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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Architecture Overview
Each LA-LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-
spersed between the rows of logic blocks are rows of sysMEM™ Embedded Block RAM (EBR) and rows of sys-
DSP™ Digital Signal Processing slices, as shown in Figure 2-1. The LA-LatticeECP3 devices have two rows of 
DSP slices. In addition, the LA-LatticeECP3 family contains SERDES Quads on the bottom of the device. 

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit 
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF 
block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for 
flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row. 

The LA-LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedi-
cated 18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM 
or ROM. In addition, LA-LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers 
and adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LA-LatticeECP3 devices feature up to 4 embedded 3.2Gbps SERDES (Serializer / Deserializer) channels. 
Each SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. 
Each group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The 
functionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by 
registers that are addressable during device operation. The registers in the quad can be programmed via the 
SERDES Client Interface (SCI). This quad is located at the bottom of the devices. 

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the 
LA-LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O stan-
dards. In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left 
and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-
engineered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 
LVDS, along with memory interfaces including DDR3.

Other blocks provided include PLLs, DLLs and configuration functions. The LA-LatticeECP3 architecture provides 
two Delay Locked Loops (DLLs) and up to four Phase Locked Loops (PLLs). The PLL and DLL blocks are located 
at the end of the EBR/DSP rows. 

The configuration block that supports features such as configuration bit-stream decryption, transparent updates 
and dual-boot support is located toward the center of this EBR row. Every device in the LA-LatticeECP3 family sup-
ports a sysCONFIG™ port located in the corner between banks one and two, which allows for serial or parallel 
device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error 
detect capability. The LA-LatticeECP3 devices use 1.2V as their core voltage.

LA-LatticeECP3 Automotive Family Data Sheet 
Architecture
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LA-LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LA-LatticeECP3 family has an enhanced routing architecture that produces a compact design. The Diamond 
design software tool suites take the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The devices in the LA-LatticeECP3 family 
support two to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Phase Frequency Detect Block (PFD) which detects first for the 
frequency, and then the phase, of the CLKI and CLKFB are the same which then drives the Voltage Controlled 
Oscillator (VCO) block. In this block the difference between the input path and feedback signals is used to control 
the frequency and phase of the oscillator. A LOCK signal is generated by the VCO to indicate that the VCO has 
locked onto the input clock signal. In dynamic mode, the PLL may lose lock after a dynamic delay adjustment and 
not relock until the tLOCK parameter has been satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Cycle/Duty Trim 
block adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed 
or dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower fre-
quency outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LA-LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The 
primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock 
sources are connected to these muxes. Figure 2-11 shows the clock routing for one quadrant. Each quadrant mux 
is identical. If desired, any clock can be routed globally.

Figure 2-11. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-11).

Figure 2-12 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-12. DCS Waveforms
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as, overflow, underflow and convergent rounding, etc.
– Flexible cascading across slices to get larger functions

• RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy 
users

• Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require 
processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-23, the LA-LatticeECP3 DSP slice is backwards-compatible with the 
LatticeECP2™ sysDSP block, such that, legacy applications can be targeted to the LA-LatticeECP3 sysDSP slice. 
The functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LA-LatticeECP3 sysDSP 
slices, as shown in Figure 2-24.

Figure 2-23. Simplified sysDSP Slice Block Diagram

PR

IR

IR

IR

IR

IR

IR

PR PR

MULTA MULTAMULTB MULTB

Mult18-0 Mult18-0 Mult18-1

One of
theseMult18-1

OR OR

Input Registers 
from SRO of 

Left-side DSP   

ALU Op-Codes 

Slice 0 Slice 1

Cascade from 
Left DSP Accumulator/ALU (54) Accumulator/ALU (54) 

To FPGA Core 

From FPGA Core 

Cascade to
Right DSP 

Intermediate Pipeline
Registers  

Output Registers OR OR OR OR OR OR

Carry
Out
Reg.

Carry
Out
Reg.

9x9 9x9 9x9 9x9 9x9 9x9 9x9 9x9

Casc
A0 

Casc
A1 

IR

IR

PR



2-30

Architecture
LA-LatticeECP3 Automotive Family Data Sheet

ALU Flags
The sysDSP slice provides a number of flags from the ALU including:

• Equal to zero (EQZ)

• Equal to zero with mask (EQZM)

• Equal to one with mask (EQOM)

• Equal to pattern with mask (EQPAT)

• Equal to bit inverted pattern with mask (EQPATB)

• Accumulator Overflow (OVER)

• Accumulator Underflow (UNDER)

• Either over or under flow supporting LatticeECP2 legacy designs (OVERUNDER)

Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every sysDSP slice. From four clock 
sources (CLK0, CLK1, CLK2, and CLK3) one clock is selected for each input register, pipeline register and output 
register. Similarly Clock Enable (CE) and Reset (RST) are selected at each input register, pipeline register and out-
put register.

Resources Available in the LA-LatticeECP3 Family 
Table 2-9 shows the maximum number of multipliers for each member of the LA-LatticeECP3 family. Table 2-10 
shows the maximum available EBR RAM Blocks in each LA-LatticeECP3 device. EBR blocks, together with Distrib-
uted RAM can be used to store variables locally for fast DSP operations. 

Table 2-9. Maximum Number of DSP Slices in the LA-LatticeECP3 Family 

Table 2-10. Embedded SRAM in the LA-LatticeECP3 Family

Device DSP Slices 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

LAE3-17 12 48 24 6

LAE3-35 32 128 64 16

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 

LAE3-17 38 700

LAE3-35 72 1327
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Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-31. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-32 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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Figure 2-33. Output and Tristate Block for Left and Right Edges

Tristate Register Block 
The tristate register block registers tri-state control signals from the core of the device before they are passed to the 
sysI/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 
mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The 
output of this register is used as a tristate control.

ISI Calibration
The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only 
available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-
12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern 
consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are 
quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will 
cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the 
block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control 
logic block. 

For more information about this topic, please see the list of technical documentation at the end of this data sheet.
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Figure 2-36. DQS Local Bus

Polarity Control Logic
In a typical DDR Memory interface design, the phase relationship between the incoming delayed DQS strobe and 
the internal system clock (during the READ cycle) is unknown. The LA-LatticeECP3 family contains dedicated cir-
cuits to transfer data between these domains. A clock polarity selector is used to prevent set-up and hold violations 
at the domain transfer between DQS (delayed) and the system clock. This changes the edge on which the data is 
registered in the synchronizing registers in the input register block. This requires evaluation at the start of each 
READ cycle for the correct clock polarity. 

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device 
drives DQS low at the start of the preamble state. A dedicated circuit detects the first DQS rising edge after the pre-
amble state. This signal is used to control the polarity of the clock to the synchronizing registers.

DDR3 Memory Support
LA-LatticeECP3 supports the read and write leveling required for DDR3 memory interfaces.

Read leveling is supported by the use of the DDRCLKPOL and the DDRLAT signals generated in the DQS Read 
Control logic block. These signals dynamically control the capture of the data with respect to the DQS at the input 
register block. 
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LA-LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the 
high speed DDR data from and to the DDR3 Memory. 

LA-LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. For more informa-
tion, refer to the sysIO section of this data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LA-LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LA-LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on 
the bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank 
(Configuration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared 
pin is not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O stan-
dards. Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration 
Bank, has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. 
Figure 2-37 shows the seven banks and their associated supplies. 

In LA-LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are 
powered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs 
independent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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Figure 2-37. LA-LatticeECP3 Banks

LA-LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

The top and bottom sides are ideal for general purpose I/O, PCI, and inputs for LVDS (LVDS outputs are only 
allowed on the left and right sides). The top side can be used for the DDR3 ADDR/CMD signals. 

The I/O pins located on the top and bottom sides of the device (labeled PTxxA/B or PBxxA/B) are fully hot 
socketable. Note that the pads in Banks 3, 6 and 8 are wrapped around the corner of the device. In these 
banks, only the pads located on the top or bottom of the device are hot socketable. The top and bottom side 
pads can be identified by the Lattice Diamond tool.
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing for the I/O 
pins located on the left and right side of the device as the PCI clamp is always enabled on these pins.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of ratioed single-ended output drivers and single-ended 
input buffers. This bank does not support PCI clamp like the other banks on the top, left, and right sides. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on the top banks. PCI clamps are used primarily on inputs and bi-
directional pads to reduce ringing on the receiving end.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LA-LatticeECP3 devices, see the list of technical documentation at the 
end of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LA-LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards 
can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 
1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configura-
tion options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) 
and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards sup-
ported include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Tran-
sition Reduced LVDS), differential SSTL and differential HSTL. For further information on utilizing the sysI/O buffer 
to support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=32317
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Table 2-14. Available SERDES Quads per LA-LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-40 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-40. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-40, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package LAE3-17 LAE3-35

256 ftBGA 1 1

328 csBGA 2 channels —

484 fpBGA 1 1

672 fpBGA — 1

HDOUTP

HDOUTN

* 1/8 or 1/10 line rate

Deserializer
1:8/1:10

Word Alignment
8b10b Decoder

Serializer
8:1/10:1

8b10b
Encoder

SERDES PCS

Bypass

BypassBypassBypass

Transmitter

Receiver

Recovered Clock*

SERDES Transmit Clock*

Receive Clock

Transmit Clock

SERDES Transmit Clock

Receive Data

Transmit Data

Clock/Data
Recovery Clock

Data

RX_REFCLK

HDINP

HDINN
Equalizer

Bypass

Downsample
FIFO

Upsample
FIFO

Recovered Clock

TX PLLTX REFCLK

Polarity
Adjust

Polarity
Adjust

CTC

FPGA Core
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sysI/O Single-Ended DC Electrical Characteristics

Input/Output 
Standard

VIL VIH  VOL
Max. (V)

VOH
Min. (V) IOL

1 (mA) IOH
1 (mA)Min. (V) Max. (V) Min. (V) Max. (V)

LVCMOS33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS25 -0.3 0.7 1.7 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS18 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 16, 12, 

8, 4
-16, -12,

-8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS15 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 8, 4 -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS12 -0.3 0.35 VCC 0.65 VCC 3.6
0.4 VCCIO - 0.4 6, 2 -6, -2

0.2 VCCIO - 0.2 0.1 -0.1

LVTTL33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

PCI33 -0.3 0.3 VCCIO 0.5 VCCIO 3.6 0.1 VCCIO 0.9 VCCIO 1.5 -0.5

SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 3.6 0.4 VCCIO - 0.4 6.7 -6.7

SSTL18_II
(DDR2 Memory) -0.3 VREF - 0.125 VREF + 0.125 3.6 0.28 VCCIO - 0.28

8 -8

11 -11

SSTL2_I -0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62
7.6 -7.6

12 -12

SSTL2_II
(DDR Memory) -0.3 VREF - 0.18 VREF + 0.18 3.6 0.35 VCCIO - 0.43

15.2 -15.2

20 -20

SSTL3_I -0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8

SSTL3_II -0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16

SSTL15 
(DDR3 Memory) -0.3 VREF - 0.1 VREF + 0.1 3.6 0.3

VCCIO - 0.3 7.5 -7.5

VCCIO * 0.8 9 -9

HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
4 -4

8 -8

HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
8 -8

12 -12

HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 -16

1. For electromigration, the average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end 
of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND 
connections or between the last VCCIO and GND in a bank and the end of a bank. 
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LVPECL33
The LA-LatticeECP3 devices support the differential LVPECL standard. This standard is emulated using comple-
mentary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for 
point-to-point signals.

Figure 3-3. Differential LVPECL33

Table 3-5. LVPECL33 DC Conditions1

Over Recommended Operating Conditions

Parameter Description Typical Units

VCCIO Output Driver Supply (+/-5%) 3.30 V

ZOUT Driver Impedance 10 

RS Driver Series Resistor (+/-1%) 93 

RP Driver Parallel Resistor (+/-1%) 196 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 2.05 V

VOL Output Low Voltage 1.25 V

VOD Output Differential Voltage 0.80 V

VCM Output Common Mode Voltage 1.65 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 12.11 mA

1. For input buffer, see LVDS table.

Transmission line, 
Zo = 100 ohm differential 

Off-chipOn-chip

VCCIO = 3.3V 
(+/-5%)

VCCIO = 3.3V 
(+/-5%)

RP = 196 ohms 
(+/-1%)

RT = 100 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

16mA

16mA

+

-

Off-chip On-chip
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, 2Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond design tool are worst case num-
bers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much 
better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular 
temperature and voltage.
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Table 3-13. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 150 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27-1, all channels operating, FPGA Logic active, I/Os around SERDES pins 
quiet, voltages are nominal, room temperature.
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Figure 3-18. XAUI Sinusoidal Jitter Tolerance Mask

Note: The sinusoidal jitter tolerance is measured with at least 0.37UIpp of Deterministic
jitter (Dj) and the sum of Dj and Rj (random jitter) is at least 0.55UIpp. Therefore, the 
sum of Dj, Rj and Sj (sinusoidal jitter) is at least 0.65UIpp (Dj = 0.37, Rj = 0.18, Sj = 0.1).
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SMPTE SD/HD-SDI/3G-SDI (Serial Digital Interface) Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-21. Transmit

Table 3-22. Receive

Table 3-23. Reference Clock

Symbol Description Test Conditions Min. Typ. Max. Units

BRSDO Serial data rate 270 — 2975 Mbps

TJALIGNMENT
 2 Serial output jitter, alignment 270 Mbps — — 0.20 UI

TJALIGNMENT
 2 Serial output jitter, alignment 1485 Mbps — — 0.20 UI

TJALIGNMENT
1, 2 Serial output jitter, alignment 2970Mbps — — 0.30 UI

TJTIMING Serial output jitter, timing 270 Mbps — — 0.20 UI

TJTIMING Serial output jitter, timing 1485 Mbps — — 1.0 UI

TJTIMING Serial output jitter, timing 2970 Mbps — — 2.0 UI

Notes:
1. Timing jitter is measured in accordance with SMPTE RP 184-1996, SMPTE RP 192-1996 and the applicable serial data transmission stan-

dard, SMPTE 259M-1997 or SMPTE 292M (proposed). A color bar test pattern is used.The value of fSCLK is 270 MHz or 360 MHz for 
SMPTE 259M, 540 MHz for SMPTE 344M or 1485 MHz for SMPTE 292M serial data rates. See the Timing Jitter Bandpass section.

2. Jitter is defined in accordance with SMPTE RP1 184-1996 as: jitter at an equipment output in the absence of input jitter.
3. All Tx jitter is measured at the output of an industry standard cable driver; connection to the cable driver is via a 50 ohm impedance differen-

tial signal from the Lattice SERDES device.
4. The cable driver drives: RL=75 ohm, AC-coupled at 270, 1485, or 2970 Mbps, RREFLVL=RREFPRE=4.75kohm 1%.

Symbol Description Test Conditions Min. Typ. Max. Units

BRSDI Serial input data rate 270 — 2970 Mbps

CID Stream of non-transitions 
(=Consecutive Identical Digits)

7(3G)/26(SMPTE 
Triple rates) 

@ 10-12 BER
— — Bits

Symbol Description Test Conditions Min. Typ. Max. Units

FVCLK Video output clock frequency 27 — 74.25 MHz

DCV Duty cycle, video clock 45 50 55 %
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LA-LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT
1 PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode -0.2 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

tHLCH HOLDN Low Setup Time (Relative to CCLK) 5 — ns
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 


