

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A5 + Cortex®-M4
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	266MHz, 133MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	LPDDR2, DDR3, DRAM
Graphics Acceleration	Yes
Display & Interface Controllers	DCU, GPU, LCD, VideoADC, VIU
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 OTG + PHY (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	ARM TZ, Hashing, RNG, RTC, RTIC, Secure JTAG, SNVS, TZ ASC, TZ WDOG
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-HLQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/svf332r3k1cku2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Relationship between ratings and operating requirements

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

VF3xxR, VF5xxR, Rev7, 11/2014.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

Symbol	Parameters	Value	Unit	Comments
Hfe	Minimum DC current gain (Beta)	42.5		As BCTRL pin can not drive more than 20mA Minimum value of beta for a collector current of 0.85A comes out to be 42.5.
PD (Junction to ambient)	Minimum power dissipation @ TA=85 °C	2.04	W	Assuming 0.85A collector current with Collector voltage of Ballast 3.6V(max) we get VCE= 3.6V-1.2V=2.4V So power dissipated is 2.4V*0.85A=2.04W . This should be met for junction to ambient power dissipation spec of ballast
IcmaxDC peak	Maximum peak DC collector current	0.85	A	1.2A and above capacity device preferable
VBE	Maximum voltage that BCTRL pin can drive	1.25V for 0.85A @ 85 ℃	V	For a VDDREG of 3.0 V (min.), BCTRL pin can drive voltage up to VDDREG - 0.5 V = 2.5 V. Since emitter of ballast is fixed at 1.25 V (max) if chosen ballast can supply 0.85 A collector current @ 85 °C with a base-to-emitter voltage of 1.25 V or lower, it is suitable for application.
Ft	Unity current gain Frequency of Ballast	50	MHz	

Table 8. General guidelines for selection of NPN ballast

Reducing the collector-to-emitter voltage drop lowers the ballast transistor heat dissipation. This can be implemented in two ways:

- 1. By introducing series resistor or diode(s) between the collector and VDDREG (placed far enough from the transistor for proper cooling)
- 2. By connecting the collector to a separate lower-voltage supply

In both of the above cases the transistor has to stay away from the deep saturation region; otherwise, due to significant Hfe degradation, its base current exceeds the BCTRL output maximum value.

In general, the transistor must be selected such that its Vce saturation voltage is lower than the expected minimum Collector-Emitter voltage, and at the same time, the base current is less than 20 mA for the maximum expected collector current. More information can be found in collateral documentation at http://www.freescale.com

rempheral operating requirements and behaviours

Module	Name	Recommendation if Unused
USB	USB_DCAP, USB0_VBUS, USB1_VBUS	Connect USBx_VBUS and USB_DCAP together and tie to ground through a 10K ohm resistor. Do NOT tie directly to ground, latch-up risk.
	USB0_GND, USB1_GND	Ground
	USB0_VBUS_DETECT, USB1_VBUS_DETECT	Float
	USB0_DM, USB0_DP, USB1_DM, USB1_DP	Float
Video ADC	VDDA33_AFE	3.3V or Float
	VDD12_AFE	1.2V or Float
	VADC_AFE_BANDGAP	Float
	VADCSE0, VADCSE1, VADCSE2, VADCSE3	Ground or Float

9 Peripheral operating requirements and behaviours

9.1 Analog

9.1.1 12-bit ADC electrical characteristics

9.1.1.1 12-bit ADC operating conditions Table 31. 12-bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Тур	Max	Unit	Comment
				1			
Supply voltage	Absolute	V _{DDAD}	2.5	-	3.6	V	-
	Delta to V _{DDAD} (VDD- VDDAD)	ΔVDDAD	-100	0	100	mV	-
Ground voltage	Delta to V _{SSAD} (VSS- VSSAD) ²	ΔVSSAD	-100	0	100	mV	-
Ref Voltage High	-	V _{REFH}	1.5	V _{DDAD}	V _{DDAD}	V	-
Ref Voltage Low	-	V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	-
Input Voltage	-	V _{ADIN}	V _{REFL}	-	V _{REFH}	V	-
Input Capacitance	8/10/12 bit modes	C _{ADIN}	-	1.5	2	pF	-
Input Resistance	ADLPC=0, ADHSC=1	R _{ADIN}	-	5	7	kohms	-
	ADLPC=0, ADHSC=0		-	12.5	15	kohms	-
	ADLPC=1, ADHSC=0		-	25	30	kohms	-

Table continues on the next page...

VF3xxR, VF5xxR, Rev7, 11/2014.

13 Power Supply Pins

13.1 Power Supply Pins

Table 80. Power Supply Pins

Supply Rail Name	364 MAP BGA	176 LQFP (R-series ONLY)	Comment
DECAP_V11_LDO_OUT	V12	69	On-chip 1.1V LDO output
DECAP_V25_ LDO_OUT	T11	65	On-chip 2.5V LDO output (Intended to supply DRAM IO when required)
FA_VDD	N7		Factory Use Only (Connect to VDD, internally bonded in LQFP)
SDRAMC_ VDD1P5	D5, D11, E4, E7, E9, F5, H5, K5	DRAM not supported in LQFP	1.5V DDR3 DRAM Supply (1.2V for LPDDR2)
SDRAMC_VDD2P5	E6, E10, J5	DRAM not supported in LQFP	2.5V DRAM Supply
USB_DCAP	Y10	59	On-chip 3V LDO output (Intended to be fed by external USB VBUS supply)
USB0_GND	V10	61	
USB1_GND	Y9	USB1 not supported in LQFP	
VADC_AFE_ BANDGAP	U5	41	Video ADC Bandgap Output
VBAT	V14	VBAT not supported in LQFP	On-chip SNVS regulator battery back-up supply option
VDD	G7, G9, G11, G13, H8, H10, H12, H14, J7, J13, K8, K14, L7, L13, M8, M14, N9, N11, N13, P8, P10, P12, P14	2, 22, 48, 85, 102, 125, 136, 174	1.2V Core Supply (Internally Regulated)
VDD33	C12, C15, C18, F18, K3, K17, N3, N17, T17, U16, V8, W18	10, 21, 52, 83, 95, 108, 127, 140, 146, 158, 168	3.3V IO Supply
VDDA33_ADC	V1	31	3.3V Analog To Digital convertor supply
VDD12_AFE	Т5	36	1.2V Analog Front End supply for Video ADC
VDDA33_AFE	V3	40	3.3V Analog Front End supply for Video ADC
VDD33_ LDOIN	T12	68	On-chip 2.5V LDO, 1.1V LDO and SNVS regulators input supply
VDDREG	P5	24	On-chip HPREG, LPREG, WBREG and ULPREG regulators input supply
VREFH_ADC	W1	34	ATD High Voltage Reference
VREFL_ADC	U3	33	ATD Low Voltage Reference

Table continues on the next page...

Table 81. Functional Assignment Pins
(continued)

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
DDR_A[1]	C11	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[1]	—	-
DDR_A[2]	A8	_	SDRAMC_ VDD2P5	DDR	_	DDR_A[2]	_	_
DDR_A[3]	В7	_	SDRAMC_ VDD2P5	DDR	_	DDR_A[3]	_	_
DDR_A[4]	A6		SDRAMC_ VDD2P5	DDR		DDR_A[4]		—
DDR_A[5]	B6	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[5]	—	—
DDR_A[6]	A9	_	SDRAMC_ VDD2P5	DDR	_	DDR_A[6]	_	_
DDR_A[7]	Α7	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[7]	—	—
DDR_A[8]	A11	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[8]	—	—
DDR_A[9]	B9	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[9]	—	—
DDR_A[10]	D7		SDRAMC_ VDD2P5	DDR		DDR_A[10]		—
DDR_A[11]	D10	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[11]	—	-
DDR_A[12]	C10	_	SDRAMC_ VDD2P5	DDR	_	DDR_A[12]	_	_
DDR_A[13]	A10	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[13]	—	_
DDR_A[14]	D9	_	SDRAMC_ VDD2P5	DDR	—	DDR_A[14]	—	-
DDR_A[15]	B10	—	SDRAMC_ VDD2P5	DDR	—	DDR_A[15]	—	—
DDR_BA[0]	C8		SDRAMC_ VDD2P5	DDR		DDR_BA[0]		—
DDR_BA[1]	C9	—	SDRAMC_ VDD2P5	DDR	—	DDR_BA[1]	—	-
DDR_BA[2]	D8	_	SDRAMC_ VDD2P5	DDR	_	DDR_BA[2]	_	_
DDR_CAS_ b	B4	_	SDRAMC_ VDD2P5	DDR	_	DDR_CAS_ b	_	_
DDR_CKE[0]	A5		SDRAMC_ VDD2P5	DDR	_	DDR_CKE[0]	_	_
DDR_CLK[0]	A2	_	SDRAMC_ VDD2P5	DDR	_	DDR_CLK[0]	—	_

Table continues on the next page...

Table 81. Functional Assignment Pins
(continued)

Signal Name	364 MAP BGA	176 LQFP (R-series ONLY)	Power Group	Pad Type	Default Mode (Reset)	Default Function	Input/ Output	Value
PTB3	W7	53	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB4	Y7	54	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB5	Y8	55	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB6	W8	56	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB7	D13	166	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB8	J16	121	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB9	J19	123	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB10	B15	159	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB11	D14	164	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB12	E13	165	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB13	D15	156	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB14	B14	162	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB15	A14	161	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB16	C14	163	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB17	A15	160	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB18	B12	171	VDD33	GPIO	ALT0	GPIO	Input	Disabled
PTB19	C13	167	VDD33	GPIO	ALT0	GPIO	Input	Disabled
PTB20	A13	169	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB21	E12	173	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB22	D12	172	VDD33	GPIO	ALT0	GPIO	Disabled	
PTB23	A19	141	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB24	A18	142	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB25	B17	149	VDD33	GPIO	ALT3	GPIO	Disabled	
PTB26	A17	150	VDD33	GPIO	ALT3	RCON21	Input	Disabled
PTB27	U8	57	VDD33	GPIO	ALT3	RCON22	Input	Disabled
PTB28	A16	151	VDD33	GPIO	ALT3	RCON23	Input	Disabled
PTC0	L4	8	VDD33	GPIO	ALT7	RCON18	Input	Disabled
PTC1	L5	9	VDD33	GPIO	ALT7	RCON19	Input	Disabled
PTC2	M5	11	VDD33	GPIO	ALT7	RCON20	Input	Disabled
PTC3	M3	12	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC4	L2	14	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC5	M1	15	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC6	N1	16	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC7	N2	17	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC8	N4	18	VDD33	GPIO	ALT0	GPIO	Disabled	
PTC9	T15		VDD33	GPIO	ALT0	GPIO	Disabled	
PTC10	U15	—	VDD33	GPIO	ALT0	GPIO	Disabled	

Table continues on the next page...

VF3xxR, VF5xxR, Rev7, 11/2014.