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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Table 2-5. DLL Signals

LA-LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the low-
est EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed 
adjacent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset

ALUHOLD I Active high freezes the ALU

UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing

CLKOP O The primary clock output 

CLKOS O The secondary clock output with fine delay shift and/or division by 2 or by 4

LOCK O Active high phase lock indicator

INCI I Incremental indicator from another DLL via CIB.

GRAYI[5:0] I Gray-coded digital control bus from another DLL in time reference mode.

DIFF O Difference indicator when DCNTL is difference than the internal setting and update is needed.

INCO O Incremental indicator to other DLLs via CIB.

GRAYO[5:0] O Gray-coded digital control bus to other DLLs via CIB
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www.latticesemi.com/dynamic/view_document.cfm?document_id=32318
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LA-LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. 
Two high performance edge clocks are available on the top, left, and right edges of the device to support high 
speed interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. 
These clock sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LA-LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, 
dedicated clock inputs, routing and SERDES Quad. LA-LatticeECP3 devices have two to four sysCLOCK PLLs and 
two DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, 
two on the left side and two on the right side of the device. Figures 2-9 and 2-10 and show the primary clock 
sources for LA-LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LA-LatticeECP3-17
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Table 2-6. Secondary Clock Regions

Figure 2-14. LA-LatticeECP3-17 and LA-LatticeECP3-35 Secondary Clock Regions
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The edge clocks on the top, left, and right sides of the device can drive the secondary clocks or general routing 
resources of the device. The left and right side edge clocks also can drive the primary clock network through the 
clock dividers (CLKDIV).

sysMEM Memory 
LA-LatticeECP3 devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of an 18-
Kbit RAM with memory core, dedicated input registers and output registers with separate clock and clock enable. 
Each EBR includes functionality to support true dual-port, pseudo dual-port, single-port RAM, ROM and FIFO buf-
fers (via external PFUs). 

sysMEM Memory Block 
The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in 
a variety of depths and widths as shown in Table 2-7. FIFOs can be implemented in sysMEM EBR blocks by imple-
menting support logic with PFUs. The EBR block facilitates parity checking by supporting an optional parity bit for 
each data byte. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths. For 
more information, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-7. sysMEM Block Configurations

Bus Size Matching 
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB 
word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for 
each port varies, this mapping scheme applies to each port. 

RAM Initialization and ROM Operation 
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block 
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a 
ROM. 

Memory Cascading 
Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools 
cascade memory transparently, based on specific design inputs. 

Memory Mode Configurations

Single Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18
512 x 36

True Dual Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18

Pseudo Dual Port

16,384 x 1
8,192 x 2
4,096 x 4
2,048 x 9

1,024 x 18
512 x 36

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-21. 

Figure 2-21. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LA-LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-
performance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LA-LatticeECP3, on the other hand, has many DSP slices that support different data 
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widths. This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP 
performance vs. area by choosing appropriate levels of parallelism. Figure 2-22 compares the fully serial imple-
mentation to the mixed parallel and serial implementation. 

Figure 2-22. Comparison of General DSP and LA-LatticeECP3 Approaches

sysDSP Slice Architecture Features
The LA-LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LA-LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18x36, two 18x18 or four 9x9 Multiplies per Slice)

• Multiply (36x36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18x36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18x18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
– Minimizes fabric use for common DSP and ALU functions
– Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
– Provides matching pipeline registers
– Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
– Dynamically selectable ALU OPCODE
– Ternary arithmetic (addition/subtraction of three inputs)
– Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
– Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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Figure 2-30. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LA-LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in 
sysDSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the 
slice.

Addition
The LA-LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 
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Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-31. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-32 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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Control Logic Block 
The control logic block allows the selection and modification of control signals for use in the PIO block. 

DDR Memory Support 
Certain PICs have additional circuitry to allow the implementation of high-speed source synchronous and DDR, 
DDR2 and DDR3 memory interfaces. The support varies by the edge of the device as detailed below.

Left and Right Edges
The left and right sides of the PIC have fully functional elements supporting DDR, DDR2, and DDR3 memory inter-
faces. One of every 12 PIOs supports the dedicated DQS pins with the DQS control logic block. Figure 2-34 shows 
the DQS bus spanning 11 I/O pins. Two of every 12 PIOs support the dedicated DQS and DQS# pins with the DQS 
control logic block.

Bottom Edge
PICs on the bottom edge of the device do not support DDR memory and Generic DDR interfaces. 

Top Edge
PICs on the top side are similar to the PIO elements on the left and right sides but do not support gearing on the 
output registers. Hence, the modes to support output/tristate DDR3 memory are removed on the top side.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Addi-
tional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR 
data from the memory into input register blocks. Interfaces on the left, right and top edges are designed for DDR 
memories that support 10 bits of data.

Figure 2-34. DQS Grouping on the Left, Right and Top Edges

DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces, a PLL is used for this adjustment. However, in DDR memories the clock 
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(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-34) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-36, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-35 and Figure 2-36 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32320
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system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded 
remotely and stored in a separate location in the configuration storage device. Any time after the update the 
LA-LatticeECP3 can be re-booted from this new configuration file. If there is a problem, such as corrupt data 
during download or incorrect version number with this new boot image, the LA-LatticeECP3 device can revert 
back to the original backup golden configuration and try again. This all can be done without power cycling the 
system. For more information, please see TN1169, LatticeECP3 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support
LA-LatticeECP3 devices have dedicated logic to perform Cycle Redundancy Code (CRC) checks. During configu-
ration, the configuration data bitstream can be checked with the CRC logic block. In addition, the LA-LatticeECP3 
device can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configura-
tion SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LA-LatticeECP3 devices require a single external, 10K ohm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LA-LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCCLK) for 
configuration. The oscillator and the MCCLK run continuously and are available to user logic after configuration is 
completed. The software default value of the MCCLK is nominally 2.5MHz. Table 2-16 lists all the available MCCLK 
frequencies. When a different Master Clock is selected during the design process, the following sequence takes 
place: 

1. Device powers up with a nominal Master Clock frequency of 3.1MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCCLK 
frequency of 2.5MHz.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further 
information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCON-
FIG Usage Guide.

Table 2-16. Selectable Master Clock (MCCLK) Frequencies During Configuration (Nominal)

MCCLK (MHz) MCCLK (MHz) 

10

2.51 13

4.3 152

5.4 20

6.9 26

8.1 333

9.2

1. Software default MCCLK frequency. Hardware default is 3.1MHz.
2. Maximum MCCLK with encryption enabled.
3. Maximum MCCLK without encryption.

www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32323
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
www.latticesemi.com/dynamic/view_document.cfm?document_id=32314
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RSDS25E
The LA-LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using 
complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input 
standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solu-
tion for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resis-
tors. 

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-6. RSDS25E DC Conditions1

Over Recommended Operating Conditions

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 294 

RP Driver Parallel Resistor (+/-1%) 121 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 1.35 V

VOL Output Low Voltage 1.15 V

VOD Output Differential Voltage 0.20 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 101.5 

IDC DC Output Current 3.66 mA

1. For input buffer, see LVDS table.

RS = 294 ohms
(+/-1%)

RS = 294 ohms
(+/-1%)

RP = 121 ohms
(+/-1%)

RT = 100 ohms
(+/-1%)

On-chip On-chip

8mA

8mA

VCCIO = 2.5V
(+/-5%)

VCCIO = 2.5V
(+/-5%)

Transmission line, 
Zo = 100 ohm differential

+

-

Off-chipOff-chip
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Parameter Description Device
-6 / -6L

Units
Min. Max.

GenericDDRX1 Output with Clock and Data Aligned at Pin (GDDRX1_TX.SCLK.Aligned)10

tDIBGDDR Data Invalid Before Clock
Data Invalid After Clock

LAE3-35EA - 321 ps

tDIAGDDR LAE3-35EA - 321 ps

fMAX_GDDR DDRX1 Clock Frequency LAE3-35EA - 250 MHz

tDIBGDDR Data Invalid Before Clock LAE3-17EA - 321 ps

tDIAGDDR Data Invalid After Clock LAE3-17EA - 321 ps

fMAX_GDDR DDRX1 Clock Frequency LAE3-17EA - 250 MHz

GenericDDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)10

Left and Right Sides

tDVBGDDR Data Valid Before CLK LAE3-35EA 676 - ps

tDVAGDDR Data Valid After CLK LAE3-35EA 676 - ps

fMAX_GDDR DDRX1 Clock Frequency LAE3-35EA - 250 MHz

tDVBGDDR Data Valid Before CLK LAE3-17EA 670 - ps

tDVAGDDR Data Valid After CLK LAE3-17EA 670 - ps

fMAX_GDDR DDRX1 Clock Frequency LAE3-17EA - 250 MHz

GenericDDRX2 Output with Clock and Data (>10 Bits Wide) Aligned at Pin (GDDRX2_TX.Aligned)

Left and Right Sides

tDIBGDDR Data Invalid Before Clock All Devices - 220 ps

tDIAGDDR Data Invalid After Clock All Devices - 220 ps

fMAX_GDDR DDRX2 Clock Frequency All Devices - 375 MHz

GenericDDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin Using DQSDLL (GDDRX2_TX.DQS-
DLL.Centered)11

Left and Right Sides

tDVBGDDR Data Valid Before CLK All Devices 431 - ps

tDVAGDDR Data Valid After CLK All Devices 432 - ps

fMAX_GDDR DDRX2 Clock Frequency All Devices - 375 MHz

GenericDDRX2 Output with Clock and Data (>10 Bits Wide) Centered at Pin Using PLL (GDDRX2_TX.PLL.Centered)10

Left and Right Sides

tDVBGDDR Data Valid Before CLK All Devices 431 - ps

tDVAGDDR Data Valid After CLK All Devices 432 - ps

fMAX_GDDR DDRX2 Clock Frequency All Devices - 375 MHz
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LA-LatticeECP3 Family Timing Adders 1, 2, 3, 4, 5

Over Recommended Operating Conditions

Buffer Type Description -6 / -6L Units

Input Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5V -0.04 ns

LVDS25 LVDS, VCCIO = 2.5V -0.04 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5V -0.04 ns

MLVDS25 MLVDS, Emulated, VCCIO = 2.5V -0.04 ns

RSDS25 RSDS, VCCIO = 2.5V -0.04 ns

PPLVDS Point-to-Point LVDS -0.04 ns

TRLVDS Transition-Reduced LVDS -0.04 ns

HYPT HyperTransport -0.04 ns

Mini MLVDS Mini LVDS -0.04 ns

LVPECL33 LVPECL, Emulated, VCCIO = 3.0V -0.04 ns

HSTL18_I HSTL_18 class I, VCCIO = 1.8V 0.14 ns

HSTL18_II HSTL_18 class II, VCCIO = 1.8V 0.14 ns

HSTL18D_I Differential HSTL 18 class I 0.14 ns

HSTL18D_II Differential HSTL 18 class II 0.14 ns

HSTL15_I HSTL_15 class I, VCCIO = 1.5V 0.14 ns

HSTL15D_I Differential HSTL 15 class I 0.14 ns

SSTL33_I SSTL_3 class I, VCCIO = 3.0V 0.30 ns

SSTL33_II SSTL_3 class II, VCCIO = 3.0V 0.30 ns

SSTL33D_I Differential SSTL_3 class I 0.30 ns

SSTL33D_II Differential SSTL_3 class II 0.30 ns

SSTL25_I SSTL_2 class I, VCCIO = 2.5V 0.17 ns

SSTL25_II SSTL_2 class II, VCCIO = 2.5V 0.17 ns

SSTL25D_I Differential SSTL_2 class I 0.17 ns

SSTL25D_II Differential SSTL_2 class II 0.17 ns

SSTL18_I SSTL_18 class I, VCCIO = 1.8V 0.04 ns

SSTL18_II SSTL_18 class II, VCCIO = 1.8V 0.04 ns

SSTL18D_I Differential SSTL_18 class I 0.04 ns

SSTL18D_II Differential SSTL_18 class II 0.04 ns

SSTL15 SSTL_15, VCCIO = 1.5V 0.03 ns

SSTL15D Differential SSTL_15 -0.04 ns

LVTTL33 LVTTL, VCCIO = 3.0V 0.05 ns

LVCMOS33 LVCMOS, VCCIO = 3.0V 0.05 ns

LVCMOS25 LVCMOS, VCCIO = 2.5V 0.00 ns

LVCMOS18 LVCMOS, VCCIO = 1.8V 0.11 ns

LVCMOS15 LVCMOS, VCCIO = 1.5V 0.26 ns

LVCMOS12 LVCMOS, VCCIO = 1.2V 0.09 ns

PCI33 PCI, VCCIO = 3.0V 0.05 ns

Output Adjusters 

LVDS25E LVDS, Emulated, VCCIO = 2.5V 0.16 ns

LVDS25 LVDS, VCCIO = 2.5V 0.01 ns

BLVDS25 BLVDS, Emulated, VCCIO = 2.5V -0.04 ns
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SERDES High Speed Data Receiver 
Table 3-11. Serial Input Data Specifications

Input Data Jitter Tolerance
A receiver’s ability to tolerate incoming signal jitter is very dependent on jitter type. High speed serial interface stan-
dards have recognized the dependency on jitter type and have specifications to indicate tolerance levels for differ-
ent jitter types as they relate to specific protocols. Sinusoidal jitter is considered to be a worst case jitter type. 

Table 3-12. Receiver Total Jitter Tolerance Specification

Symbol Description Min. Typ. Max. Units

RX-CIDS
Stream of nontransitions1 
(CID = Consecutive Identical Digits) @ 10-12 BER

3.125G — — 136

Bits 

2.5G — — 144

1.485G — — 160

622M — — 204

270M — — 228

150M — — 296

VRX-DIFF-S Differential input sensitivity 150 — 1760 mV, p-p 

VRX-IN Input levels 0 — VCCA +0.54 V

VRX-CM-DC Input common mode range (DC coupled) 0.6 — VCCA V 

VRX-CM-AC Input common mode range (AC coupled)3 0.1 — VCCA +0.2 V

TRX-RELOCK SCDR re-lock time2 — 1000 — Bits

ZRX-TERM Input termination 50/75 Ohm/High Z -20% 50/75/HiZ +20% Ohms

RLRX-RL Return loss (without package) 10 — — dB

1. This is the number of bits allowed without a transition on the incoming data stream when using DC coupling.
2. This is the typical number of bit times to re-lock to a new phase or frequency within +/- 300 ppm, assuming 8b10b encoded data.
3. AC coupling is used to interface to LVPECL and LVDS. LVDS interfaces are found in laser drivers and Fibre Channel equipment. LVDS inter-

faces are generally found in 622 Mbps SERDES devices.
4. Up to 1.76V.

Description Frequency Condition Min. Typ. Max. Units

Deterministic

3.125 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

2.5 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

1.25 Gbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Deterministic

622 Mbps

600 mV differential eye — — 0.47 UI, p-p 

Random 600 mV differential eye — — 0.18 UI, p-p 

Total 600 mV differential eye — — 0.65 UI, p-p 

Note: Values are measured with CJPAT, all channels operating, FPGA Logic active, I/Os around SERDES pins quiet, voltages are nominal, 
room temperature.
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PCI Express Electrical and Timing Characteristics 
AC and DC Characteristics

Over Recommended Operating Conditions

Symbol Description Test Conditions Min Typ Max Units

Transmit1

UI Unit interval 399.88 400 400.12 ps

VTX-DIFF_P-P Differential peak-to-peak output voltage 0.8 1.0 1.2 V

VTX-DE-RATIO
De-emphasis differential output voltage 
ratio -3 -3.5 -4 dB

VTX-CM-AC_P
RMS AC peak common-mode output 
voltage — — 20 mV

VTX-RCV-DETECT
Amount of voltage change allowed dur-
ing receiver detection — — 600 mV

VTX-DC-CM Tx DC common mode voltage 0 — VCCOB + 5% V

ITX-SHORT Output short circuit current VTX-D+=0.0V
VTX-D-=0.0V — — 90 mA

ZTX-DIFF-DC Differential output impedance 80 100 120 Ohms

RLTX-DIFF Differential return loss 10 — — dB

RLTX-CM Common mode return loss 6.0 — — dB

TTX-RISE Tx output rise time 20 to 80% 0.125 — — UI

TTX-FALL Tx output fall time 20 to 80% 0.125 — — UI

LTX-SKEW
Lane-to-lane static output skew for all 
lanes in port/link — — 1.3 ns

TTX-EYE Transmitter eye width 0.75 — — UI

TTX-EYE-MEDIAN-TO-MAX-JITTER
Maximum time between jitter median 
and maximum deviation from median — — 0.125 UI

Receive1, 2

UI Unit Interval 399.88 400 400.12 ps

VRX-DIFF_P-P Differential peak-to-peak input voltage 0.343 — 1.2 V

VRX-IDLE-DET-DIFF_P-P Idle detect threshold voltage 65 — 3403 mV

VRX-CM-AC_P
Receiver common mode voltage for AC 
coupling — — 150 mV

ZRX-DIFF-DC DC differential input impedance 80 100 120 Ohms

ZRX-DC DC input impedance 40 50 60 Ohms

ZRX-HIGH-IMP-DC Power-down DC input impedance 200K — — Ohms

RLRX-DIFF Differential return loss 10 — — dB

RLRX-CM Common mode return loss 6.0 — — dB

TRX-IDLE-DET-DIFF-ENTERTIME

Maximum time required for receiver to 
recognize and signal an unexpected idle 
on link

— — — ms

1. Values are measured at 2.5 Gbps.
2. Measured with external AC-coupling on the receiver.
3. Not in compliance with PCI Express 1.1 standard.



3-54

DC and Switching Characteristics
LA-LatticeECP3 Automotive Family Data Sheet

Figure 3-24. Power-On-Reset (POR) Timing

Figure 3-25. sysCONFIG Port Timing

CCLK 2

DONE

VCC / VCCAUX /
VCCIO81

CFG[2:0] 3

tICFG

Valid

INITN

tVMC

1.  Time taken from VCC, VCCAUX or VCCIO8, whichever is the last to cross the POR trip point.
2.  Device is in a Master Mode (SPI, SPIm).
3.  The CFG pins are normally static (hard wired).

VCC

CCLK

PROGRAMN

INITN

DONE

DI
GOE Release

DOUT

sysIO

Wake Up Clocks
tSSCH

tSSCL

tCODO      

tIOENSS    

tDPPINIT   

tDINIT   

tICFG tVMC 

tPRGM

tPRGMRJ

tHSCDI (tHMCDI)

tDPPDONE

tIODISS

tSUSCDI (tSUMCDI)
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sysI/O Differential Electrical Characteristics
Transition Reduced LVDS (TRLVDS DC Specification)

Over Recommended Operating Conditions

Mini LVDS
Over Recommended Operating Conditions

Symbol Description Min. Nom. Max. Units

VCCO Driver supply voltage (+/- 5%) 3.14 3.3 3.47 V

VID Input differential voltage 150 — 1200 mV

VICM Input common mode voltage 3 — 3.265 V

VCCO Termination supply voltage 3.14 3.3 3.47 V

RT Termination resistance (off-chip) 45 50 55 Ohms

Note: LA-LatticeECP3 only supports the TRLVDS receiver.

Parameter Symbol Description Min. Typ. Max. Units

ZO Single-ended PCB trace impedance 30 50 75 ohms

RT Differential termination resistance 50 100 150 ohms

VOD Output voltage, differential, |VOP - VOM| 300 — 600 mV

VOS Output voltage, common mode, |VOP + VOM|/2 1 1.2 1.4 V

VOD Change in VOD, between H and L — — 50 mV

VID Change in VOS, between H and L — — 50 mV

VTHD Input voltage, differential, |VINP - VINM| 200 — 600 mV

VCM Input voltage, common mode, |VINP + VINM|/2 0.3+(VTHD/2) — 2.1-(VTHD/2)

TR, TF Output rise and fall times, 20% to 80% — — 550 ps

TODUTY Output clock duty cycle 40 — 60 %

Note: Data is for 6mA differential current drive. Other differential driver current options are available.

Current 
Source

VCCO = 3.3V

Z0

RT RTTransmitter

Receiver
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Signal Descriptions 
Signal Name I/O Description 

General Purpose

P[Edge] [Row/Column Number]_[A/B] I/O 

[Edge] indicates the edge of the device on which the pad is located. Valid 
edge designations are L (Left), B (Bottom), R (Right), T (Top). 

[Row/Column Number] indicates the PFU row or the column of the device on 
which the PIC exists. When Edge is T (Top) or B (Bottom), only need to spec-
ify Column Number. When Edge is L (Left) or R (Right), only need to specify 
Row Number.

[A/B] indicates the PIO within the PIC to which the pad is connected. Some of 
these user-programmable pins are shared with special function pins. These 
pins, when not used as special purpose pins, can be programmed as I/Os for 
user logic. During configuration the user-programmable I/Os are tri-stated 
with an internal pull-up resistor enabled. If any pin is not used (or not bonded 
to a package pin), it is also tri-stated with an internal pull-up resistor enabled 
after configuration. 

P[Edge][Row Number]E_[A/B/C/D] I These general purpose signals are input-only pins and are located near the 
PLLs.

GSRN I Global RESET signal (active low). Any I/O pin can be GSRN. 

NC — No connect. 

RESERVED — This pin is reserved and should not be connected to anything on the board.

GND — Ground. Dedicated pins. 

VCC — Power supply pins for core logic. Dedicated pins. 

VCCAUX — Auxiliary power supply pin. This dedicated pin powers all the differential and 
referenced input buffers. 

VCCIOx — Dedicated power supply pins for I/O bank x. 

VCCA —
SERDES, transmit, receive, PLL and reference clock buffer power supply. All 
VCCA supply pins must always be powered to the recommended operating 
voltage range. If no SERDES channels are used, connect VCCA to VCC.

VCCPLL_[LOC] — General purpose PLL supply pins where LOC=L (left) or R (right).

VREF1_x, VREF2_x — Reference supply pins for I/O bank x. Pre-determined pins in each bank are 
assigned as VREF inputs. When not used, they may be used as I/O pins. 

VTTx — Power supply for on-chip termination of I/Os.

XRES1 — 10K ohm +/-1% resistor must be connected between this pad and ground. 

PLL, DLL and Clock Functions

[LOC][num]_GPLL[T, C]_IN_[index] I General Purpose PLL (GPLL) input pads: LUM, LLM, RUM, RLM, num = row 
from center, T = true and C = complement, index A,B,C...at each side. 

[LOC][num]_GPLL[T, C]_FB_[index] I Optional feedback GPLL input pads: LUM, LLM, RUM, RLM, num = row from 
center, T = true and C = complement, index A,B,C...at each side. 

[LOC]0_GDLLT_IN_[index]2 I/O General Purpose DLL (GDLL) input pads where LOC=RUM or LUM, T is True 
Complement, index is A or B.

[LOC]0_GDLLT_FB_[index]2 I/O Optional feedback GDLL input pads where LOC=RUM or LUM, T is True 
Complement, index is A or B.

PCLK[T, C][n:0]_[3:0]2 I/O Primary Clock pads, T = true and C = complement, n per side, indexed by 
bank and 0, 1, 2, 3 within bank. 

LA-LatticeECP3 Automotive Family Data Sheet 
Pinout Information
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

For Top Edge of the Device

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

Note: “n” is a row PIC number. 


