for posi-
tive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent 
slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 
input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Slice

PFU BLock PFF Block

Resources Modes Resources Modes

Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 1 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 3 2 LUT4s Logic, ROM 2 LUT4s Logic, ROM

Slice 0

LUT4 &
CARRY

LUT4 &
CARRY

D D

Slice 1

LUT4 &
CARRY

LUT4 &
CARRY

Slice 2

LUT4 &
CARRY

LUT4 &
CARRY

From
 Routing

To
 Routing

Slice 3

LUT4 LUT4

D D D D

FF FF FF FF FF FF
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PLL/DLL Cascading 
LA-LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allow-
able combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LA-LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. 
PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL 
and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LA-LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are 
next to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LA-LatticeECP3 Devices

Clock Dividers
LA-LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These 
are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, 
÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed 
clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the 
Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources 
and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces 
all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information 
on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 
shows the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LA-LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The 
primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock 
sources are connected to these muxes. Figure 2-11 shows the clock routing for one quadrant. Each quadrant mux 
is identical. If desired, any clock can be routed globally.

Figure 2-11. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-11).

Figure 2-12 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-12. DCS Waveforms

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7

63:1 63:1 63:1 63:1 58:1 58:1 58:1 58:163:1 63:1

DCC DCC DCC DCC DCS DCSDCC DCC

8 Primary Clocks (CLK0 to CLK7) per Quadrant

 PLLs + DLLs + CLKDIVs + PCLK PIOs + SERDES Quad

CLK0

SEL

DCSOUT

CLK1
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Secondary Clock/Control Sources 
LA-LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input 
pads and the rest from routing. Figure 2-13 shows the secondary clock sources. All eight secondary clock sources 
are defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and 
SC4-SC7 are for the clock.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an 
input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7.

Figure 2-13. Secondary Clock Sources

Secondary Clock/Control Routing
Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock 
routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the LA-
LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the 
secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP 
slice in the DSP row or the center of the DSP row. Figure 2-14 shows this special vertical routing channel and the 
20 secondary clock regions for the LA-LatticeECP3 family of devices. All devices in the LA-LatticeECP3 family 
have eight secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for 
control signals. 

Secondary Clock Sources
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in 
Figure 2-18.

Figure 2-18. Edge Clock Sources

Edge Clock Routing
LA-LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the 
implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, 
left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the 
device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge 
clock muxes on the left and right sides of the device. Figure 2-19 shows the selection muxes for these clocks.

Six Edge Clocks (ECLK)
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as, overflow, underflow and convergent rounding, etc.
– Flexible cascading across slices to get larger functions

• RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy 
users

• Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require 
processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-23, the LA-LatticeECP3 DSP slice is backwards-compatible with the 
LatticeECP2™ sysDSP block, such that, legacy applications can be targeted to the LA-LatticeECP3 sysDSP slice. 
The functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LA-LatticeECP3 sysDSP 
slices, as shown in Figure 2-24.

Figure 2-23. Simplified sysDSP Slice Block Diagram
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Figure 2-24. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LA-LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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MULTADDSUB DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-28 
shows the MULTADDSUB sysDSP element.

Figure 2-28. MULTADDSUB
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Figure 2-36. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LA-LatticeECP3 family contains dedicated cir-
cuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations 
at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is 
registered in the synchronizing registers in the input register block. This requires evaluation at the start of each 
READ cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LA-LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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Figure 2-37. LA-LatticeECP3 Banks

LA-LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only 
allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals. 

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot 
socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these 
banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side 
pads can be identified by the Lattice Diamond tool.
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DC Electrical Characteristics
Over Recommended Operating Conditions

Symbol Parameter Condition Min. Typ. Max. Units

IIL, IIH
1, 4 Input or I/O Low Leakage 0  VIN  (VCCIO - 0.2V) — — 10 µA

IIH
1, 3 Input or I/O High Leakage (VCCIO - 0.2V) < VIN  3.6V — — 150 µA

IPU I/O Active Pull-up Current 0  VIN  0.7 VCCIO -30 — -210 µA

IPD I/O Active Pull-down Current VIL (MAX)  VIN  VCCIO 30 — 210 µA

IBHLS Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 — — µA

IBHHS Bus Hold High Sustaining Current VIN = 0.7 VCCIO -30 — — µA

IBHLO Bus Hold Low Overdrive Current 0  VIN  VCCIO — — 210 µA

IBHHO Bus Hold High Overdrive Current 0  VIN  VCCIO — — -210 µA

VBHT Bus Hold Trip Points 0  VIN  VIH (MAX) VIL (MAX) — VIH (MIN) V

C1 I/O Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 
VCC = 1.2V, VIO = 0 to VIH (MAX) 

— 5 8 pf

C2 Dedicated Input Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 
VCC = 1.2V, VIO = 0 to VIH (MAX) 

— 5 7 pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured 
with the output driver active. Bus maintenance circuits are disabled. 

2. TA 25oC, f = 1.0MHz.
3. Applicable to general purpose I/Os in top and bottom banks.
4. When used as VREF, maximum leakage= 25µA.
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BLVDS25
The LA-LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVC-
MOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use 
when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is 
one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS25 Multi-point Output Example

Table 3-4. BLVDS25 DC Conditions1

Over Recommended Operating Conditions

Parameter Description

Typical

UnitsZo = 45 Zo = 90

VCCIO Output Driver Supply (+/- 5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/- 1%) 90.00 90.00 

RTL Driver Parallel Resistor (+/- 1%) 45.00 90.00 

RTR Receiver Termination (+/- 1%) 45.00 90.00 

VOH Output High Voltage 1.38 1.48 V

VOL Output Low Voltage 1.12 1.02 V

VOD Output Differential Voltage 0.25 0.46 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 11.24 10.20 mA

1. For input buffer, see LVDS table.

Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12mA Drive)1

 Function -6 / -6L Timing Units

Basic Functions

16-bit Decoder 4.9 ns

32-bit Decoder 5.3 ns

64-bit Decoder 7.0 ns

4:1 MUX 4.9 ns

8:1 MUX 5.2 ns

16:1 MUX 5.7 ns

32:1 MUX 5.8 ns

1. Automotive timing numbers are shown.

Register-to-Register Performance1

 Function -6 / -6L Timing Units

Basic Functions

16-bit Decoder 368 MHz

32-bit Decoder 368 MHz

64-bit Decoder 247 MHz

4:1 MUX 368 MHz

8:1 MUX 368 MHz

16:1 MUX 368 MHz

32:1 MUX 358 MHz

8-bit Adder 368 MHz

16-bit Adder 368 MHz

64-bit Adder 252 MHz

16-bit Counter 368 MHz

32-bit Counter 368 MHz

64-bit Counter 262 MHz

64-bit Accumulator 251 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 272 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 272 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers 103 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 222 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 368 MHz

32x4 Pseudo-Dual Port RAM 368 MHz

64x8 Pseudo-Dual Port RAM 324 MHz

DSP Function

18x18 Multiplier (All Registers) 331 MHz

9x9 Multiplier (All Registers) 331 MHz

36x36 Multiply (All Registers) 212 MHz

18x18 Multiply/Accumulate (Input & Output Registers) 176 MHz

18x18 Multiply-Add/Sub (All Registers) 331 MHz

1. Automotive timing numbers are shown.
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, 2Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond design tool are worst case num-
bers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much 
better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular 
temperature and voltage.
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Figure 3-6. Generic DDRX1/DDRX2 (With Clock and Data Edges Aligned)

t

t

t

t
t

t

t

t

CLK

RDTCLK

Data (RDAT, RCTL)

Data (TDAT, TCTL)

DIBGDDR

DIBGDDR

DVACLKGDDRDVACLKGDDR

DVECLKGDDR DVECLKGDDR

DIAGDDR

DIAGDDR

Transmit Parameters

Receive Parameters



3-23

DC and Switching Characteristics
LA-LatticeECP3 Automotive Family Data Sheet

Figure 3-7. DDR/DDR2/DDR3 Parameters

Figure 3-8. Generic DDRX1/DDRX2 (With Clock Center on Data Window)
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sysCLOCK PLL Timing
Over Recommended Operating Conditions

Parameter Descriptions Conditions Clock Min. Typ. Max. Units

fIN
Input clock frequency (CLKI, 
CLKFB)  

Edge clock 2 — 500 MHz

Primary clock4 2 — 420 MHz

fOUT
Output clock frequency (CLKOP, 
CLKOS)  

Edge clock 4 — 500 MHz

Primary clock4 4 — 420 MHz

fOUT1 K-Divider output frequency CLKOK 0.03125 — 250 MHz

fOUT2 K2-Divider output frequency CLKOK2 0.667 — 166 MHz

fVCO PLL VCO frequency  500 — 1000 MHz

fPFD
3 Phase detector input frequency  Edge clock 2 — 500 MHz

Primary clock4 2 — 420 MHz

AC Characteristics

tPA Programmable delay unit  65 130 260 ps

tDT
Output clock duty cycle 
(CLKOS, at 50% setting)

Edge clock 45 50 55 %

fOUT 250 MHz Primary clock 45 50 55 %

fOUT > 250MHz Primary clock 30 50 70 %

tCPA
Coarse phase shift error 
(CLKOS, at all settings)  -5 0 +5 % of 

period

tOPW

Output clock pulse width high or 
low 
(CLKOS)

 1.8 — — ns

tOPJIT
1 Output clock period jitter

fOUT  420MHz — — 200 ps

420MHz > fOUT  100MHz — — 250 ps

fOUT < 100MHz — — 0.025 UIPP

tSK
Input clock to output clock skew 
when N/M = integer  — — 500 ps

tLOCK
2 Lock time

2 to 25 MHz — — 200 us

25 to 500 MHz — — 50 us

tUNLOCK
Reset to PLL unlock time to 
ensure fast reset  — — 50 ns

tHI Input clock high time 90% to 90% 0.5 — — ns

tLO Input clock low time 10% to 10% 0.5 — — ns

tIPJIT Input clock period jitter  — — 400 ps

tRST

Reset signal pulse width high, 
RSTK  10 — — ns

Reset signal pulse width high, 
RST  500 — — ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock with no additional I/O toggling.
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.
3. Period jitter and cycle-to-cycle jitter numbers are guaranteed for fPFD > 4MHz.  For fPFD < 4MHz, the jitter numbers may not be met in cer-

tain conditions. Please contact the factory for fPFD < 4MHz. 
4. When using internal feedback, maximum can be up to 500 MHz.
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Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37UIpp of Deterministic
jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55UIpp. Therefore, the 
sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).
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JTAG Port Timing Specifications
Over Recommended Operating Conditions

Figure 3-28. JTAG Port Timing Waveforms

Symbol Parameter Min Max Units

fMAX TCK clock frequency — 25 MHz

tBTCP TCK [BSCAN] clock pulse width 40 — ns

tBTCPH TCK [BSCAN] clock pulse width high 20 — ns

tBTCPL TCK [BSCAN] clock pulse width low 20 — ns

tBTS TCK [BSCAN] setup time 10 — ns

tBTH TCK [BSCAN] hold time 8 — ns

tBTRF TCK [BSCAN] rise/fall time 50 — mV/ns

tBTCO TAP controller falling edge of clock to valid output — 10 ns

tBTCODIS TAP controller falling edge of clock to valid disable — 10 ns

tBTCOEN TAP controller falling edge of clock to valid enable — 10 ns

tBTCRS BSCAN test capture register setup time 8 — ns

tBTCRH BSCAN test capture register hold time 25 — ns

tBUTCO BSCAN test update register, falling edge of clock to valid output — 25 ns

tBTUODIS BSCAN test update register, falling edge of clock to valid disable — 25 ns

tBTUPOEN BSCAN test update register, falling edge of clock to valid enable — 25 ns
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sysI/O Differential Electrical Characteristics
Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Mini LVDS
Over Recommended Operating Conditions

Symbol Description Min. Nom. Max. Units

VCCO Driver supply voltage (+/- 5%) 3.14 3.3 3.47 V

VID Input differential voltage 150 — 1200 mV

VICM Input common mode voltage 3 — 3.265 V

VCCO Termination supply voltage 3.14 3.3 3.47 V

RT Termination resistance (off-chip) 45 50 55 Ohms

Note: LA-LatticeECP3 only supports the TRLVDS receiver.

Parameter Symbol Description Min. Typ. Max. Units

ZO Single-ended PCB trace impedance 30 50 75 ohms

RT Differential termination resistance 50 100 150 ohms

VOD Output voltage, differential, |VOP - VOM| 300 — 600 mV

VOS Output voltage, common mode, |VOP + VOM|/2 1 1.2 1.4 V

VOD Change in VOD, between H and L — — 50 mV

VID Change in VOS, between H and L — — 50 mV

VTHD Input voltage, differential, |VINP - VINM| 200 — 600 mV

VCM Input voltage, common mode, |VINP + VINM|/2 0.3+(VTHD/2) — 2.1-(VTHD/2)

TR, TF Output rise and fall times, 20% to 80% — — 550 ps

TODUTY Output clock duty cycle 40 — 60 %

Note: Data is for 6mA differential current drive. Other differential driver current options are available.

Current 
Source

VCCO = 3.3V

Z0

RT RTTransmitter

Receiver


