

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k40-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-1	U-1	R/W-1	U-1	R/W-1	U-1	U-1	R/W-1
_	—	FCMEN	_	CSWEN	_	—	CLKOUTEN
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '1'	
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-6	Unimplemente	ed: Read as '1	3				
bit 5	FCMEN: Fail-S	Safe Clock Mor	nitor Enable b	it			
	1 = FSCM time	er enabled					
bit 4			,				
Dit 4							
bit 3	CSWEN: Clock		e bit				
	0 = The NOSC	C and NDIV bit	s cannot be c	hanged by use	er software		
bit 2-1	Unimplement	ed: Read as '1	,	- <u></u>			
bit 0		Clock Out Enat	ole bit				
	If FEXTOSC =	HS, XT, LP, th	en this bit is id	<u>anored</u>			
	Otherwise:			-			
	1 = CLKOUT f	function is disa	bled; I/O or o	scillator function	on on OSC2		
	0 = CLKOUT f	function is enal	bled; FOSC/4	clock appears	s at OSC2		

REGISTER 3-2: Configuration Word 1H (30 0001h): Oscillators

6.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes:

- Doze mode
- Sleep mode
- Idle mode

6.1 Doze Mode

Doze mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. Doze mode differs from Sleep mode because the bandgap and system oscillators continue to operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory execute for one instruction cycle and then lay idle for three instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

6.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 6-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

10.4.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from or written to the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h⁻5Fh) in Bank 0 and the last 160 bytes of memory (60h⁻FFh) in Block 15. The lower half is known as the "Access RAM" and is composed of GPRs. This upper half is also where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 10-4).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle, without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 10.7.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

10.4.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

10.4.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top portion of Bank 15 (F38h to FFFh). A list of these registers is given in Table 10-3 and Table 10-4.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F26h to	_	Unimplemented							_	
F22h F21h	ANSELC	ANSEL C7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSEL CO	11111111
F20h	WPLIC	WPLIC7	WPLIC6	WPLIC5	WPLIC4	WPLIC3	WPUC2	WPLIC1	WPLICO	00000000
F1Eb		00007					00002			00000000
F1Eb	SLRCONC	SLRC7	SLRC6	SLRC5	SI RC4	SLRC3	SLRC2	SLRC1	SLRCO	11111111
F1Db				INLVI C5		INLVI C3	INLVI C2			11111111
F1Ch	IOCCP	IOCCP7	IOCCP6	IOCCP5		IOCCP3	IOCCP2	IOCCP1	IOCCPO	00000000
F1Bh	IOCCN				IOCCN4	IOCCN3	IOCCN2			00000000
F1Ah	IOCCE	IOCCE7	IOCCE6	IOCCE5		IOCCE3	IOCCE2	IOCCE1	IOCCEO	00000000
F10h										11111111
F18h	WPUB	WPUB7	WPUB6	WPLIB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
F17b		ODCB7	ODCB6	ODCB5		ODCB3		ODCB1		00000000
F16h	SLRCONB	SI RB7	SI RB6	SI RB5	SI RB4	SI RB3	SI RB2	SI RB1	SI RB0	11111111
F15h			INI VI B6	INI VI B5		INI VI B3	INI VI B2		INI VI BO	11111111
F14h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBPO	00000000
E12b										00000000
F12h	IOCBE	IOCBE7	IOCBE6	IOCBE5		IOCBE3	IOCBINZ	IOCBE1	IOCBEO	00000000
E11b										11111111
F10b		WDUA7	WPUA6	WPLIA5	WPI IA/	WPI IA3	WPI IA2		WPUAD	00000000
FOEb										00000000
FOEb		SI DA7	SLDAG	SIDAS	SI DA4	SI DA3	SI DA2	SI DA1	SLRAD	11111111
FODh										11111111
FODI										11111111
			IOCANG							00000000
FUBN										00000000
FUAN	IUCAF	IUCAF7	IUCAF6	IUCAF5	IUCAF4	IUCAF3	IUCAF2	IUCAF1	IUCAFU	00000000
to EFFh	—				Unimpl	emented				—
EFEh	RC7PPS	_	_	—			RC7PPS<4:0>			00000
EFDh	RC6PPS	—	—	—			RC6PPS<4:0>			00000
EFCh	RC5PPS	—	—	—			RC5PPS<4:0>			00000
EFBh	RC4PPS	—	—	—			RC4PPS<4:0>			00000
EFAh	RC3PPS	—	—	—			RC3PPS<4:0>			00000
EF9h	RC2PPS	—	—	—			RC2PPS<4:0>			00000
EF8h	RC1PPS	—	—	—			RC1PPS<4:0>			00000
EF7h	RCOPPS	_	_	_			RC0PPS<4:0>			00000
EF6h	RB7PPS	—	—	—			RB7PPS<4:0>			00000
EF5h	RB6PPS	—	—	—			RB6PPS<4:0>			00000
EF4h	RB5PPS	—	—	—			RB5PPS<4:0>			00000
EF3h	RB4PPS	_	_	_			RB4PPS<4:0>			00000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	—	TMR5GIF	TMR3GIF	TMR1GIF
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	TMR5GIF: TN	/IR5 Gate Inter	rupt Flag bit				
	1 = TMR5 gat	te interrupt occ	urred (must b	e cleared in so	ftware)		
	0 = No TMR5	gate occurred					
bit 1	TMR3GIF: TN	MR3 Gate Inter	rupt Flag bit				
	1 = TMR3 gat 0 = No TMR3	te interrupt occ	urred (must be	e cleared in so	ftware)		
bit 0		/R1 Cate Inter	runt Elag hit				
	1 = TMR1 gai	te interrupt occ	urred (must b	e cleared in so	ftware)		
	0 = No TMR1	gate occurred					

REGISTER 14-7: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-3	Unimplemen	ted: Read as '	כי					
bit 2	TMR5GIE: TMR5 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 1	TMR3GIE: TMR3 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 0	TMR1GIE: TM 1 = Enabled 0 = Disabled	/IR1 Gate Inter	rupt Enable bi	t				

REGISTER 14-15: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

PIC18(L)F24/25K40

REGISTER 18-2:	T0CO	N1: TIMER0 (CONTROL R	EGISTER 1			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
T0	CS<2:0>		TOASYNC		T0CKP	S<3:0>	
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchange	ed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5 TO 11 11 10 10 01 01 00 00 00	CS<2:0>: 1 1 = Reserv 0 = Reserv 1 = SOSC 0 = LFINT 1 = HFINT 0 = Fosc/4 1 = Pin sel 0 = Pin sel	Fimer0 Clock Se ved OSC OSC 4 lected by T0CK lected by T0CK	UICE Select b IPPS (Inverter IPPS (Non-inv	its d) /erted)			
bit 4 TO .	ASYNC: T = The inpu = The inpu	MR0 Input Asy it to the TMR0 it to the TMR0	nchronization counter is not counter is syne	Enable bit synchronized t chronized to F	to system clocks osc/4	3	
bit 3-0 T0 11 11 11 11 11 10 10 10 10 10 10 10 10	CKPS<3:0 11 = 1:327 10 = 1:163 01 = 1:819 00 = 1:409 11 = 1:204 10 = 1:102 00 = 1:512 00 = 1:256 11 = 1:264 10 = 1:64 10 = 1:16 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	 Prescaler R 768 884 92 96 88 24 25 33 	ate Select bit				

20.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in Section
 21.0 "Capture/Compare/PWM Module".

The signals are not a part of the Timer2 module.

20.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 20-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

MODE	0b00000
TMRx_clk	
Instruction ⁽¹⁾ ——	BSF BSF BSF
ON	
PRx	5
TMRx 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
TMRx_postscaled	
PWM Duty	3
PWM Output	

REGISTER 21-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x
—	—	—	—	_	—	CTS<1:0>	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-2 Unimplemented: Read as '0'

bit 1-0 CTS<1:0>: Capture Trigger Input Selection bits

CTS<1:0>	Connection				
01311.02	CCP1	CCP2			
11	IOC_Interrupt				
10		CMP2_output			
01		CMP1_output			
00	Pin selected by CCP1PPS	Pin selected by CCP2PPS			

REGISTER 21-4: CCPRxL: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x			
CCPRx<7:0>										
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	CCPRxL<7:0>: LSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxL<7:0>: LSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits
	CCPRxL<5:0>: Not used

© 2016-2017 Microchip Technology Inc.

24.2.4.2 Asynchronous Steering Mode

In Asynchronous mode (MODE<2:0> bits = 000, Register 24-1), steering takes effect at the end of the instruction cycle that writes to STR. In Asynchronous Steering mode, the output signal may be an incomplete waveform (Figure 24-10). This operation may be useful when the user firmware needs to immediately remove a signal from the output pin.

FIGURE 24-10: EXAMPLE OF ASYNCHRONOUS STEERING (MODE<2:0>= 000)

24.2.4.3 Start-up Considerations

The application hardware must use the proper external pull-up and/or pull-down resistors on the CWG output pins. This is required because all I/O pins are forced to high-impedance at Reset.

The POLy bits (Register 24-2) allow the user to choose whether the output signals are active-high or active-low.

REGISTER 24-3: CWG1CLKCON: CWG1 CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	_	_	_	—	_	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0 CS: CWG Clock Source Selection Select bits

CS	Clock Source
1	HFINTOSC (remains operating during Sleep)
0	Fosc

REGISTER 24-4: CWG1ISM: CWGx INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		ISM<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3 Unimplemented Read as '0'

bit 2-0 ISM<2:0>: CWG Data Input Selection Multiplexer Select bits

ISM<2:0>	Input Source
111	DSM OUT
110	CMP2 OUT
101	CMP1 OUT
100	PWM4 OUT
011	PWM3 OUT
010	CCP2 OUT
001	CCP1 OUT
000	Pin selected by CWG1PPS

© 2016-2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CON0	EN	LD	_	_			MODE<2:0>	•	309
CWG1CON1	—	_	IN	_	POLD	POLC	POLB	POLA	310
CWG1CLKCON	—	_	_	_	_	_	—	CS	311
CWG1ISM	—	—	_	—	_	ISM<2:0>			311
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	312
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	—	313
CWG1AS1	—	—	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	314
CWG1DBR	—	_			DBR<	:5:0>			315
CWG1DBF	—	_			DBF<	:5:0>			315
PIE7	SCANIE	CRCIE	NVMIE	_	_	—	—	CWG1IE	182
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	—	CWG1IF	174
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	190
PMD4		UART1MD		MSSP1MD	_	_	—	CWG1MD	68

TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

27.1 Register Definitions: EUSART Control

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronou Don't care Synchronous 1 = Master r 0 = Slave m	: Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock from	t bit merated intern	ally from BRG)		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable 9-bit transmiss 8-bit transmiss	bit ion ion				
bit 5	TXEN: Trans 1 = Transmit 0 = Transmit	mit Enable bit ^{(*} enabled disabled	1)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Sen Asynchronouu 1 = Send Syn 0 = Sync Bre Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne eak transmissic <u>mode</u> :	cter bit ext transmissio on disabled or	on (cleared by completed	hardware upon	completion)	
bit 2	BRGH: High Asynchronouu 1 = High spe 0 = Low spee Synchronous Unused in thi	Baud Rate Sel <u>s mode</u> : ed, if BRG16 = ed <u>mode:</u> s mode	ect bit = 1, baud rate	is baudclk/4; e	lse baudclk/16		
bit 1	TRMT: Trans 1 = TSR emp 0 = TSR full	mit Shift Regis oty	ter Status bit				
bit 0	TX9D: Ninth I Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1: SR	EN/CREN bits	of RCxSTA (Re	egister 27-2) o	verride TXEN	in Sync mode.		

REGISTER 27-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287	
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264	
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 8.000 MHz		0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	—	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	

TABLE 31-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4)

ADC C	lock Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<5:0>	64 MHz	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000000	31.25 ns ⁽²⁾	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	000001	62.5 ns ⁽²⁾	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/6	000010	125 ns ⁽²⁾	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs		
Fosc/8	000011	187.5 ns ⁽²⁾	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	000100	250 ns ⁽²⁾	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/128	111111	2.0 μs	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾		
FRC	ADCS(ADCON0<4>) = 1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs		

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

PIC18(L)F24/25K40

BTG	Bit Toggle	Bit Toggle f			,	Branch if Overflow					
Syntax:	BTG f, b {,a	a}		Synta	ax:	BOV n					
Operands:	$0 \leq f \leq 255$	$0 \le f \le 255$			ands:	-128 ≤ n ≤	-128 ≤ n ≤ 127				
	0 ≤ b < 7 a ∈ [0,1]			Oper	ation:	if OVERFL (PC) + 2 +	if OVERFLOW bit is '1' (PC) + 2 + 2n \rightarrow PC				
$Operation: \qquad (\overline{f^{}}) \to f^{}$				Statu	s Affected:	None					
Status Affected:	None			Enco	Encoding:		0100	nnnn	nnnn		
Encoding:	0111	bbba ff	Eff ffff	Desc	rintion.	If the OVE	RFLOW hit i	s '1' th	en the		
Description.	 Bit 'b' in data memory location 'f' is inverted. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal 			Word Cycle Q C	ls: es: ycle Activity:	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)					
Mordo	1		cialis.	If Ju	mp:	02	02		04		
Wolus.	1				Decode	Read literal	Process	W/ri	te to PC		
	I				Debbac	'n'	Data	••••			
	02	02	04		No	No	No		No		
Decode	Read	Process	Write	16.51	operation	operation	operation	n op	eration		
Doodd	register 'f'	Data	register 'f'	IT NO	o Jump:	00	00		0.1		
					Decode	Q2 Read literal	Q3 Process		Q4 No		
Example:	BTG P	ORTC, 4, (0		Decoue	'n'	Data	ор	eration		
Before Instruction: PORTC = 0111 0101 [75h] After Instruction: PORTC = 0110 0101 [65h]			Exan	Example: HERE BOV Jump Before Instruction PC = address (HERE) After Instruction							
		If OVERI PC If OVERI PC	FLOW = 0; = ac	ldress (Jui ldress (HEI	mp) RE + 2)					

POP	Pop Top of Return Stack		ack	PUSH	PUSH		Push Top of Return Stack				
Syntax:	POP			Syntax:		PUSH					
Operands: None			Operands:		None						
Operation:	$(TOS) \rightarrow b$	it bucket		Operation:		$(PC + 2) \rightarrow$	$(PC + 2) \rightarrow TOS$				
Status Affected:	None	one			Status Affected: None						
Encoding:	0000	0000 00	00 0110	Encoding:	Encoding:		0000	000	0 0101		
Description:	The TOS v stack and i then becor was pushe This instruu the user to stack to inc	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.			Description: The PC + 2 is pushed onto the the return stack. The previous value is pushed down on the s This instruction allows implem software stack by modifying To then pushing it onto the return Words: 1			the top of ous TOS ne stack. lementing a g TOS and turn stack.			
Words:	1	1				1					
Cycles:	1			Q Cvcle A	ctivity:						
Q Cycle Activity:					Q1	Q2	Q	3	Q4		
Q1	Q2	Q3	Q4	De	ecode	PUSH	No)	No		
Decode	No operation	POP TOS value	No operation			PC + 2 onto return stack	opera	ition	operation		
Example:	POP GOTO	NEW		Example: Befor	e Instru	PUSH					
Before Instruction TOS = 0031A2h Stack (1 level down) = 014332h		2h 2h		TOS = 345Ah PC = 0124h		345Ah)124h					
After Instruction TOS = 014332h PC = NEW		211 2h	After	Instructi PC TOS Stack (1	struction						

37.0 ELECTRICAL SPECIFICATIONS

37.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +	125°C
Storage temperature65°C to +	150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC18F24/25K400.3V to	+6.5V
PIC18LF24/25K400.3V to	+4.0V
on MCLR pin0.3V to	+9.0V
on all other pins0.3V to (VDD +	0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C	50 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	20 mA
on VDD pin ⁽¹⁾	
$-40^{\circ}C \le TA \le +85^{\circ}C$	50 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	35 mA
on any standard I/O pin $\pm \pm$	50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	20 mA
Total power dissipation ⁽²⁾	00 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 37-6 to calculate device specifications.

2: Power dissipation is calculated as follows:

PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 37-19: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions		
40*	T⊤0H	T0CKI High Pulse Width No Prescaler			0.5 Tcy + 20	—	_	ns		
		With Prescaler		10			ns			
41*	T⊤0L	T0CKI Low Pulse Width No Prescaler		No Prescaler	0.5 Tcy + 20			ns		
		With Prescaler			10			ns		
42*	T⊤0P	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N		_	ns	N = prescale value	
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns		
			Synchronous, with Prescaler		15	_	_	ns		
			Asynchronous		30	—	_	ns		
46*	TT1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns		
			Synchronous, with Prescaler		15			ns		
				Asynchronous		30			ns	
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_		ns	N = prescale value	
			Asynchronous		60	_	_	ns		
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	ge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.