

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k40-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES

Features	PIC18(L)F24K40	PIC18(L)F25K40			
Program Memory (Bytes)	16384	32768			
Program Memory (Instructions)	8192	16384			
Data Memory (Bytes)	1024	2048			
Data EEPROM Memory (Bytes)	256	256			
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾			
Capture/Compare/PWM Modules (CCP)	2	2			
10-Bit Pulse-Width Modulator (PWM)	2	2			
10-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	4 internal 24 external	4 internal 24 external			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN			
Interrupt Sources	36				
Timers (16-/8-bit)	4/3				
Serial Communications	1 MSSP, 1 EUSART				
Enhanced Complementary Waveform Generator (ECWG)		1			
Zero-Cross Detect (ZCD)	1				
Data Signal Modulator (DSM)	1				
Peripheral Pin Select (PPS)	Yes				
Peripheral Module Disable (PMD)	Yes				
16-bit CRC with NVMSCAN	Yes				
Programmable High/Low-Voltage Detect (HLVD)	Yes				
Programmable Brown-out Reset (BOR)	Y	es			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Overflow, Stack Underflow (PWRT, OST), MCLR, WDT				
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled				
Operating Frequency	DC – 6	64 MHz			

Note 1: PORTE contains the single RE3 input-only pin.

4.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

4.1 Overview

The oscillator module has multiple clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

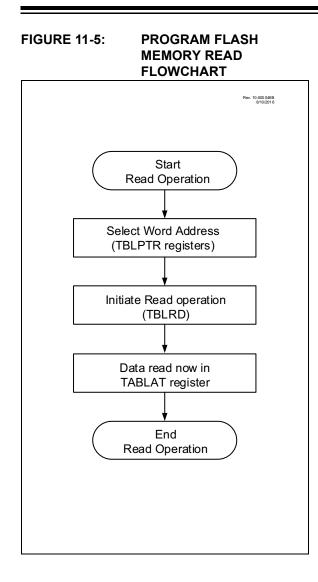
- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 (Register 3-1) determine the type of oscillator that will be used when the device runs after Reset, including when it is first powered up.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 100 kHz)
- 2. ECM External Clock Medium Power mode (100 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 8 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)


The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 4-1). Multiple device clock frequencies may be derived from these clock sources.

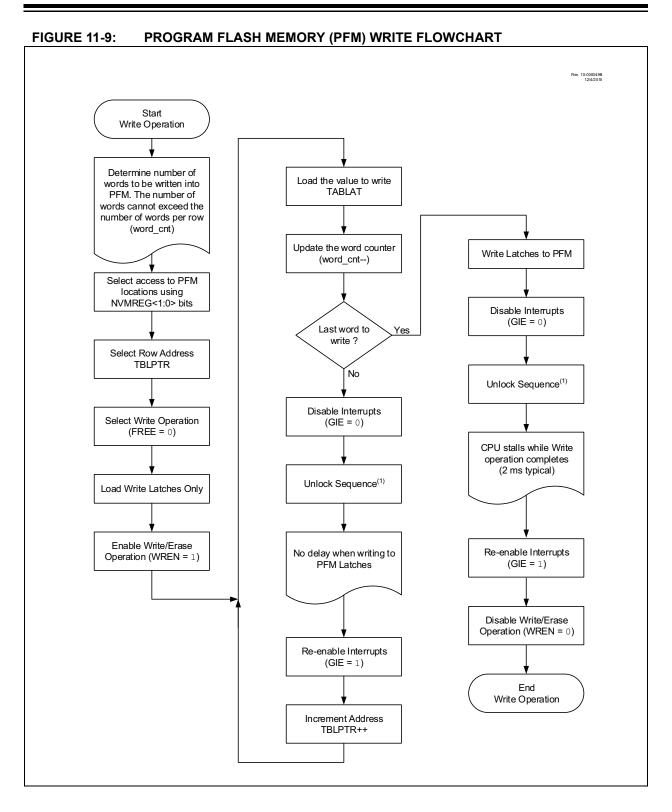

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F4Dh	SCANHADRH				HADF	R<15:8>				11111111
F4Ch	SCANHADRL				HAD	R<7:0>				11111111
F4Bh	SCANLADRU	_	_			LADR	<21:16>			000000
F4Ah	SCANLADRH			LADR<15:8>						00000000
F49h	SCANLADRL				LAD	R<7:0>				00000000
F48h	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	00000000
F47h	CWG1AS1	_	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	000000
F46h	CWG1AS0	SHUTDOWN	REN	LSBE	D<1:0>	LSAC	C<1:0>	—	—	000101
F45h	CWG1CON1	_	_	IN	—	POLD	POLC	POLB	POLA	x-0000
F44h	CWG1CON0	EN	LD	_	_	-		MODE<2:0>		00000
F43h	CWG1DBF	_	_			DBF	<5:0>			000000
F42h	CWG1DBR	_	_			DBF	R<5:0>			000000
F41h	CWG1ISM	_	_	—	—	-		ISM<2:0>		000
F40h	CWG1CLKCON	_	_	_	_	—	—	_	CS	0
F3Fh	CLKRCLK	_	_	_	_	_	(LKRxCLK<2:	0>	000
F3Eh	CLKRCON	CLKREN	_	_	CLKRE	C<1:0>		CLKRDIV<2:0	>	010000
F3Dh	CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00
F3Ch	CM1PCH	_	_	_	_	_		PCH<2:0>		000
F3Bh	CM1NCH	_	_	_	_	_	NCH<2:0>		000	
F3Ah	CM1CON1	_	_	_	_	_	_	INTP	INTN	100
F39h	CM1CON0	EN	OUT	_	POL	_	_	HYS	SYNC	00-000
F38h	CM2PCH	—	_	_	_	_		C2PCH<2:0>	•	000
F37h	CM2NCH	_	_	_	_	_		C2NCH<2:0>	>	000
F36h	CM2CON1	_	_	_	_	_	_	INTP	INTN	100
F35h	CM2CON0	EN	OUT	_	POL	_	_	HYS	SYNC	00-000
F34h	DAC1CON1	—	_				DAC1R<4:0>			xxxxx
F33h	DAC1CON0	EN	_	OE1	OE2	PSS	<1:0>	_	NSS	0-0000-0
F32h	ZCDCON	SEN	_	OUT	POL	_	—	INTP	INTN	0-x000
F31h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF	/R<1:0>	ADF\	/R<1:0>	0x000000
F30h	HLVDCON1	_	—	_	_		HLVDS	EL<3:0>		0000
F2Fh	HLVDCON0	EN	_	OUT	RDY	-	-	INTH	INTL	0-xx00
F2Eh	—				Unimp	lemented			1	_
F2Dh	WPUE	—	—	-	—	WPUE3	—	—	—	1
F2Ch	—				Unimp	lemented		1	1	_
F2Bh	—				Unimp	lemented				_
F2Ah	INLVLE	—	_	_	—	INLVLE3	—	—	—	1
F29h	IOCEP	_	_	_	_	IOCEP3	_	_	_	0
F28h	IOCEN	_	_	_	_	IOCEN3	_	_	_	0
F27h	IOCEF	_	_	_	_	IOCEF3	_	_	_	0

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

14.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable and priority bits.

14.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Request Flag registers (PIR0, PIR1, PIR2, PIR3, PIR4, PIR5, PIR6 and PIR7).

14.6 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Enable registers (PIE0, PIE1, PIE2, PIE3, PIE4, PIE5, PIE6 and PIE7). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

14.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Priority registers (IPR0, IPR1, IPR2, IPR3, IPR4 and IPR5, IPR6 and IPR7). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

20.7 Register Definitions: Timer2/4/6 Control

Long bit name prefixes for the Timer2/4/6 peripherals are shown in Table 20-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information. **TABLE 20-2:**

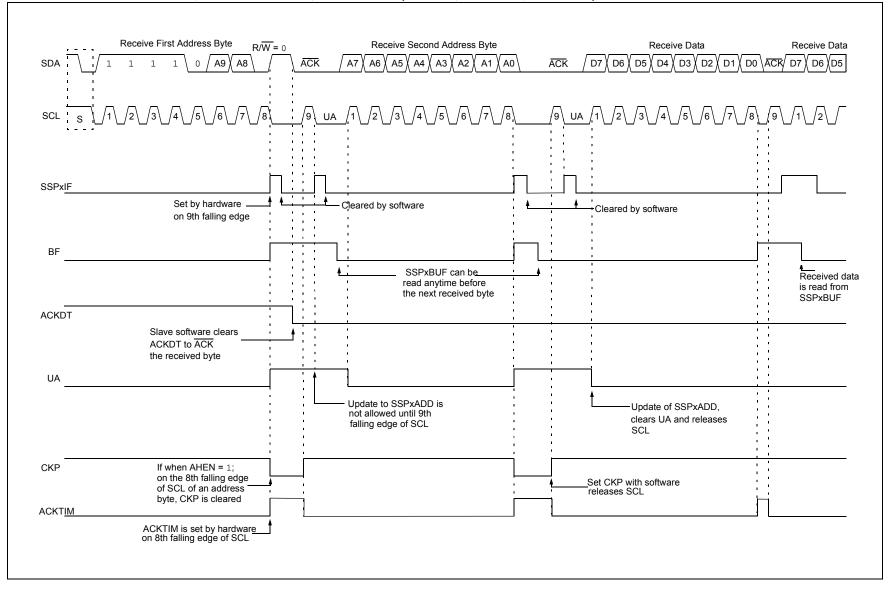
Peripheral	Bit Name Prefix
Timer2	T2
Timer4	T4
Timer6	Т6

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	:L<1:0>	280
PWM3CON	EN	_	OUT	POL	_	—	_	—	279
PWM3DCH				DC<7	:0>				281
PWM3DCL	DC<	9:8>>	_	_	_	—	_	_	281
PWM4CON	EN	_	OUT	POL	—	_	_	_	279
PWM4DCH				DC<7	:0>				281
PWM4DCL	DC<	<9:8>	_	_	_	—	_	_	281
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	166
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	171
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	187
RxyPPS	_	_	_	RxyPPS<4:0>				213	
TMR2				TMR2<	7:0>				238*
PR2				PR2<7	/:0>				238*
T2CON	T2ON		T2CKPS<2:0>			T2OUTF	PS<3:0>		256
T2HLT	T2PSYNC	T2CPOL	T2CSYNC		T	2MODE<4:0>	•		257
T2CLKCON	_	_	_	— T2CS<3:0>				258	
T2RST	_	—	—	—		T2RSE	L<3:0>		259
PMD3		_	_		PWM4MD	PWM3MD	CCP2MD	CCP1MD	67

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. * Not a physical location.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	—	_		SRCS	<3:0>			
•						bit 0		
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Res			ther Resets		
	'0' = Bit is clea	ared						
	_	bit W = Writable I anged x = Bit is unkn	bit W = Writable bit	bit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	— — — SRCS bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	— — — SRCS<3:0> bit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all or		


REGISTER 25-5: MDSRC: MODULATION SOURCE CONTROL REGISTER

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SRCS<3:0>: Modulator Source Selection bits See Table 25-3 for signal list

TABLE 25-3:MDSRC SELECTION MUX
CONNECTIONS

MDSRCS<3:0>		Connection
1011-11	11	Reserved
1010	10	MSSP1 - SDO
1001	9	EUSART TX (TX/CK output)
1000	8	EUSART RX (DT output)
0111	7	CMP2 OUT
0110	6	CMP1 OUT
0101	5	PWM4 OUT
0100	4	PWM3 OUT
0011	3	CCP2 OUT
0010	2	CCP1 OUT
0001	1	MDBIT
0000	0	Pin selected by MDSRCPPS

FIGURE 26-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

PIC18(L)F24/25K40

26.10 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

26.10.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 26.11 "Baud Rate Generator"** for more detail.

26.10.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 26-25).

27.2 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 27-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

27.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 27-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

27.2.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TXx/CKx I/O pin as an output. If the TXx/CKx pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

27.2.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one Tcy immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

27.2.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 27.5.1.2 "Clock Polarity**".

27.2.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3 register. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

31.0 ANALOG-TO-DIGITAL CONVERTER WITH COMPUTATION (ADC²) MODULE

The Analog-to-Digital Converter with Computation (ADC^2) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair).

Additionally, the following features are provided within the ADC module:

- 8-bit Acquisition Timer
- Hardware Capacitive Voltage Divider (CVD) support:
 - 8-bit precharge timer
 - Adjustable sample and hold capacitor array
- Guard ring digital output drive
- · Automatic repeat and sequencing:
 - Automated double sample conversion for CVD
 - Two sets of result registers (Result and Previous result)
 - Auto-conversion trigger
 - Internal retrigger
- Computation features:
 - Averaging and low-pass filter functions
 - Reference comparison
 - 2-level threshold comparison
 - Selectable interrupts

Figure 31-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion and upon threshold comparison. These interrupts can be used to wake-up the device from Sleep.

NEGF	Negate f
Syntax:	NEGF f {,a}
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]
Operation:	$(\overline{f}) + 1 \rightarrow f$
Status Affected:	N, OV, C, DC, Z
Encoding:	0110 110a ffff ffff
	complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.
Words:	1
Cycles:	1
O Cycle Activity	

NOF	•	No Operation				
Synta	ax:	NOP				
Oper	ands:	None				
Oper	ation:	No operation				
Statu	s Affected:	None				
Encoding:		0000 1111	0000 xxxx	000 xxx	-	0000 xxxx
Desc	ription:	No operation.				
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	Q3		Q4
	Decode	No		No		No
		operation	opera	tion	ope	ration

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]

© 2016-2017 Microchip Technology Inc.

35.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Lite	Add Literal to FSR					
Synta	ax:	ADDFSR	ADDFSR f, k					
Oper	ands:	$0 \le k \le 63$ f \in [0, 1, 2]						
Oper	ation:	FSR(f) + k	$x \rightarrow FSR($	f)				
Statu	s Affected:	None						
Enco	ding:	1110	1000	ffkk	kkkk			
Desc	ription:		The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Data		Write to FSR			

Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	0422h

ADDULNK	Add Literal to FSR2 and Return			
Syntax:	ADDULNK k			
Operands:	$0 \le k \le 63$			
Operation:	$FSR2 + k \rightarrow FSR2$,			
	$(TOS) \rightarrow PC$			
Status Affected:	None			
Encoding:	1110 1000 11kk kkkk			
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.			
Words:	1			
Cycles:	2			
O Cycle Activity:				

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instruction							
FSR2	=	03FFh					
PC	=	0100h					
After Instruct	ion						
FSR2	=	0422h					
PC	=	(TOS)					

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

CALLW	Subroutir	ne Call Using	Using WREG MOVSF		′SF	Move Indexed to f			
Syntax:	CALLW			Synta	IX:	MOVSF	[z _s], f _d		
Operands:	None			Operation	ands:	$0 \le z_s \le 12$	27		
Operation:	$(PC + 2) \rightarrow$					$0 \le f_d \le 40$			
	$(W) \rightarrow PCL$ (PCLATH) -			Operation		((FSR2) +	$z_s) \rightarrow f_d$		
	(PCLATU) -				s Affected:	None			
Status Affected:	None			Enco 1st w	ding: ord (source)	1110	1011 Oz	zz zzzz _s	
Encoding:	0000	0000 000	01 0100		vord (destin.)	1111		ff ffffd	
Description	pushed ont contents of existing val contents of latched into respectively executed as new next in Unlike CAL	turn address (o the return sta W are written ue is discarded PCLATH and PCH and PCI y. The second s a NOP instruction is fet L, there is no Status or BSR.	ack. Next, the to PCL; the d. Then, the PCLATU are J, cycle is ction while the ched. option to	Desc	ription:	moved to actual add determine offset 'z _s ' i FSR2. The register is 'f _d ' in the s can be an space (00 The MOVS	nts of the sound destination reg ress of the sound d by adding the n the first word a address of th specified by th econd word. B ywhere in the 4 Dh to FFFh). F instruction ca	ister 'f _d '. The ince register is e 7-bit literal to the value of e destination e 12-bit literal oth addresses 096-byte data	
Words:	1					PCL, TOS destination	U, TOSH or TO	OSL as the	
Cycles:	2						tant source ad	dress points t	
Q Cycle Activity:							addressing re ned will be 00	•	
Q1	Q2	Q3	Q4	Word	e.	2		1.	
Decode	Read WREG	PUSH PC to stack	No operation	Cycle		2			
No	No	No	No		cle Activity:	-			
operation	operation	operation	operation	<u> </u>	Q1	Q2	Q3	Q4	
					Decode	Determine	Determine	Read	
Example:	HERE	CALLW			Decede	source add	-	source reg	
Before Instru PC PCLAT PCLAT W	= address H = 10h	G (HERE)			Decode	No operation No dummy read	No operation	Write register 'f' (dest)	
After Instruc PC TOS PCLAT PCLAT W	= 001006 = address H = 10h	h 3 (HERE + 2)		nple: Before Instruct FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h REG2	= 8 = 3 = 1 on = 8 = 3	[05h], REG Dh 3h Ih Dh 3h 3h	2	

PIC18LF24/25K40 PIC18F24/25K40			Standard Operating Conditions (unless otherwise stated)						
No.	Symbol	Device Characteristics	Min.	Тур.†	Max.	Units	VDD	Note	
D100	IDD _{XT4}	XT = 4 MHz	-	450	650	μΑ	3.0V		
D100	IDD _{XT4}	XT = 4 MHz	_	550	750	μΑ	3.0V		
D100A	IDD _{XT4}	XT = 4 MHz	—	310	_	μΑ	3.0V	PMD's all 1's	
D100A	IDD _{XT4}	XT = 4 MHz	—	410	_	μΑ	3.0V	PMD's all 1's	
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.9	2.6	mA	3.0V		
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	-	2.0	2.7	mA	3.0V		
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4		mA	3.0V	PMD's all 1's	
D101A	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.5	_	mA	3.0V	PMD's all 1's	
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	7.4	9.4	mA	3.0V		
D102	IDD _{HFOPLL}	HFINTOSC = 64 MHz	_	7.5	9.5	mA	3.0V		
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	5.2	_	mA	3.0V	PMD's all 1's	
D102A	IDD _{HFOPLL}	HFINTOSC = 64 MHz	—	5.3	_	mA	3.0V	PMD's all 1's	
D103	IDD _{HSPLL32}	HS+PLL = 64 MHz	-	6.9	8.9	mA	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 64 MHz	_	7.0	9.0	mA	3.0V		
D103A	IDD _{HSPLL32}	HS+PLL = 64 MHz	—	4.9	—	mA	3.0V	PMD's all 1's	
D103A	IDD _{HSPLL32}	HS+PLL = 64 MHz	—	5.0	—	mA	3.0V	PMD's all 1's	
D104	IDD _{IDLE}	IDLE mode, HFINTOSC = 16 MHz	_	1.05	_	mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	_	1.15		mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	_	1.1	—	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	—	1.2	—	mA	3.0V		

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

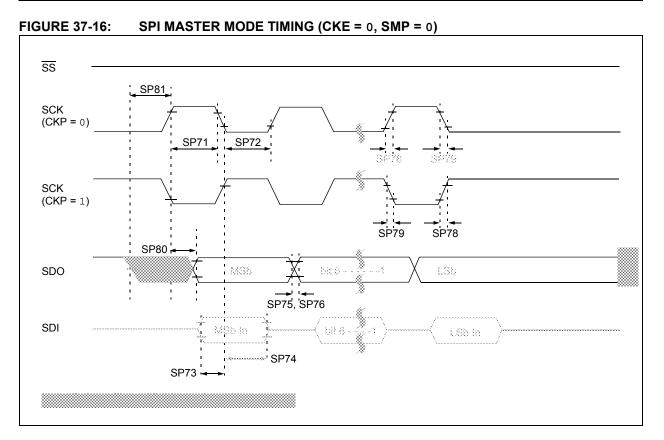
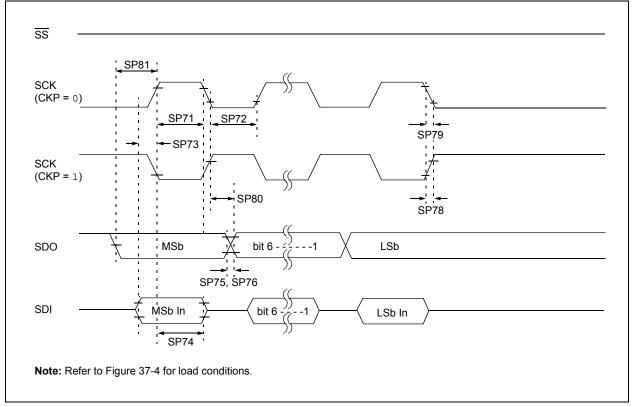
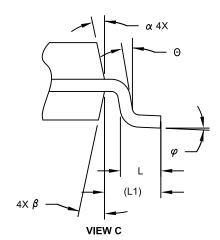
Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from

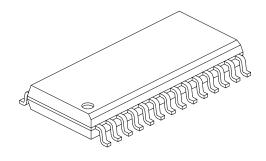
rail-to-rail; all I/O pins are outputs driven low; $\overline{MCLR} = V_{DD}$; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE}^{*}(N-1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 6-2).

4: PMD bits are all in the default state, no modules are disabled.

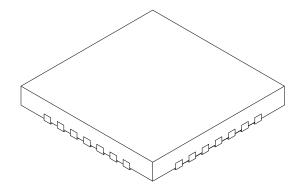





FIGURE 37-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18 - 0.33			
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	_	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	ľ	MILLIMETER	S
Dimens	Dimension Limits			MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.55 2.65 2.75		
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55 2.65 2.7		
Contact Width	b	0.15 0.20 0.25		
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2