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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-1. Simplified Block Diagram, LA-LatticeECP3-35 Device (Top Level)

PFU Blocks 
The core of the LA-LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. 
The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF 
blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remain-
der of this data sheet will use the term PFU to refer to both PFU and PFF blocks. 

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains 
two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs 
associated with each PFU block. 
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Figure 2-2. PFU Diagram

Slice 
Slice 0 through Slice 2 contain two LUT4s feeding two registers, whereas Slice 3 contains two LUT4s only. For 
PFUs, Slice 0 through Slice 2 can be configured as distributed memory, a capability not available in the PFF. 
Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they 
enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as 
LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/
asynchronous), clock select, chip-select and wider RAM/ROM functions. 

Table 2-1. Resources and Modes Available per Slice

Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured for posi-
tive/negative and edge triggered or level sensitive clocks.

Slices 0, 1 and 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent 
slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 10 
input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Slice

PFU BLock PFF Block

Resources Modes Resources Modes

Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 1 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 3 2 LUT4s Logic, ROM 2 LUT4s Logic, ROM
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PLL/DLL Cascading 
LA-LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allow-
able combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LA-LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. 
PLLs are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL 
and DLL blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LA-LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are 
next to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LA-LatticeECP3 Devices

Clock Dividers
LA-LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These 
are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, 
÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed 
clock based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the 
Slave Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources 
and feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces 
all outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information 
on clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 
shows the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LA-LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. 
Two high performance edge clocks are available on the top, left, and right edges of the device to support high 
speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. 
These clock sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LA-LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, 
dedicated clock inputs, routing and SERDES Quad. LA-LatticeECP3 devices have two to four sysCLOCK PLLs and 
two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, 
two on the left side and two on the right side of the device. Figures 2-9 and 2-10 and show the primary clock 
sources for LA-LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LA-LatticeECP3-17
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs, DLLs, Slave Delay and clock dividers as shown in 
Figure 2-18.

Figure 2-18. Edge Clock Sources

Edge Clock Routing
LA-LatticeECP3 devices have a number of high-speed edge clocks that are intended for use with the PIOs in the 
implementation of high-speed interfaces. There are six edge clocks per device: two edge clocks on each of the top, 
left, and right edges. Different PLL and DLL outputs are routed to the two muxes on the left and right sides of the 
device. In addition, the CLKINDEL signal (generated from the DLL Slave Delay Line block) is routed to all the edge 
clock muxes on the left and right sides of the device. Figure 2-19 shows the selection muxes for these clocks.
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Figure 2-19. Sources of Edge Clock (Left and Right Edges)

Figure 2-20. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal 
for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or 
Generic DDR interfaces.
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For further information, please refer to TN1182, LatticeECP3 sysDSP Usage Guide.

MULT DSP Element
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, AA and 
AB, are multiplied and the result is available at the output. The user can enable the input/output and pipeline regis-
ters. Figure 2-25 shows the MULT sysDSP element.

Figure 2-25. MULT sysDSP Element
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MULTADDSUB DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB. The user can enable the input, output and pipeline registers. Figure 2-28 
shows the MULTADDSUB sysDSP element.

Figure 2-28. MULTADDSUB
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Figure 2-39. SERDES/PCS Quads (LA-LatticeECP3-35)

Table 2-13. LA-LatticeECP3 SERDES Standard Support

Standard
Data Rate 

(Mbps)
Number of 

General/Link Width Encoding Style

PCI Express 1.1 2500 x1, x2, x4 8b10b

Gigabit Ethernet 1250, 2500 x1 8b10b

SGMII 1250 x1 8b10b

XAUI 3125 x4 8b10b

Serial RapidIO Type I,
Serial RapidIO Type II,
Serial RapidIO Type III

1250,
2500,
3125

x1, x4 8b10b

CPRI-1,
CPRI-2,
CPRI-3,
CPRI-4

614.4,
1228.8,
2457.6,
3072.0

x1 8b10b

SD-SDI
(259M, 344M)

1431,
1771, 
270,
360,
540

x1 NRZI/Scrambled

HD-SDI
(292M)

1483.5,
1485 x1 NRZI/Scrambled

3G-SDI
(424M)

2967,
2970 x1 NRZI/Scrambled

SONET-STS-32 155.52 x1 N/A

SONET-STS-122 622.08 x1 N/A

SONET-STS-482 2488 x1 N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.
2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.
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The Diamond design tool supports all modes of the PCS. Most modes are dedicated to applications associated 
with a specific industry standard data protocol. Other more general purpose modes allow users to define their own 
operation. With these tools, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LA-LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, 
the LA-LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required 
clock frequencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of 
primary and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LA-LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and 
standards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, bet-
ter utilization and overall lower cost.

However, for some specific standards, the LA-LatticeECP3 quad architecture provides flexibility; more than one 
standard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LA-LatticeECP3 Primary and Secondary Protocol Support

There are some restrictions to be aware of when using spread spectrum. When a quad shares a PCI Express x1 
channel with a non-PCI Express channel, ensure that the reference clock for the quad is compatible with all proto-
cols within the quad. For example, a PCI Express spread spectrum reference clock is not compatible with most 
Gigabit Ethernet applications because of tight CTC ppm requirements.

While the LA-LatticeECP3 architecture will allow the mixing of a PCI Express channel and a Gigabit Ethernet, 
Serial RapidIO or SGMII channel within the same quad, using a PCI Express spread spectrum clocking as the 

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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transmit reference clock will cause a violation of the Gigabit Ethernet, Serial RapidIO and SGMII transmit jitter 
specifications.

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LA-LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage 
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. 

For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Device Configuration 
All LA-LatticeECP3 devices contain two ports that can be used for device configuration. The Test Access Port 
(TAP), which supports bit-wide configuration, and the sysCONFIG port, support dual-byte, byte and serial configu-
ration. The TAP supports both the IEEE Standard 1149.1 Boundary Scan specification and the IEEE Standard 
1532 In- System Configuration specification. The sysCONFIG port includes seven I/Os used as dedicated pins with 
the remaining pins used as dual-use pins. See TN1169, LatticeECP3 sysCONFIG Usage Guide for more informa-
tion about using the dual-use pins as general purpose I/Os.

There are various ways to configure a LA-LatticeECP3 device:

1. JTAG

2. Standard Serial Peripheral Interface (SPI and SPIm modes) - interface to boot PROM memory

3. System microprocessor to drive a x8 CPU port (PCM mode)

4. System microprocessor to drive a serial slave SPI port (SSPI mode)

5. Generic byte wide flash with a MachXO™ device, providing control and addressing

On power-up, the FPGA SRAM is ready to be configured using the selected sysCONFIG port. Once a configuration 
port is selected, it will remain active throughout that configuration cycle. The IEEE 1149.1 port can be activated any 
time after power-up by sending the appropriate command through the TAP port. 

LA-LatticeECP3 devices also support the Slave SPI Interface. In this mode, the FPGA behaves like a SPI Flash 
device (slave mode) with the SPI port of the FPGA to perform read-write operations.

Enhanced Configuration Options

LA-LatticeECP3 devices have enhanced configuration features such as: decryption support, TransFR™ I/O and 
dual-boot image support.

1. TransFR (Transparent Field Reconfiguration)
TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without 
interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen dur-
ing device configuration. This allows the device to be field updated with a minimum of system disruption and 
downtime. See TN1087, Minimizing System Interruption During Configuration Using TransFR Technology for 
details.

2. Dual-Boot Image Support
Dual-boot images are supported for applications requiring reliable remote updates of configuration data for the 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=21638
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sysI/O Single-Ended DC Electrical Characteristics

Input/Output 
Standard

VIL VIH  VOL
Max. (V)

VOH
Min. (V) IOL

1 (mA) IOH
1 (mA)Min. (V) Max. (V) Min. (V) Max. (V)

LVCMOS33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS25 -0.3 0.7 1.7 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS18 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 16, 12, 

8, 4
-16, -12,

-8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS15 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 8, 4 -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS12 -0.3 0.35 VCC 0.65 VCC 3.6
0.4 VCCIO - 0.4 6, 2 -6, -2

0.2 VCCIO - 0.2 0.1 -0.1

LVTTL33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

PCI33 -0.3 0.3 VCCIO 0.5 VCCIO 3.6 0.1 VCCIO 0.9 VCCIO 1.5 -0.5

SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 3.6 0.4 VCCIO - 0.4 6.7 -6.7

SSTL18_II
(DDR2 Memory) -0.3 VREF - 0.125 VREF + 0.125 3.6 0.28 VCCIO - 0.28

8 -8

11 -11

SSTL2_I -0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62
7.6 -7.6

12 -12

SSTL2_II
(DDR Memory) -0.3 VREF - 0.18 VREF + 0.18 3.6 0.35 VCCIO - 0.43

15.2 -15.2

20 -20

SSTL3_I -0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8

SSTL3_II -0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16

SSTL15 
(DDR3 Memory) -0.3 VREF - 0.1 VREF + 0.1 3.6 0.3

VCCIO - 0.3 7.5 -7.5

VCCIO * 0.8 9 -9

HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
4 -4

8 -8

HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
8 -8

12 -12

HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 -16

1. For electromigration, the average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end 
of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND 
connections or between the last VCCIO and GND in a bank and the end of a bank. 
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LVPECL33
The LA-LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using comple-
mentary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for 
point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-5. LVPECL33 DC Conditions1

Over Recommended Operating Conditions

Parameter Description Typical Units

VCCIO Output Driver Supply (+/-5%) 3.30 V

ZOUT Driver Impedance 10 

RS Driver Series Resistor (+/-1%) 93 

RP Driver Parallel Resistor (+/-1%) 196 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 2.05 V

VOL Output Low Voltage 1.25 V

VOD Output Differential Voltage 0.80 V

VCM Output Common Mode Voltage 1.65 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 12.11 mA

1. For input buffer, see LVDS table.

Transmission line, 
Zo = 100 ohm differential 

Off-chipOn-chip

VCCIO = 3.3V 
(+/-5%)

VCCIO = 3.3V 
(+/-5%)

RP = 196 ohms 
(+/-1%)

RT = 100 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

16mA

16mA

+

-

Off-chip On-chip
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MLVDS25
The LA-LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using comple-
mentary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-7. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/-5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/-1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/-1%) 50.00 70.00 

RTR Receiver Termination (+/-1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.

16mA

2.5V

+
-

2.5V

2.5V

+
-

2.5V

2.5V

+ -

Am61

Heavily loaded backplace, effective Zo~50 to 70 ohms differential

50 to 70 ohms +/-1%

 
RS =

35ohms

 
RS =

35ohms

  
RS =

35ohms

 

RS =
35ohms

 
RS =

35ohms

 
RS =
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RS =
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RTRRTL

16mA

2.5V
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2.5V + -

Am61

2.5V 2.5V
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50 to 70 ohms +/-1%
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OE
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Table 3-13. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 150 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27-1, all channels operating, FPGA Logic active, I/Os around SERDES pins 
quiet, voltages are nominal, room temperature.
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SERDES External Reference Clock 
The external reference clock selection and its interface are a critical part of system applications for this product. 
Table 3-14 specifies reference clock requirements, over the full range of operating conditions.

Figure 3-13. SERDES External Reference Clock Waveforms

Table 3-14. External Reference Clock Specification (refclkp/refclkn) 

Symbol Description Min. Typ. Max. Units

FREF Frequency range 15 — 320 MHz 

FREF-PPM Frequency tolerance1 -1000 — 1000 ppm

VREF-IN-SE Input swing, single-ended clock2 200 — VCCA mV, p-p

VREF-IN-DIFF Input swing, differential clock 200 — 2*VCCA
mV, p-p 

differential

VREF-IN Input levels 0 — VCCA + 0.3 V

DREF Duty cycle3 40 — 60 %

TREF-R Rise time (20% to 80%) 200 500 1000 ps

TREF-F Fall time (80% to 20%) 200 500 1000 ps

ZREF-IN-TERM-DIFF Differential input termination -20% 100/2K +20% Ohms

CREF-IN-CAP Input capacitance — — 7 pF

1. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as 
described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.

2. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain 
at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

3. Measured at 50% amplitude.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316
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Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37UIpp of Deterministic
jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55UIpp. Therefore, the 
sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).
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Serial Rapid I/O Type 2/CPRI LV E.24 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-17. Transmit

Table 3-18. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF
1 Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.17 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.35 UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 2.5 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 2.5 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-18.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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Figure 3-21. sysCONFIG Parallel Port Write Cycle

Figure 3-22. sysCONFIG Master Serial Port Timing

Figure 3-23. sysCONFIG Slave Serial Port Timing

CCLK 1
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WRITEN

BUSY
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tSUWD
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tBSCYC

tBSCH
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tSUCBDI

Byte 0 Byte 1 Byte 2 Byte n

1.  In Master Parallel Mode the FPGA provides CCLK (MCLK). In Slave Parallel Mode the external device provides CCLK.
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DOUT
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tHMCDI

tCODO

CCLK (input) 
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Switching Test Conditions
Figure 3-29 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-26. 

Figure 3-29. Output Test Load, LVTTL and LVCMOS Standards

Table 3-26. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M 0pF VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1M  0pF VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 0pF VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  0pF VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT 

VT

R1

R2

 

CL* 

Test Point

*CL Includes Test Fixture and Probe Capacitance


