

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k40-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							1	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
—		—		—	—		DSMMD	
bit 7 bit 0								
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
u = Bit is unch	u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other			ther Resets				
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition								

REGISTER 7-6: PMD5: PMD CONTROL REGISTER 5

bit 7-1	Unimplemented: Read as '0'

bit 0 DSMMD: Disable Data Signal Modulator bit

1 = DSM module disabled

0 = DSM module enabled

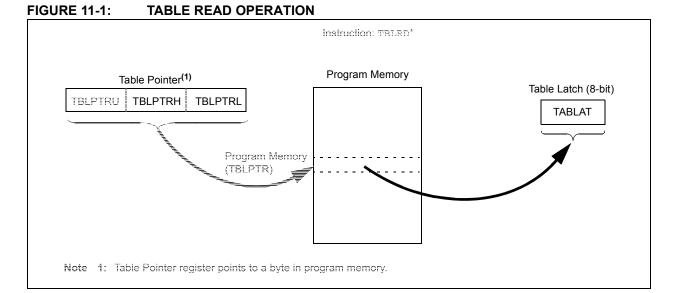
TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH PMD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	64
PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	65
PMD2	_	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD	66
PMD3	_	_	_	_	PWM4MD	PWM3MD	CCP2MD	CCP1MD	67
PMD4	_	UART1MD	_	MSSP1MD	_	_	_	CWG1MD	68
PMD5	—	_	_	—	_	_	_	DSMMD	69

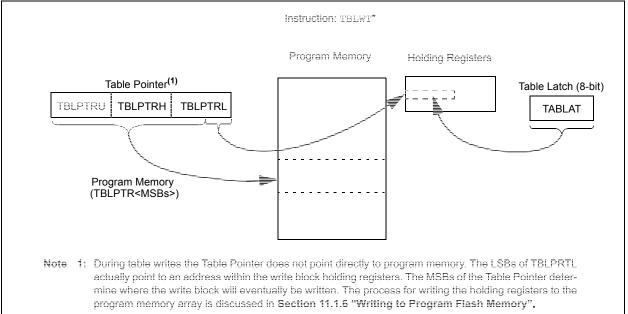
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the PMD.

11.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:


- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).


The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 11-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in **Section 11.1.6 "Writing to Program Flash Memory"**. Figure 11-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 11-2: TABLE WRITE OPERATION

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	—	—	_	—	CCP2IE	CCP1IE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
bit 7-2	Unimplemen	ted: Read as '	0'				
bit 1	-						
bit 0	CCP1IE: ECC 1 = Enabled 0 = Disabled	CP1 Interrupt E	nable bit				

REGISTER 14-16: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE
bit 7	-			•			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	 SCANIE: SCAN Interrupt Enable bit 1 = Enabled 0 = Disabled 						
bit 6		Interrupt Enab	le bit				
bit 5	NVMIE: NVM 1 = Enabled 0 = Disabled	Interrupt Enab	le bit				
bit 4-1	Unimplemen	ted: Read as '	כ'				
bit 0	-	/G Interrupt En					

REGISTER 14-17: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		—	INT2EDG	INT1EDG	INT0EDG	166
PIE0	_	—	TMR0IE	IOCIE	_	INT2IE	INT1IE	INT0IE	175
PIE1	OSCFIE	CSWIE	_	_	—	_	ADTIE	ADIE	176
PIE2	HLVDIE	ZCDIE	_		_	_	C2IE	C1IE	177
PIE3	_	_	RC1IE	TX1IE	—	_	BCL1IE	SSP1IE	178
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIE5		_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	180
PIE6	—	_	—	_	—	—	CCP2IE	CCP1IE	181
PIE7	SCANIE	CRCIE	NVMIE	_	—	_	_	CWG1IE	182
PIR0		_	TMR0IF	IOCIF	_	INT2IF	INT1IF	INTOIF	167
PIR1	OSCFIF	CSWIF	—	_	—	_	ADTIF	ADIF	168
PIR2	HLVDIF	ZCDIF	—	_	—	—	C2IF	C1IF	169
PIR3	—	_	RC1IF	TX1IF	—	_	BCL1IF	SSP1IF	170
PIR4		_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	171
PIR5	_	_	—	_	—	TMR5GIF	TMR3GIF	TMR1GIF	172
PIR6	_	_	—	_	—	_	CCP2IF	CCP1IF	173
PIR7	SCANIF	CRCIF	NVMIF	_	—	_	_	CWG1IF	174
IPR0		_	TMR0IP	IOCIP	_	INT2IP	INT1IP	INT0IP	183
IPR1	OSCFIP	CSWIP	—	_	—	_	ADTIP	ADIP	184
IPR2	HLVDIP	ZCDIP	—	_	—	—	C2IP	C1IP	185
IPR3	—	—	RC1IP	TX1IP	—	—	BCL1IP	SSP1IP	186
IPR4	—	—	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	187
IPR5	—	—	—	_	—	TMR5GIP	TMR3GIP	TMR1GIP	188
IPR6	—	—	—	—	—	—	CCP2IP	CCP1IP	189
IPR7	SCANIP	CRCIP	NVMIP	_	—	—	—	CWG1IP	190

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS	TABLE 14-1:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
---	-------------	---

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Interrupts.

REGISTER 19-3: TMRxCLK: TIMERx CLOCK REGISTER

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	
—	—		—	CS<3:0>				
bit 7							bit 0	

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **CS<3:0>:** Timerx Clock Source Selection bits

cs	Timer1	Timer3	Timer5
03	Clock Source	Clock Source	Clock Source
1111-1100	Reserved	Reserved	Reserved
1011	TMR5 overflow	TMR5 overflow	Reserved
1010	TMR3 overflow	Reserved	TMR3 overflow
1001	Reserved	TMR1 overflow	TMR1 overflow
1000	TMR0 overflow	TMR0 overflow	TMR0 overflow
0111	CLKREF	CLKREF	CLKREF
0110	SOSC	SOSC	SOSC
0101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
0100	LFINTOSC	LFINTOSC	LFINTOSC
0011	HFINTOSC	HFINTOSC	HFINTOSC
0010	Fosc	Fosc	Fosc
0001	Fosc/4	Fosc/4	Fosc/4
0000	T1CKIPPS	T3CKIPPS	T5CKIPPS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	166
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIE5	_	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	180
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	170
PIR5	_	_	_	_	_	TMR5GIF	TMR3GIF	TMR1GIF	171
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	187
IPR5	_	_	_	_	_	TMR5GIP	TMR3GIP	TMR1GIP	188
PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	65
T1CON	_	_	CKPS	CKPS<1:0> — SYNC RD16 ON					223
T1GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	224
T3CON	_	_	CKPS	<1:0>	_	SYNC	RD16	ON	223
T3GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	224
T5CON	—	_	CKPS	<1:0>	—	SYNC	RD16	ON	223
T5GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	-	_	224
TMR1H		Holding Regi	ster for the N	lost Significa	ant Byte of the 16	6-bit TMR1 R	egister		227
TMR1L		L	east Significa	ant Byte of th	ne 16-bit TMR1 F	Register			227
TMR3H		Holding Regi	ster for the M	lost Significa	ant Byte of the 16	6-bit TMR3 R	egister		227
TMR3L		L	east Significa	ant Byte of th	ne 16-bit TMR3 F	Register			227
TMR5H		Holding Regi	ster for the N	lost Significa	ant Byte of the 16	6-bit TMR5 R	egister		227
TMR5L		L	east Significa	ant Byte of th	ne 16-bit TMR5 F	Register			227
T1CKIPPS	—	_			T1C	KIPPS<4:0>	1		211
T1GPPS	—	_			T1	GPPS<4:0>			211
T3CKIPPS	_	_	_		ТЗС	KIPPS<4:0>			211
T3GPPS		_	_		Т3	GPPS<4:0>			211
T5CKIPPS		_	_		T5C	KIPPS<4:0>			211
T5GPPS		_	_		T5	GPPS<4:0>			211

TABLE 19-4: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by TIMER1/3/5.

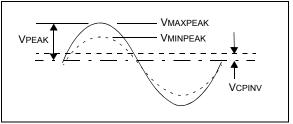
23.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 23-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching


23.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 23-1 and Figure 23-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 23-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 23-1: EXTERNAL VOLTAGE

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion			
bit 7-6	Unimplemer	nted Read as '0	,						
bit 5	AS5E: CWG	Auto-shutdown	Source 5 (CM	MP2 OUT) Ena	ıble bit				
		utdown for CM							
	0 = Auto-sh	utdown for CM	P2 OUT is dis	abled					
bit 4	AS4E: CWG	Auto-shutdown	Source 4 (CN	/IP1 OUT) Ena	ible bit				
		utdown for CM							
		utdown for CM							
bit 3		Auto-shutdown			ed) Enable bit				
		utdown for TMF							
		utdown for TMF	—						
bit 2		Auto-shutdown	· ·	_	ed) Enable bit				
		utdown for TMF utdown for TMF							
			—						
bit 1		AS1E: CWG Auto-shutdown Source 1 (TMR2_Postscaled) Enable bit 1 = Auto-shutdown for TMR2 Postscaled is enabled							
		iutdown for TMF							
bit 0						blo bit			
			•	in selected by C	CWG1PPS) Ena				
	1 = Autoch	utdown for CW	C1DDQ Din in	anablad					

REGISTER 24-7: CWG1AS1: CWG AUTO-SHUTDOWN CONTROL REGISTER 1

26.8.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

26.9 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of the SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

26.9.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 26-5) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register affects the address matching process. See **Section 26.9.9** "**SSP Mask Register**" for more information.

26.9.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

26.9.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

26.9.2 SLAVE RECEPTION

When the R/W bit of a matching received address byte is clear, the R/W bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 26-3.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 26.9.6.2 "10-bit Addressing Mode"** for more detail.

26.9.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 26.9.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

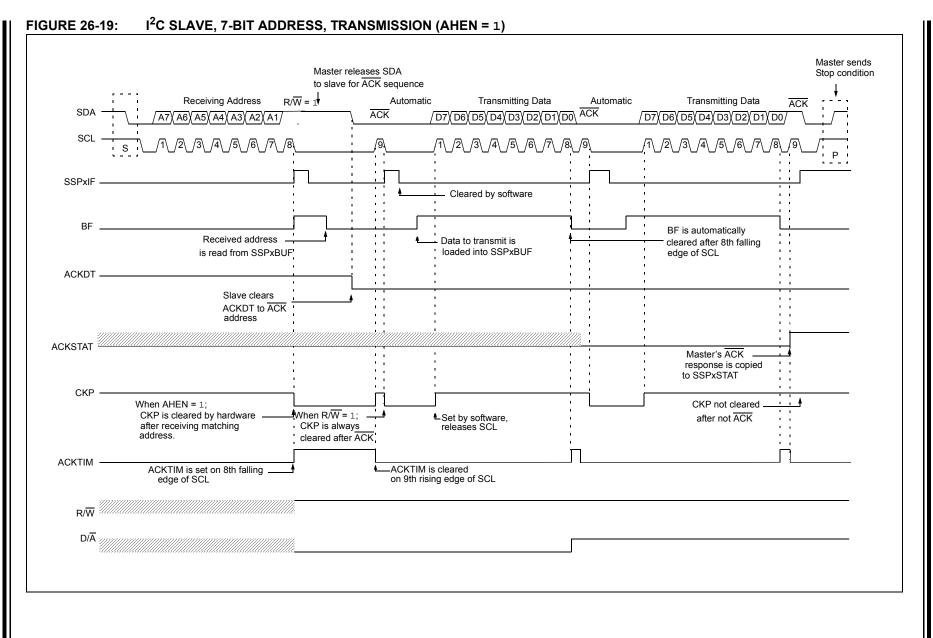
The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

26.9.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

26.9.3.2 7-bit Transmission


A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 26-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

 ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0,
RCxIF bit (Interrupt) ——— Read RCxREG ————	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	199
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	199
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	_	RC1IE	TX1IE	—	—	BCL1IE	SSP1IE	178
PIR3		—	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	170
IPR3	_	—	RC1IP	TX1IP	—	_	BCL1IP	SSP1IP	186
RCxREG			EUS	ARTx Receiv	e Data Regis	ter			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	_	_	_		F	RxyPPS<4:0>			213
RXxPPS	_	—	_	RXPPS<4:0>					211
SPxBRGH		EUSARTx Baud Rate Generator, High Byte							398*
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	ow Byte			398*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

27.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 27.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 27.5.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CKx and DTx pins (if applicable).
- 3. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCxIF bit will be set when reception is complete. An interrupt will be generated if the RCxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	—	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	178
PIR3	_	—	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170
IPR3	-	—	RC1IP	TX1IP	_	_	BCL1IP	SSP1IP	186
RCxREG			EUS	ART Receive	e Data Regist	er			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	-	—	_		RxyPPS<4:0>				
RXxPPS	_	—	_			RXPPS<4:0>	•		211
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

TABLE 27-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.
* Page provides register information.

	R/W-x/x		R/W-x/x		R/W-x/x		
R/W-x/x	R/W-X/X	R/W-x/x	R/W-X/X	R/W-x/x	R/W-X/X	R/W-x/x	R/W-x/x
			ADUTH	H<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ired				

REGISTER 31-30: ADUTHH: ADC UPPER THRESHOLD HIGH BYTE REGISTER

bit 7-0 **ADUTH<15:8>**: ADC Upper Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 31-31: ADUTHL: ADC UPPER THRESHOLD LOW BYTE REGISTER

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADUTH | 1<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

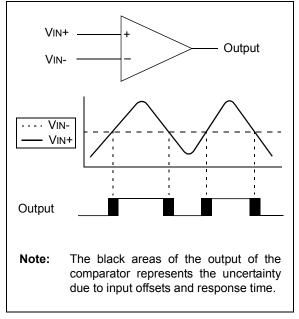
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADUTH<7:0>**: ADC Upper Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

32.0 COMPARATOR MODULE

Note: The PIC18(L)F24/25K40 devices have two comparators. Therefore, all information in this section refers to both C1 and C2.

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution.


The analog comparator module includes the following features:

- Programmable input selection
- Programmable output polarity
- Rising/falling output edge interrupts
- Wake-up from Sleep
- CWG Auto-shutdown source
- Selectable voltage reference
- ADC Auto-trigger
- TMR1/3/5 Gate
- TMR2/4/6 Reset
- CCP Capture Mode Input
- DSM Modulator Source
- Input and Window signal to Signal Measurement
 Timer

32.1 Comparator Overview

A single comparator is shown in Figure 32-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

ΒZ		Branch if	Zero					
Synta	ax:	BZ n						
Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$					
Operation:			if ZERO bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	is Affected:	None						
Encoding:		1110	0000 nnr	in nnnn				
Desc	ription:	If the ZERO bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.						
Word	ds:	1						
Cycle	es:	1(2)						
	ycle Activity: imp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
lf No	o Jump:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
<u>Exan</u>	Before Instruc PC	= ad	BZ Jump dress (HERE)					
	After Instructio If ZERO PC If ZERO PC	= 1; = ad = 0;	dress (Jump) dress (HERE					

CALL	Subroutin				
Syntax:	CALL k {,	s}			
Operands:	$0 \le k \le 1048575$ s \in [0,1]				
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if } s = 1 \\ (W) \rightarrow WS \\ (Status) \rightarrow \\ (BSR) \rightarrow B \end{array}$):1>, , STATUS	S,		
Status Affected:	None				
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kk kkkł		
	memory rai (PC + 4) is				
	stack. If 's' registers ar respective STATUSS a update occ 20-bit value CALL is a	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, State ushed in register S. If 's' out). Th ided inte	us and BS nto their rs, WS, = 0, no nen, the to PC<20:	
Words:	registers ar respective STATUSS a update occ 20-bit value	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, State ushed in register S. If 's' out). Th ided inte	us and BS nto their rs, WS, = 0, no nen, the to PC<20:	
Words: Cycles:	registers ar respective STATUSS a update occ 20-bit value CALL is a	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, State ushed in register S. If 's' out). Th ided inte	us and BS nto their rs, WS, = 0, no nen, the to PC<20:	
	registers ar respective STATUSS a update occ 20-bit value CALL is a 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, State ushed in register S. If 's' out). Th ided inte	us and BS nto their rs, WS, = 0, no nen, the to PC<20:	
Cycles:	registers ar respective STATUSS a update occ 20-bit value CALL is a 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa	W, Statu ushed in register S. If 's' ult). Th ded intu nstructio	us and BS nto their rs, WS, = 0, no nen, the to PC<20:	
Cycles: Q Cycle Activity:	registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2	= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir	W, Statu register S. If 's' ult). Th ded intr astructions PC to sk	us and BS nto their rs, WS, = 0, no nen, the o PC<20: on.	
Cycles: Q Cycle Activity: Q1 Decode No	registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2 Q2 Read literal 'k'<7:0>,	= 1, the ¹ re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSHF stac	W, Statu register S. If 's' ult). Th ded into astructions PC to ck	us and BS nto their 's, WS, = 0, no nen, the o PC<20: on. Q4 Read liter 'k'<19:82 Write to F No	
Cycles: Q Cycle Activity: Q1 Decode	registers ar respective STATUSS a update occ 20-bit value CALL is a 2 2 2 Q2 Read literal 'k'<7:0>,	= 1, the ¹ re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSHF stac	W, Statu register S. If 's' ult). Th ded into astructions PC to ck	us and BS nto their 's, WS, = 0, no hen, the o PC<20: on. Q4 Read liter 'k'<19:82 Write to F	

		(,	
on			
=			
=	address	(HERE +	4)
=	W		
=	BSR		
S=	Status		
	= = =	= address = address = W = BSR	= address (THERE) = address (HERE + = W = BSR

CPF	SGT	Compare	f with W, sk	ip if f > W				
Synta	ax:	CPFSGT	f {,a}					
,	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	0-1					
Oper	ation:		(f) – (W), skip if (f) > (W) (unsigned comparison)					
Statu	s Affected:	None	ompanson)					
Enco	ding:	0110	010a fff	f ffff				
	ription:	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Word	ls.	eral Offset	Mode" for det	ails.				
Cycle	es:	•	cles if skip and 2-word instruc					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
		register 'f'	Data	operation				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
16	operation	operation	operation	operation				
IT SK		d by 2-word in:		01				
l	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exan</u>	nple:	HERE NGREATER GREATER	CPFSGT RE : :	G, 0				
	Before Instruc	tion						
	PC		dress (HERE))				
	W	= ?						
	After Instructio	on						
	If REG PC	> W;	dress (GREAT	[ER)				
	If REG	≤ W;		-				
	PC	= Ad	dress (NGREA	ATER)				

CPF	SLT	Compare	f with W	I, skip	if f < W			
Synta	ax:	CPFSLT	f {,a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ation:	(f) – (W), skip if (f) < (W) (unsigned comparison)						
Statu	s Affected:	None	None					
Enco	ding:	0110 000a ffff ffff						
Desc	ription:	location 'f' performing If the conter contents of instruction executed in 2-cycle inst If 'a' is '0', 1	to the con an unsign this of 'f' a W, then t is discard natead, ma truction. the Acces the BSR is	tents of ned subt ire less he fetch ed and a aking thi s Bank i	traction. than the ned a NOP is is a			
Word	ls:	1						
Cycle			cycles if sk a 2-word	•				
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proce		No			
lf sk	in:	register 'f'	Data	1 (operation			
11 54	ιρ. Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation	operati	ion	operation			
lf sk	ip and followed	d by 2-word in	struction:					
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operati	ion	No operation			
	No	No	No		No			
	operation	operation	operati	ion	operation			
<u>Exan</u>	<u>nple</u> :	HERE NLESS LESS	CPFSLT 1 : :	REG, 1				
	Before Instruc	tion						
	PC W	= Ac = ?	ddress (H	IERE)				
	After Instructio	•						
	If REG	< W	;					
	PC		ddress (I	ESS)				
	lf REG PC	≥ W = Ac	; Idress (N	ILESS)				
			·	,				

CALLW	Subroutine Call Using WREG		MOV	′SF	Move Inc	Move Indexed to f			
Syntax:	CALLW	CALLW		Synta	IX:	MOVSF	MOVSF [z _s], f _d		
Operands:	None	None			ands:	$0 \le z_s \le 127$			
Operation:	. ,	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$					$0 \leq f_d \leq 4095$		
	· · ·				Operation: $((FSR2) + z_s) \rightarrow f_d$				
	(PCLATU) -				s Affected:	None			
Status Affected:	None	None			Encoding: 1st word (source) 2nd word (destin.)		1011 Oz	zz zzzz _s	
Encoding:	0000	0000 0000 0001 0100						ff ffffd	
Description First, the return address (PC + pushed onto the return stack. N contents of W are written to PC existing value is discarded. The contents of PCLATH and PCLA latched into PCH and PCU, respectively. The second cycle executed as a NOP instruction of new next instruction is fetched. Unlike CALL, there is no option update W, Status or BSR.		ack. Next, the to PCL; the d. Then, the PCLATU are J, cycle is ction while the ched. option to	Desc	ription:	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresse can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the				
Words:	1					PCL, TOS destination	U, TOSH or TO	OSL as the	
Cycles:	2						tant source ad	dress points t	
Q Cycle Activity:							addressing re ned will be 00	•	
Q1	Q2	Q3	Q4	Word	e.	2			
Decode	Read WREG	PUSH PC to stack	No operation	Cycle		2			
No	No	No	No		cle Activity:	-			
operation	operation	operation	operation	<u> </u>	Q1	Q2	Q3	Q4	
					Decode	Determine	Determine	Read	
Example: HERE CALLW				Decede	source add		source reg		
Before Instruction PC = address (HERE) PCLATH = 10h PCLATU = 00h W = 06h					Decode	No operation No dummy read	No operation	Write register 'f' (dest)	
After Instruction PC = 001006h TOS = address (HERE + 2) PCLATH = 10h PCLATU = 00h W = 06h				nple: Before Instruct FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h REG2	= 8 = 3 = 1 on = 8 = 3	[05h], REG Dh 3h Ih Dh 3h 3h	2		

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Features ⁽¹⁾	PIC18(L)F24K40	PIC18(L)F25K40	
Program Memory (Bytes)	16384	32768	
SRAM (Bytes)	1024	2048	
EEPROM (Bytes)	256	256	
Interrupt Sources	36	36	
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	
Capture/Compare/PWM Modules (CCP)	2	2	
10-bit Analog-to-Digital Module	4 internal 24 external	4 internal 35 external	
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN		

Note 1: PIC18F2xK40: operating voltage, 2.3V-5.5V. PIC18LF2xK40: operating voltage, 1.8V-3.6V.