

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k40-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables ().

FIGURE 1-1: PIC18(L)F24/25K40 FAMILY BLOCK DIAGRAM

2: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional information.

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE	<1:0>			WDTCPS<4:0	>	
bit 7			<u>.</u>				bit 0

Legend: R = Readable bit W = Writable bit U = Unir

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '1'				
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

	WDTPS at POR							
WDTCPS	Value	Divider Ratio		Typical Time Out (Fɪn = 31 kHz)	of WDTPS?			
11111	01011	1:65536	2 ¹⁶	2s	Yes			
10011	10011		_					
 11110	 11110	1:32	2 ⁵	1 ms	No			
10010	10010	1:8388608	2 ²³	256s				
10001	10001	1:4194304	2 ²²	128s				
10000	10000	1:2097152	2 ²¹	64s				
01111	01111	1:1048576	2 ²⁰	32s				
01110	01110	1:524299	2 ¹⁹	16s				
01101	01101	1:262144	2 ¹⁸	8s				
01100	01100	1:131072	2 ¹⁷	4s				
01011	01011	1:65536	2 ¹⁶	2s				
01010	01010	1:32768	2 ¹⁵	1s				
01001	01001	1:16384	2 ¹⁴	512 ms	No			
01000	01000	1:8192	2 ¹³	256 ms				
00111	00111	1:4096	2 ¹²	128 ms				
00110	00110	1:2048	2 ¹¹	64 ms				
00101	00101	1:1024	2 ¹⁰	32 ms				
00100	00100	1:512	2 ⁹	16 ms				
00011	00011	1:256	2 ⁸	8 ms				
00010	00010	1:128	2 ⁷	4 ms				
00001	00001	1:64	2 ⁶	2 ms				
00000	00000	1:32	2 ⁵	1 ms				

					•		
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
	WDTTMR<4:0>				STATE	PSCNT	<17:16>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Rese			other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

	WDT Win	Open Bergent	
WINDOW	Closed	Open Percent	
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F9Bh	SP1BRGL	EUSART1 Baud Rate Generator, Low Byte								
F9Ah	TX1REG	EUSART1 Tra	EUSART1 Transmit Register							
F99h	RC1REG	EUSART1 Rec	eive Register							00000000
F98h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000
F97h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000
F96h	SSP1CON1	WCOL	SSPOV	SSPEN	СКР		SSPN	1<3:0>		00000000
F95h	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	00000000
F94h	SSP1MSK				MSK	<7:0>				11111111
F93h	SSP1ADD				ADD	<7:0>				00000000
F92h	SSP1BUF				BUF	<7:0>				*****
F91h	PORTE	—	—	—	—	RE3	—	—	—	x
F90h	—				Unimpl	emented				—
F8Fh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxxxxxx
F8Eh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxxxxxx
F8Dh	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxxxxxx
F8Ch	TRISE	—	—	—	—	—	—	—	TRISE0	1
F8Bh	—				Unimpl	emented				
F8Ah	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111
F89h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111
F88h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11111111
F87h	—				Unimpl	emented				—
F86h	—				Unimpl	emented				—
F85h	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	*****
F84h	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxxxxxx
F83h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	*****
F82h	NVMCON2				NVMCC)N2<7:0>				00000000
F81h	NVMCON1	NVMRE	G<1:0>	—	FREE	WRERR	WREN	WR	RD	00-0x000
F80h	NVMDAT				NVMD	AT<7:0>				00000000
F7Fh	—				Unimpl	emented				—
F7Eh	NVMADRL				NVMAI	DR<7:0>				xxxxxxxx
F7Dh	CRCCON1		DLEN	<3:0>			PLEN	I<3:0>		00000000
F7Ch	CRCCON0	EN	GO	BUSY	ACCM	—	_	SHIFTM	FULL	000000
F7Bh	CRCXORH				Χ<′	5:8>				xxxxxxxx
F7Ah	CRCXORL				X<7:1>				—	xxxxxxx0
F79h	CRCSHIFTH				SHIFT	<15:8>				00000000
F78h	CRCSHIFTL	SHIFT<7:0>								
F77h	CRCACCH				ACC	<15:8>				00000000
F76h	CRCACCL				ACC	<7:0>				00000000
F75h	CRCDATH				DATA	<15:8>				*****

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

REGISTER 13-6:	CRCACCL: CRC ACCUMULATOR LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Re			other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0

ACC<7:0>: CRC Accumulator Register bits Writing to this register writes to the CRC accumulator register through the CRC write bus. Reading from this register reads the CRC accumulator.

REGISTER 13-7: CRCSHIFTH: CRC SHIFT HIGH BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
SHIFT<15:8>											
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<15:8>: CRC Shifter Register bits Reading from this register reads the CRC Shifter.

REGISTER 13-8: CRCSHIFTL: CRC SHIFT LOW BYTE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
			SHIF	Γ<7:0>								
bit 7	bit 7 bit 0											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SHIFT<7:0>: CRC Shifter Register bits

Reading from this register reads the CRC Shifter.

^{© 2016-2017} Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CRCACCH		ACC<15:8>							
CRCACCL				ACC	<7:0>				149
CRCCON0	EN	GO	BUSY	ACCM	—	—	SHIFTM	FULL	147
CRCCON1		DLEN<	3:0>			PLEI	N<3:0>		147
CRCDATH				DATA	<15:8>				148
CRCDATL				DATA	<7:0>				148
CRCSHIFTH				SHIFT	<15:8>				149
CRCSHIFTL				SHIF	T<7:0>				149
CRCXORH		X<15:8>						150	
CRCXORL		X<7:1> —					150		
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	64
SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	—	MODE	<1:0>	151
SCANHADRU	—	—			HADF	R<21:16>			153
SCANHADRH				HADR	<15:8>				154
SCANHADRL				HADF	R<7:0>				154
SCANLADRU	—	—			LADF	21:16>			152
SCANLADRH				LADR	<15:8>				152
SCANLADRL		LADR<7:0>						153	
SCANTRIG	—	—	_	—		TSEI	_<3:0>		155
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	166
PIR7	SCANIF	CRCIF	NVMIF	—	—	—	—	CWG1IF	174
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	182
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	190

TABLE 13-5:	SUMMARY OF REGISTERS ASSOCIATED WITH CRC
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

15.4 Register Definitions: Port Control

REGISTER 1	5-1: PORT	x: PORTx RE	EGISTER ⁽¹⁾				
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
bit 7			•		•	•	bit 0
Legend:	hit		hit		montod hit road	d ac (0)	
R = Readable bitW = Writable bit'1' = Bit is set'0' = Bit is cleared		x = Bit is unknown					
-n/n = Value at	POR and BOI	R/Value at all o	ther Resets				
bit 7.0		7.Dv0 Dort I/O	Value hite				

bit 7-0 **Rx<7:0>:** Rx7:Rx0 Port I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

TABLE 15-2: PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTE	—	_	_	_	RE3 ⁽²⁾	_	_	_

Note 1: Bits RB6 and RB7 read '1' while in Debug mode.

2: Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

17.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- CCP module
- Note: The I²C default input pins are I²C and SMBus compatible. RB1 and RB2 are additional pins. RC4 and RC3 are default MMP1 pins and are SMBus compatible. Clock and data signals can be routed to any pin, however pins without I²C compatibility will operate at standard TTL/ST logic levels as selected by the INVLV register.

17.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 17-1.

EXAMPLE 17-1: PPS LOCK SEQUENCE

;	Disable inte	errupts:
	BCF II	NTCON,GIE
;	Bank to PPSI	LOCK register
	BANKSEL P	PSLOCK
	MOVLB P	PSLOCK
	MOVLW 5	5h
;	Required sec	quence, next 4 instructions
	MOVWF P	PSLOCK
	MOVLW A	Ah
	MOVWF P	PSLOCK
;	Set PPSLOCKI	ED bit to disable writes
;	Only a BSF :	instruction will work
	BSF P	PSLOCK,0
;	Enable Inter	rupts
	BSF I	NTCON, GIE

EXAMPLE 17-2: PPS UNLOCK SEQUENCE

```
; Disable interrupts:
   BCF
           INTCON, GIE
; Bank to PPSLOCK register
   BANKSEL PPSLOCK
   MOVLB
           PPSLOCK
   MOVIW
            55h
; Required sequence, next 4 instructions
   MOVWF
           PPSLOCK
   MOVLW
           AAh
   MOVWF
           PPSLOCK
; Clear PPSLOCKED bit to enable writes
; Only a BCF instruction will work
   BCF
           PPSLOCK,0
; Enable Interrupts
   BSF
            INTCON.GIE
```

17.5 PPS One-Way Lock

Using the PPS1WAY Configuration bit, the PPS settings can be locked in. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

17.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

17.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in the **Section "Pin Allocation Tables"**. The PPS one-way is also removed.

20.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 20-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 20-6.

25.6 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCON1 register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCON1 register.

25.7 Programmable Modulator Data

The MDBIT of the MDCON0 register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

25.8 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON0 register.

25.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep. Refer to **Section 6.0 "Power-Saving Operation Modes"** for more details.

25.10 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

25.11 Peripheral Module Disable

The DSM module can be completely disabled using the PMD module to achieve maximum power saving. The DSMMD bit of PMD5 (Register 7-6) when set disables the DSM module completely. When enabled again all the registers of the DSM module default to POR status.

26.8 I²C Mode Operation

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

26.8.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

26.8.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

26.8.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

- Note 1: Data is tied to output zero when an I²C mode is enabled.
 - 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPxDATPPS registers. The SCL input is selected with the SSPxCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

26.8.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 26-2: I²C BUS TERMS

TEDM	Deparimtion
	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

^{© 2016-2017} Microchip Technology Inc.

30.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DAC1CON1 register.

The DAC output voltage can be determined by using Equation 30-1.

30.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 37-16.

30.3 DAC Voltage Reference Output

The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin.

EQUATION 30-1: DAC OUTPUT VOLTAGE

<u> IF DACEN = 1</u>

$$DACx_output = \left((VREF+-VREF-) \times \frac{DACR[4:0]}{2^5} \right) + VREF-$$

Note: See the DAC1CON0 register for the available VSOURCE+ and VSOURCE- selections.

Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a '0'.

Note: The unbuffered DAC output (DACxOUTn) is not intended to drive an external load.

30.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Windowed Watchdog Timer Time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

30.5 Effects of a Reset

A device Reset affects the following:

- DACx is disabled.
- DACx output voltage is removed from the DACxOUTn pin(s).
- The DAC1R<4:0> range select bits are cleared.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADSTF	PT<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 31-24: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

bit 7-0 **ADSTPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 23-1 for more details.

REGISTER 31-25: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADSTP | T<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADSTPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ADERR, see Register 23-1 for more details.

REGISTER 31-26: ADERRH: ADC SETPOINT ERROR REGISTER HIGH

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
ADERR<7:0>							
bit 7 bit							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADERR<7:0>**: ADC Setpoint Error MSB. Upper byte of ADC Setpoint Error. Setpoint Error calculation is determined by ADCALC bits of ADCON3, see Register 23-1 for more details.

© 2016-2017 Microchip Technology Inc.

TABLE 35-2: INSTRUCTION SET

Mnemonic,		Description	Qualas	16-Bit Instruction Word				Status	Natas
Operands		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow						,	
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

35.1.1 STANDARD INSTRUCTION SET

ADDLW		ADD litera	al to W					
Syntax:		ADDLW	k					
Operands:		$0 \le k \le 255$						
Operation:		$(W) + k \rightarrow V$	Ν					
Status Affected	d:	N, OV, C, D)C, Z					
Encoding:		0000	1111	kkk	k	kkkk		
Description:		The conten 8-bit literal W.	ts of W a k' and th	are ado ne resu	ded t Ilt is I	o the placed in		
Words:		1	1					
Cycles:		1	1					
Q Cycle Activity:								
Q1		Q2	Q3	3		Q4		
Decod	е	Read literal 'k'	Proce Data	ess a	Wri	te to W		
<u>Example</u> : Before In: W After Instr W	struct = ructio =	ADDLW 1 tion 10h n 25h	.5h					

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff ffff					
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- oral Offset Mode" for details					
Words:	1					
Cycles:	1					

QC	ycle Activity:					
	Q1		Q2	G	23	Q4
	Decode	Read register 'f'		Process Data		Write to destination
Exan	Example:		DDWF	REG,	0, 0	
	Before Instruc	tion				
	W REG	= =	17h 0C2h			
After Instruction		on				
	W REG	=	0D9h 0C2h			

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

PIC18(L)F24/25K40

DEC	FSZ	Decremer	nt f, skip if 0)	DCF	SNZ	Decreme	nt f, skip if r	not 0	
Synt	ax:	DECFSZ f {,d {,a}}			Synta	Syntax:		DCFSNZ f {,d {,a}}		
Ope	ands:	ls: 0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			Opera	ands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			
Ope	ation:	(f) – 1 \rightarrow de skip if result	est, t = 0		Opera	ation:	(f) – 1 \rightarrow d skip if resu	est , It ≠ 0		
Statu	is Affected:	None			Status	s Affected:	None			
Enco	oding:	0010	11da ffi	ff ffff	Enco	ding:	0100	11da ff:	ff ffff	
Desc	pription:	The content decremente placed in W placed back If the result which is alre and a NOP is it a 2-cycle i If 'a' is '0', th If 'a' is '0', th GPR bank. If 'a' is '0' an set is enable in Indexed L mode when tion 35.2.3 Oriented In eral Offset	ts of register "i ed. If 'd' is '0', '. If 'd' is '1', th k in register 'f' is '0', the nex eady fetched, s executed ins instruction. The Access Bain the BSR is use and the extend ed, this instruc- Literal Offset A ever $f \le 95$ (5 "Byte-Orient instructions in Mode" for de	f' are the result is (default). t instruction, is discarded stead, making hk is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails.	ffffEncoding:010011dafffareDescription:The contents of register 'f' decremented. If 'd' is '0', the placed in W. If 'd' is '1', the placed back in register 'f' or, the result is not '0', the r placed back in register 'f' discarded ead, makingplaced back in register 'f' or, the result is not '0', the r instruction, which is alread discarded and a NOP is ex instead, making it a 2-cycl instruction. If 'a' is '0', the Access Ban If 'a' is '0', the Access Ban If 'a' is '0', the Access Ban If 'a' is '0' and the extended deressing n). See Sec- d and Bit- ndexed Lit- ils.If da is fift fiftmode whenever f < 95 (5F tion 35.2.3 "Byte-Oriented Oriented Instructions inSet is contents oriented Instructions in		f' are the result is (default). next ady fetched, is xecuted cle mk is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- ted and Bit- n Indexed Lit-			
Word	ds:	1					eral Offse	t Mode" for de	etails.	
Cycl	es:	1(2)			Word	S:	1			
		Note: 3 cy by a	cles if skip an 2-word instru	d followed iction.	Cycle	s:	1(2) Note: 3	cycles if skip a	and followed	
QC	ycle Activity:			<i></i>	0.0	cle Activity:	by			
	Q1 Decede	Q2 Bood	Q3 Drococc	Q4	1	01 01	02	03	04	
	Decode	register 'f'	Data	destination	l r	Decode	Read	Process	Write to	
lf sk		regiotoi i	2010	accuration	1	200000	register 'f'	Data	destination	
	, Q1	Q2	Q3	Q4	lf ski	p:				
	No	No	No	No]	Q1	Q2	Q3	Q4	
	operation	operation	operation	operation		No	No	No	No	
lf sk	ip and followe	d by 2-word ins	struction:		l	operation	operation	operation	operation	
	Q1	Q2	Q3	Q4	lf ski	p and followe	d by 2-word ir	struction:	_	
	No	No	No	No	l r	Q1	Q2	Q3	Q4	
	operation	operation	operation	operation	-	N0 operation	N0 operation	NO	NO	
	NO	N0 operation	N0 operation	NO	-	No	No	No	No	
	operation	operation	operation	operation	J	operation	operation	operation	operation	
<u>Exar</u>	nple:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exam	ple:	HERE ZERO NZERO	DCFSNZ TEN	MP, 1, 0	
	Before Instruc				1	Before Instruc	tion			
	After Instruction	= Address on = CNT - 1	(HERE)		,	TEMP	= on	?		
	If CNT	= 0;	(00)				=	TEMP – 1,		
	If CNT	$-$ Address \neq 0;	(CONTINUE	.)			=	o, Address (ZERO)	
	PC	= Address	(HERE + 2	2)		If TEMP	≠ -	0; Address	N7FDA \	
						10	-	/ 1001000 (

35.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	Add Literal to FSR					
Synta	ax:	ADDFSR	f, k					
Operands:		0 ≤ k ≤ 63 f ∈ [0, 1, 2	$0 \le k \le 63$ f \in [0, 1, 2]					
Oper	ation:	FSR(f) + k	$x \rightarrow FSR($	f)				
Status Affected:		None	None					
Enco	oding:	1110	1000	ffkk	kkkk			
Description:		The 6-bit I contents c	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proce	SS	Write to			
		literal 'k'	Data	3	FSR			

Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct		
FSR2	=	0422h

ADDULNK	Add Literal to FSR2 and Return					
Syntax:	ADDULN	Kk				
Operands:	$0 \le k \le 63$	3				
Operation:	FSR2 + k	\rightarrow FSR2	,			
	$(TOS) \rightarrow$	PC				
Status Affected:	None					
Encoding:	1110	1000	11kk	kkkk		
Description:	1110 1000 11kk kkkk The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only constrained for the second s					
Words:	1					
Cycles:	2					
O Cuelo A stivitur						

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

_			

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2