

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f24k40t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	5		•	, .				
R/W-1	R/W-1	R/W-1	U-1	U-1	U-1	R/W-1	R/W-1	
BOREN<1:0>		LPBOREN	—	—		PWRTE	MCLRE	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable b	it	U = Unimple	mented bit, rea	ad as '1'		
-n = Value fo	r blank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 7-6	When enabled 11 = Brown-o 10 = Brown-o 01 = Brown-o	: Brown-out Res d, Brown-out Res out Reset enabled out Reset enabled out Reset enabled out Reset disable	et Voltage d, SBOREN d while run d according	(VBOR) is set by N bit is ignored ning, disabled in	-	REN is ignored		
bit 5	1 = Low-Power	ow-Power BOR I wer Brown-out R wer Brown-out R	eset is disa					
bit 4-2	Unimplement	ted: Read as '1'						
bit 1	PWRTE : Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled							
bit 0	$\frac{If LVP = 1}{RE3 pin fu}$ $\frac{If LVP = 0}{1 = MCLF}$	ter Clear (\overline{MCLR} nction is \overline{MCLR} \overline{R} pin is \overline{MCLR} \overline{R} pin function is p						

REGISTER 3-3: Configuration Word 2L (30 0002h): Supervisor

5.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

5.2 Programmable Clock Divider

The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 5-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- · Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

5.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FE2h	FSR1H	_	—	-	_	Indirec	xxxx			
FE1h	FSR1L		L	Indirec	t Data Memory	Address Point	er 1 Low			xxxxxxxx
FE0h	BSR	—	_	_	—		Bank Sele	ct Register		0000
FDFh	INDF2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 not cha	anged (not a ph	ysical register	.)	
FDEh	POSTINC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 post-in	cremented (not	a physical reg	gister)	
FDDh	POSTDEC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 post-de	ecremented (no	t a physical re	egister)	
FDCh	PREINC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 pre-inc	remented (not a	a physical reg	ister)	
FDBh	PLUSW2	Uses contents FSR0 offset by		dress data me	emory – value o	f FSR2 pre-inc	remented (not a	a physical reg	ister) – value of	
FDAh	FSR2H	—	—	—	—	Indirec	t Data Memory	Address Poin	ter 2 High	xxxx
FD9h	FSR2L			Indirec	t Data Memory	Address Point	er 2 Low			xxxxxxxx
FD8h	STATUS	_	TO	PD	Ν	OV	Z	DC	С	-1100000
FD7h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011110q
FD6h	T0CON1		T0CS<2:0>		T0ASYNC		00000000			
FD5h	T0CON0	T0EN	—	TOOUT	T016BIT			0-000000		
FD4h	TMR0H	Holding Register for the Most Significant Byte of the 16-bit TMR0 Register								
FD3h	TMR0L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR0 Register				00000000
FD2h	T1CLK	—	—	_	—			0000		
FD1h	T1GATE	_	—	_	_		GSS	<3:0>		0000
FD0h	T1GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	_	00000x
FCFh	T1CON	—	—	CKP	S<1:0>	—	SYNC	RD16	ON	00-000
FCEh	TMR1H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit TM	MR1 Register				00000000
FCDh	TMR1L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR1 Register				00000000
FCCh	T3CLK	_	—	—	_		CS<	<3:0>		0000
FCBh	T3GATE	_	—	-	_		GSS	<3:0>		0000
FCAh	T3GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	_	x00000
FC9h	T3CON	—	—	CKP	S<1:0>	_	SYNC	RD16	ON	00-000
FC8h	TMR3H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit TM	MR3 Register	1			00000000
FC7h	TMR3L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR3 Register				00000000
FC6h	TMR5CLK	_	—	—	—		CS<	<3:0>		0000
FC5h	T5GATE	—	—	—	—		GSS	<3:0>		0000
FC4h	T5GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	x00000
FC3h	T5CON	—	—	CKP	S<1:0>	—	SYNC	RD16	ON	00-000
FC2h	TMR5H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit TM	MR5 Register	1	1	1	00000000

Legend: x = unknown, u = unchanged, ---= unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

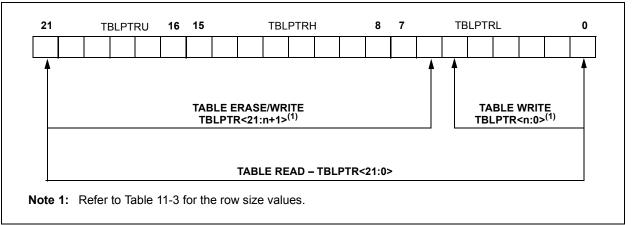
10.4.5 STATUS REGISTER

The STATUS register, shown in Register 10-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in **Section 35.0 "Instruction Set Summary"** and Table 35-3.


Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

IABLE II V.								
Example	Operation on Table Pointer							
TBLRD* TBLWT*	TBLPTR is not modified							
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write							
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write							
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write							

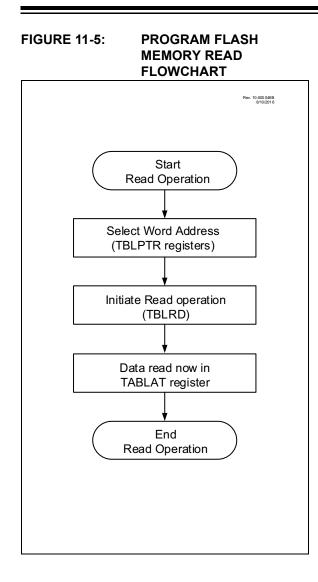

TABLE 11-3: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

FIGURE 11-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

PIC18(L)F24/25K40

13.9 Program Memory Scan Configuration

If desired, the program memory scan module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory addresses. In order to set up the scanner to work with the CRC you need to perform the following steps:

- 1. Set the Enable bit in both the CRCCON0 and SCANCON0 registers. If they get disabled, all internal states of the scanner and the CRC are reset (registers are unaffected).
- Choose which memory access mode is to be used (see Section 13.11 "Scanning Modes") and set the MODE bits of the SCANCON0 register appropriately.
- 3. Based on the memory access mode, set the INTM bits of the SCANCON0 register to the appropriate interrupt mode (see Section 13.11.5 "Interrupt Interaction")
- 4. Set the SCANLADRL/H/U and SCANHADRL/H/ U registers with the beginning and ending locations in memory that are to be scanned.
- 5. The CRCGO bit must be set before setting the SCANGO bit. Setting the SCANGO bit starts the scan. Both CRCEN and CRCGO bits must be enabled to use the scanner. When either of these bits are disabled, the scan aborts and the INVALID bit SCANCON0 is set. The scanner will wait for the signal from the CRC that it is ready for the first Flash memory location, then begin loading data into the CRC. It will continue to do so until it either hits the configured end address or an address that is unimplemented on the device, at which point the SCANGO bit will clear, Scanner functions will cease, and the SCANIF interrupt will be triggered. Alternately, the SCANGO bit can be cleared in software if desired.

13.10 Scanner Interrupt

The scanner will trigger an interrupt when the SCANGO bit transitions from '1' to '0'. The SCANIF interrupt flag of PIR7 is set when the last memory location is reached and the data is entered into the CRCDATA registers. The SCANIF bit can only be cleared in software. The SCAN interrupt enable is the SCANIE bit of the PIE7 register.

13.11 Scanning Modes

The memory scanner can scan in four modes: Burst, Peek, Concurrent, and Triggered. These modes are controlled by the MODE bits of the SCANCON0 register. The four modes are summarized in Table 13-2.

13.11.1 BURST MODE

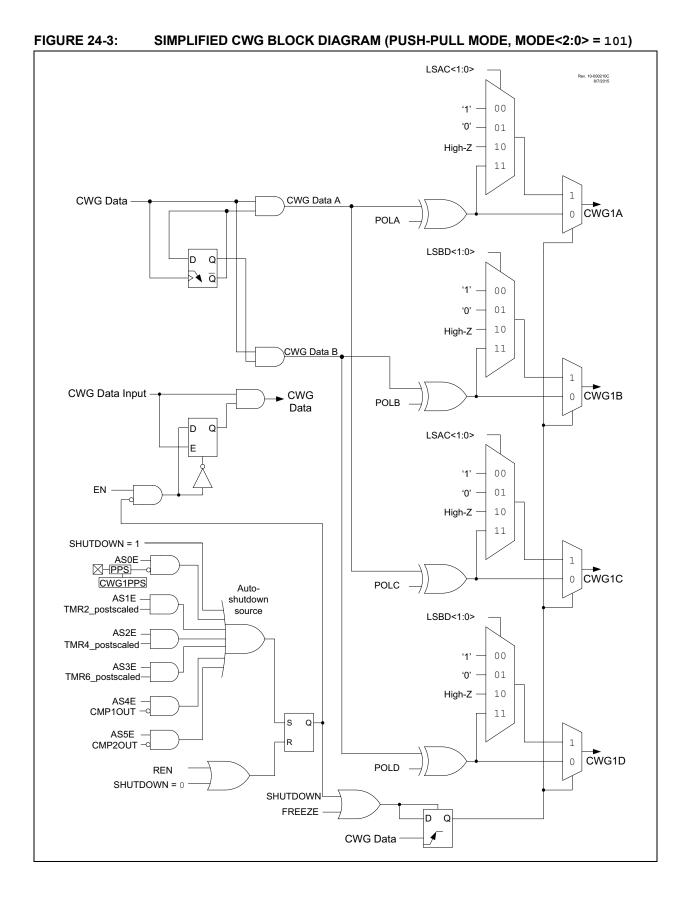
When MODE = 01, the scanner is in Burst mode. In Burst mode, CPU operation is stalled beginning with the operation after the one that sets the SCANGO bit, and the scan begins, using the instruction clock to execute. The CPU is held in its current state until the scan stops. Note that because the CPU is not executing instructions, the SCANGO bit cannot be cleared in software, so the CPU will remain stalled until one of the hardware endconditions occurs. Burst mode has the highest throughput for the scanner, but has the cost of stalling other execution while it occurs.

13.11.2 CONCURRENT MODE

When MODE = 00, the scanner is in Concurrent mode. Concurrent mode, like Burst mode, stalls the CPU while performing accesses of memory. However, while Burst mode stalls until all accesses are complete, Concurrent mode allows the CPU to execute in between access cycles.

13.11.3 TRIGGERED MODE

When MODE = 11, the scanner is in Triggered mode. Triggered mode behaves identically to Concurrent mode, except instead of beginning the scan immediately upon the SCANGO bit being set, it waits for a rising edge from a separate trigger clock, the source of which is determined by the SCANTRIG register.


13.11.4 PEEK MODE

When MODE = 10, the scanner is in Peek mode. Peek mode waits for an instruction cycle in which the CPU does not need to access the NVM (such as a branch instruction) and uses that cycle to do its own NVM access. This results in the lowest throughput for the NVM access (and can take a much longer time to complete a scan than the other modes), but does so without any impact on execution times, unlike the other modes.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CRCACCH				ACC	<15:8>				148	
CRCACCL					<7:0>				149	
CRCCON0	EN	GO	BUSY	ACCM	_	_	SHIFTM	FULL	147	
CRCCON1		DLEN<	3:0>			PLE	V<3:0>		147	
CRCDATH				DATA	<15:8>				148	
CRCDATL				DATA	<7:0>				148	
CRCSHIFTH		SHIFT<15:8>								
CRCSHIFTL	SHIFT<7:0>									
CRCXORH	X<15:8>								150	
CRCXORL	X<7:1> —								150	
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	64	
SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	_	MODE	<1:0>	151	
SCANHADRU	—	_			HADF	R<21:16>			153	
SCANHADRH				HADR	<15:8>				154	
SCANHADRL				HADF	R<7:0>				154	
SCANLADRU	—	—			LADF	₹<21:16>			152	
SCANLADRH				LADR	<15:8>				152	
SCANLADRL				LADF	R<7:0>				153	
SCANTRIG	_	_		_		TSEL	<3:0>		155	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	166	
PIR7	SCANIF	CRCIF	NVMIF	—	—	—	_	CWG1IF	174	
PIE7	SCANIE	CRCIE	NVMIE		—	—		CWG1IE	182	
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	190	

TABLE 13-5:	SUMMARY OF REGISTERS ASSOCIATED WITH CRC
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
		IN		POLD	POLC	POLB	POLA				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion					
bit 7-6	•	ted: Read as '									
bit 5	IN: CWG Inp	ut Value bit (rea	ad-only)								
bit 4	Unimplemen	ted: Read as '	0'								
bit 3	POLD: CWG	1D Output Pola	arity bit								
	•	tput is inverted									
	0 = Signal ou	tput is normal p	olarity								
bit 2		1C Output Pola	•								
	•	1 = Signal output is inverted polarity									
		tput is normal p									
bit 1		1B Output Pola	-								
	-	tput is inverted	•								
0 = Signal output is normal polarity											
bit 0		1A Output Pola	5								
	•	tput is inverted									
	0 = Signai ou	tput is normal p	bolanty								

REGISTER 24-2: CWG1CON1: CWG CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
_	—	—	—	—	CHS<2:0> ⁽¹⁾				
bit 7							bit 0		
Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-3	Unimpleme	nted: Read as 'o	י)						

DIT 7-3	Unimplemented: Read as 10"
bit 2-0	CHS<2:0>: Modulator Carrier High Selection bits
	See Table 25-2 for signal list

REGISTER 25-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—		_	—		CLS<2:0> ⁽¹⁾	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CLS<2:0>: Modulator Carrier Low Input Selection bits See Table 25-2 for signal list

TABLE 25-2: MDCARH/MDCARL SELECTION MUX CONNECTIONS

	MDCARH				MDCARL			
CHS<2:0)>	Connection	CLS<2:0>		Connection			
111	7	PWM4 OUT	111	7	PWM4 OUT			
110	6	PWM3 OUT	110	6	PWM3 OUT			
101	5	CCP2 OUT	101	5	CCP2 OUT			
100	4	CCP1 OUT	100	4	CCP1 OUT			
011	3	CLKREF output	011	3	CLKREF output			
010	2	HFINTOSC	010	2	HFINTOSC			
001	1	FOSC (system clock)	001	1	FOSC (system clock)			
000	0	Pin selected by MDCARHPPS	000	0	Pin selected by MDCARLPPS			

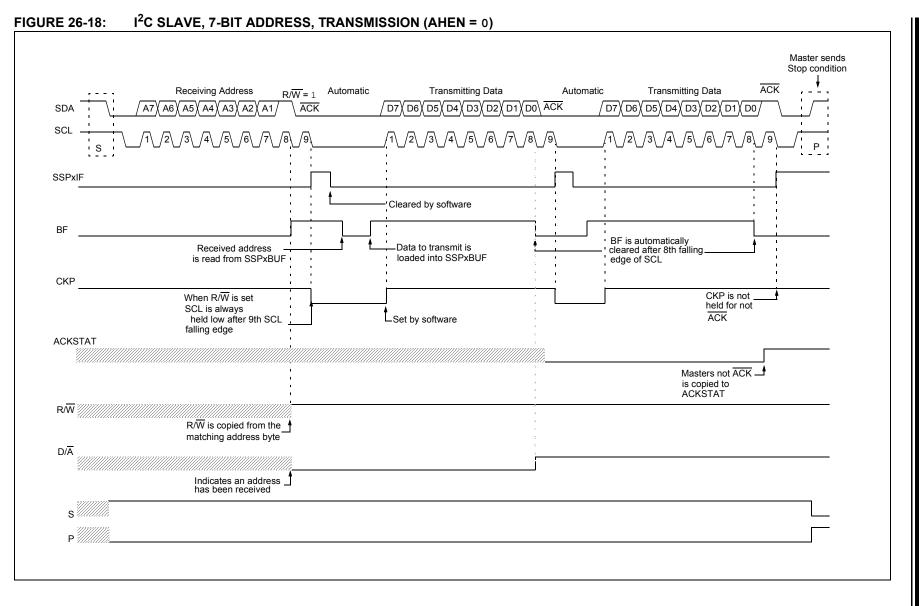
© 2016-2017 Microchip Technology Inc.

REGISTER 26-4: SSPxBUF: MSSP DATA BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			BUF	=<7:0>				
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable bit		U = Unimplemented bit, read as '0			as 'O'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other F			ther Resets	
'1' = Bit is set		'0' = Bit is clea	red					

bit 7-0 BUF<7:0>: MSSP Buffer bits

REGISTER 26-5: SSPxADD: MSSP ADDRESS REGISTER (SPI MODE)


| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | ADD< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode: SPI mode

bit 7-0 Baud Rate Clock Divider bits SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

© 2016-2017 Microchip Technology Inc.

PIC18(L)F24/25K40

27.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 27.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 27.5.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CKx and DTx pins (if applicable).
- 3. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCxIF bit will be set when reception is complete. An interrupt will be generated if the RCxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	—	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	178
PIR3	_	—	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170
IPR3	-	—	RC1IP	TX1IP	_	_	BCL1IP	SSP1IP	186
RCxREG			EUS	ART Receive	e Data Regist	er			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	-	—	_	RxyPPS<4:0>					213
RXxPPS	_	—	_	RXPPS<4:0>				211	
TXxSTA	CSRC	TX9	TXEN	SYNC	SYNC SENDB BRGH TRMT TX9D				387

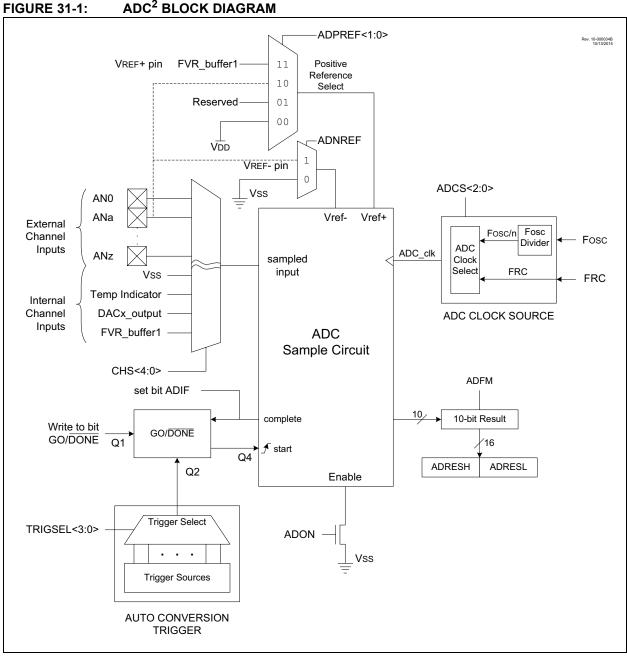
TABLE 27-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.
* Page provides register information.

28.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	/R<1:0>	ADFV	R<1:0>
bit 7	•						bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	1 Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit			
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea	-	enabled		
bit 5	1 = Tempera	erature Indicato ture Indicator i ture Indicator i	s enabled)			
bit 4	1 = VOUT = V	perature Indica /DD - 4VT (Higł /DD - 2VT (Low	n Range)	lection bit ⁽³⁾			
bit 3-2	11 = Compar 10 = Compar 01 = Compar	D>: Comparato ator FVR Buffe ator FVR Buffe ator FVR Buffe ator FVR Buffe	er Gain is 4x, (4 er Gain is 2x, (2 er Gain is 1x, (2.048V) ⁽²⁾	bits		
bit 1-0	11 = ADC FV 10 = ADC FV 01 = ADC FV	: ADC FVR Bu 'R Buffer Gain 'R Buffer Gain 'R Buffer Gain 'R Buffer is off	is 4x, (4.096V is 2x, (2.048V) ⁽²⁾) ⁽²⁾			
	VRRDY is always ixed Voltage Refe		cannot exceed	Vdd.			

REGISTER 28-1.	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER
REGISTER 20-1.	FURGON. FIXED VOLTAGE REFERENCE CONTROL REGISTER


2: Fixed Voltage Reference output cannot exceed VDD.

3: See Section 29.0 "Temperature Indicator Module" for additional information.

-		-				1		-	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	417
ADCON0	ADON	ADCONT	_	ADCS		ADFM	_	ADGO	441
CMxNCH	_	_	_	—		CxNCH<2:0>		463	
CMxPCH	—	—	_	—	_	CxPCH<2:0>		464	
DAC1CON1			_			DAC1R<4	:0>		423

TABLE 28-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

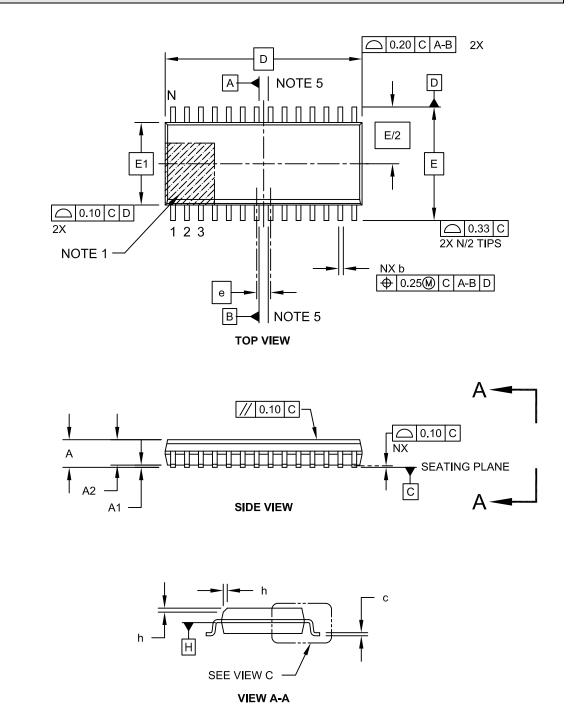
ADC² BLOCK DIAGRAM

PIC18(L)F24/25K40

SUBLW	Subtract	Subtract W from literal				
Syntax:	SUBLW I	K				
Operands:	$0 \le k \le 25$	5				
Operation:	$k-(W) \rightarrow$	W				
Status Affected:	N, OV, C,	DC, Z				
Encoding:	0000	1000	kkkk	kkkk		
Description	W is subtr literal 'k'. 1					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proce Data		/rite to W		
Example 1:	SUBLW ()2h				
Before Instruct W C After Instructio W C Z N	= 01h = ? n = 01h	esult is po	ositive			
Example 2:	SUBLW ()2h				
Before Instruct W C After Instructio W C Z N	= 02h = ? n = 00h	esult is ze	ro			
Example 3:	SUBLW ()2h				
Before Instruct W C After Instructio W C Z N	= 03h = ? n = FFh;(2's compl esult is ne				

SUBWF	Subtract	W from f	
Syntax:	SUBWF	f {,d {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	(f) – (W) –	→ dest	
Status Affected:	N, OV, C,	DC, Z	
Encoding:	0101	11da fff	f ffff
Description:	compleme result is st result is st (default). If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh 35.2.3 "By ented Inst	V from register ant method). If ored in W. If 'd ored back in re the Access Ba f 'a' is '1', the I ne GPR bank. and the extend- bled, this instru- n Indexed Liter g mode whene 1). See Section te-Oriented an ructions in Ind de" for details.	d' is '0', the l' is '1', the egister 'f' ank is BSR is used ed instruction action ral Offset ever n Bit-Ori-
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example 1:	SUBWF	REG, 1, 0	
Before Instruct REG W C After Instructio REG W C Z	= 3 = 2 = ? m = 1 = 2	esult is positive	3
N	= 0		
Example 2: Before Instruct	SUBWF	REG, 0, 0	
After Instruction REG W C After Instruction REG W C C Z N	= 2 = 2 = ? on = 2 = 0	esult is zero	
Example 3:	- U SUBWF	REG, 1, 0	
Before Instruct REG W C After Instructio	tion = 1 = 2 = ?		
REG W	= FFh ;(2 = 2	's complement	t)
C Z N		esult is negativ	e

TABLE 37-23 :	SPI MODE REQUIREMENTS
----------------------	-----------------------

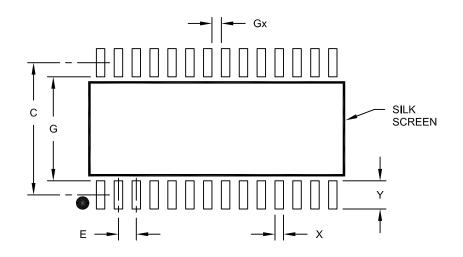

Standard	Standard Operating Conditions (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions				
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	—	_	ns					
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20		_	ns					
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	_	_	ns					
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns					
SP74*	TscH2dlL, TscL2dlL	Hold time of SDI data input to SCK edge	100	—	—	ns					
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$				
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$				
SP76*	TdoF	SDO data output fall time		10	25	ns					
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10		50	ns					
SP78*	TscR	SCK output rise time (Master mode)		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$				
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$				
SP79*	TscF	SCK output fall time (Master mode)		10	25	ns					
SP80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge			50	ns	$3.0V \leq V\text{DD} \leq 5.5V$				
				_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$				
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	_	—	ns					
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	_	_	50	ns					
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns					

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



© 2016-2017 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	itch E 1.27 BSC				
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	Х			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A