

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Digital Peripherals (Continued)

- Programmable CRC with Memory Scan:
 - Reliable data/program memory monitoring for Fail-Safe operation (e.g., Class B)
 - Calculate CRC over any portion of Flash or EEPROM
- High-speed or background operation
- Hardware Limit Timer (TMR2/4/6+HLT):
- Hardware monitoring and Fault detection
- Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O
- Data Signal Modulator (DSM)

Analog Peripherals

- 10-Bit Analog-to-Digital Converter with Computation (ADC²):
 - 24 external channels
 - Conversion available during Sleep
 - Four internal analog channels
 - Internal and external trigger options
 - Automated math functions on input signals:
 - averaging, filter calculations, oversampling and threshold comparison
- Hardware Capacitive Voltage Divider (CVD) Support:
 - 8-bit precharge timer
 - Adjustable sample and hold capacitor array
 - Guard ring digital output drive
- Zero-Cross Detect (ZCD):
 - Detect when AC signal on pin crosses ground
- 5-Bit Digital-to-Analog Converter (DAC):
 - Output available externally
 - Programmable 5-bit voltage (% of VDD)
 - Internal connections to comparators, Fixed Voltage Reference and ADC
- Two Comparators (CMP):
 - Four external inputs
 - External output via PPS
- Fixed Voltage Reference (FVR) module:
 - 1.024V, 2.048V and 4.096V output levels

Clocking Structure

- High-Precision Internal Oscillator Block (HFINTOSC):
- Selectable frequency range up to 64 MHz
 ±1% at calibration
- 32 kHz Low-Power Internal Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
- External Oscillator Block:
 - Three crystal/resonator modes
 - 4x PLL with external sources
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops
- Oscillator Start-up Timer (OST)

Programming/Debug Features

- In-Circuit Debug Integrated On-Chip
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug (ICD) with Three Breakpoints via Two Pins

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	166
PIE0	_	—	TMR0IE	IOCIE	-	INT2IE	INT1IE	INT0IE	175
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	176
PIE2	HLVDIE	ZCDIE	_	_	_	_	C2IE	C1IE	177
PIE3	_	—	RC1IE	TX1IE	-	-	BCL1IE	SSP1IE	178
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIE5	_	—	_	_	—	TMR5GIE	TMR3GIE	TMR1GIE	180
PIE6	_	—	_	—	-	_	CCP2IE	CCP1IE	181
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	182
PIR0	_	—	TMR0IF	IOCIF	_	INT2IF	INT1IF	INT0IF	167
PIR1	OSCFIF	CSWIF	_	_	_	_	ADTIF	ADIF	168
PIR2	HLVDIF	ZCDIF ⁽¹⁾	_	_	_	_	C2IF	C1IF	169
PIR3	_	_	RC1IF	TX1IF	-	_	BCL1IF	SSP1IF	170
PIR4	_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	170
IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	206
IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	206
IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	206
IOCCP ⁽¹⁾	_	—	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	206
IOCCN ⁽¹⁾	_	_	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	206
IOCCF ⁽¹⁾	_	—	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	206
STATUS	_	_	_	TO	PD	Z	DC	С	114
VREGCON	_	_	_	_	_	_	VREGPM	Reserved	60
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		61
WDTCON0	—	_			WDTPS<4:0>			SEN	81
WDTCON1	—		WDTPS<2:0>		_		WINDOW<2:0>	•	82
Note 1: -	– = unimplemen	ted location, rea	ad as '0'. Shade	d cells are not u	sed in Power-D	own mode.			

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

8.2 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-0/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7	•		•			•	bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	t by hardware		
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	STKOVF: Sta 1 = A Stack 0 = A Stack	ack Overflow Fl Overflow occu Overflow has r	ag bit rred (more CA not occurred o	LLs than fit on r set to '0' by fi	the stack) rmware		
bit 6	STKUNF: Sta	ack Underflow F	-lag bit				
	1 = A Stack 0 = A Stack	 Underflow occ Underflow has 	curred (more not occurred	RETURNS than or set to '0' by	CALLS) r firmware		
bit 5	WDTWV: Wa	tchdog Windov	Violation bit				
	1 = A WDT 0 = A CLRWI when a	window violatio or instruction w WDT window v	on has not occ vas issued whe riolation Reset	urred or set to en the WDT Re occurs)	'1' by firmware set window was	closed (set to '	0' in hardware
bit 4	RWDT: WDT	Reset Flag bit					
	1 = A WDT $0 = A WDT$	overflow/time-c overflow/time-c	out Reset has out Reset has	not occurred o occurred (set to	r set to '1' by fir o '0' in hardware	mware e when a WDT	Reset occurs)
bit 3	RMCLR: MCI	LR Reset Flag	bit				
	$1 = A \frac{MCLF}{MCLF}$	Reset has no Reset has oc	t occurred or s curred (set to	et to '1' by firm 0' in hardware	ware when a MCLR	Reset occurs)	
bit 2	RI: RESET INS	struction Flag b	it				
	1 = A RESET 0 = A RESE instruction	r instruction ha r instruction h on)	is not been ex nas been exe	ecuted or set tecuted (set to	oʻ1'by firmwar ʻ0'in hardwar	e e upon execu	ting a RESET
bit 1	POR: Power-	on Reset Statu	s bit				
	1 = No Pow 0 = A Powe	er-on Reset oc r-on Reset occ	curred or set t urred (set to 'd	oʻ1' by firmwa)' in hardware v	re when a Power-o	on Reset occur	rs)
bit 0	BOR: Brown-	out Reset State	us bit				
	1 = No Brow 0 = A Brown	vn-out Reset or n-out Reset occ	ccurred or set curred (set to '	to '1' by firmwa 0' in hardware	are when a Brown-	out Reset occu	urs)

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

U-0	R/W ⁽³⁾ -q/q	⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹⁾ R/W ⁽³⁾ -q/q ⁽¹) U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾
-		WDTCS<2:0>	-		WINDOW<2:0>	
bit 7				·		bit 0
Legend:						
R = Reada	ble bit	W = Writable bit	U = Unimple	emented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value	e at POR and BO	R/Value at all oth	er Resets

q = Value depends on condition

REGISTER 9-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

bit 7 Unimplemented: Read as '0'

bit 6-4 **WDTCS<2:0>:** Watchdog Timer Clock Select bits

'0' = Bit is cleared

111 = Reserved

'1' = Bit is set

- •
- •
- 010 = Reserved
- 001 = MFINTOSC 31.25 kHz
- 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

- Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of WDTCS<2:0> is 000.
 - 2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H register.
 - **3:** If WDTCCS<2:0> in CONFIG3H \neq 111, these bits are read-only.
 - 4: If WDTCWS<2:0> in CONFIG3H \neq 111, these bits are read-only.

11.4 Register Definitions: Nonvolatile Memory

REGISTER 11-1: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

R/W-0/	0 R/W-0/0	U-0	R/S/HC-0/0	R/W/HS-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
NV	MREG<1:0>	_	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	HC = Bit is cle	eared by hardw	vare	
x = Bit is unknown -n = Value at POR S = Bit can be set by software, but not clearer					ared		
'0' = Bit is	cleared	'1' = Bit is set		U = Unimplem	nented bit, read	d as '0'	
bit 7-6	NVMREG<1: 10 =Access F x1 = Access 00 = Access	0>: NVM Regio PFM Locations User IDs, Cont Data EEPROM	on Selection bi figuration Bits, 1 Memory Loca	t Rev ID and De [.] ations	vice ID		
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	FREE: Progra 1 = Perform 0 = The nex	am Flash Mem s an erase ope t WR comman	ory Erase Enal eration on the r d performs a w	ble bit ⁽¹⁾ next WR comma vrite operation	and		
SKO	1 = A write o or WR w or WR w or WR w 0 = All write	operation was vas written to 1 vas written to 1 vas written to 1 operations ha	interrupted by a 'b1 when an in 'b1 when NVM 'b1 when a wri ve completed r	a Reset (hardw walid address is IREG<1:0> and ite-protected ad normally	are set), s accessed (Ta l address do n ldress is acces	able 10-1, Table ot point to the s ssed (Table 10-	e 11-1) same region 2).
bit 2	WREN: Progr 1 = Allows p 0 = Inhibits p	ram/Erase Ena program/erase programming/e	ble bit and refresh cy erasing and use	cles er refresh of NV	′M		
bit 1 WR: Write Control bit ^(5,6,7) <u>When NVMREG points to a Data EEPROM Memory location:</u> 1 = Initiates an erase/program cycle at the corresponding Data EEPROM Memory location <u>When NVMREG points to a PFM location:</u> 1 = Initiates the PFM write operation with data from the holding registers 0 = Initiates the PFM write operation is complete and insetting						cation	
bit 0	RD: Read Co 1 = Initiates 0 = NVM rea	ntrol bit ⁽⁸⁾ a read at addr ad operation is	ess pointed by complete and	NVMREG and inactive	NVMADR, an	d loads data in	to NVMDAT
Note 1: 2: 3: 4: 5: 6: 7:	This can only be u This bit is set when completed succes Bit must be cleare Bit may be written This bit can only b Operations are set Once a write opera	sed with PFM. n WR = 1 and sfully. d by the user; to '1' by the us e set by follow lf-timed and the ation is initiated	clears when th hardware will r ser in order to i ing the unlock e WR bit is clea d, setting this b	e internal progr not clear this bit mplement test sequence of Se ared by hardwa it to zero will ha	amming timer sequences. ection 11.1.4 " re when comp ave no effect.	expires or the NVM Unlock a lete.	write is Sequence".

8: The bit can only be set in software. The bit is cleared by hardware when the operation is complete.

corresponding CRCXOR<15:0> bits with the value of

0x8004. The actual value is 0x8005 because the

hardware sets the LSb to 1. However, the LSb of the

CRCXORL register is unimplemented and always

reads as '0'. Refer to Example 13-1.

13.4 CRC Polynomial Implementation

Any polynomial can be used. The polynomial and accumulator sizes are determined by the PLEN<3:0> bits. For an n-bit accumulator, PLEN = n-1 and the corresponding polynomial is n+1 bits. Therefore, the accumulator can be any size up to 16 bits with a corresponding polynomial up to 17 bits. The MSb and LSb of the polynomial are always '1' which is forced by hardware. All polynomial bits between the MSb and LSb are specified by the CRCXOR registers. For example, when using CRC16-ANSI, the polynomial is defined as $X^{16}+X^{15}+X^2+1$. The X^{16} and $X^0 = 1$ terms are the MSb and LSb controlled by hardware. The X^{15} and X^2 terms are specified by setting the

13.5 CRC Data Sources

Data can be input to the CRC module in two ways:

- User data using the CRCDATA registers (CRCDATH and CRCDATL)
- Flash using the Program Memory Scanner

To set the number of bits of data, up to 16 bits, the DLEN bits of CRCCON1 must be set accordingly. Only data bits in CRCDATA registers up to DLEN will be used, other data bits in CRCDATA registers will be ignored.

Data is moved into the CRCSHIFT as an intermediate to calculate the check value located in the CRCACC registers.

The SHIFTM bit is used to determine the bit order of the data being shifted into the accumulator. If SHIFTM is not set, the data will be shifted in MSb first (Big Endian). The value of DLEN will determine the MSb. If SHIFTM bit is set, the data will be shifted into the accumulator in reversed order, LSb first (Little Endian).

The CRC module can be seeded with an initial value by setting the CRCACC<15:0> registers to the appropriate value before beginning the CRC.

13.5.1 CRC FROM USER DATA

To use the CRC module on data input from the user, the user must write the data to the CRCDAT registers. The data from the CRCDAT registers will be latched into the shift registers on any write to the CRCDATL register.

13.5.2 CRC FROM FLASH

To use the CRC module on data located in Flash memory, the user can initialize the Program Memory Scanner as defined in Section 13.9, Program Memory Scan Configuration.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplemen	ted: Read as '	כ'				
bit 5	TMR6IF: TMF	R6 to PR6 Mate	ch Interrupt Fla	ag bit	(thurse)		
	0 = No TMR6 to r	to PR6 match	occurred		ntware)		
bit 4	TMR5IF: TMF	R5 Overflow Int	errupt Flag bi	t			
	1 = TMR5 reg	ister overflowe	d (must be cl	eared in softwa	are)		
	0 = IMR5 reg	lister did not ov	verflow				
bit 3	TMR4IF: IMF 1 = TMR4 to F	R4 to PR4 Mate PR4 match occ	h Interrupt Fla urred (must b	ag bit le cleared in sc	oftware)		
	0 = No TMR4	to PR4 match	occurred		(itital c)		
bit 2	TMR3IF: TMF	R3 Overflow Int	errupt Flag bi	t			
	1 = TMR3 reg	ister overflowe	d (must be cl	eared in softwa	are)		
	0 = IMR3 reg	lister did not ov	rentiow				
bit 1	TMR2IF: IMF 1 = TMR2 to I	R2 to PR2 Mate PR2 match occ	h Interrupt Fla urred (must b	ag bit le cleared in sc	oftware)		
	0 = No TMR2	to PR2 match	occurred		(itware)		
bit 0	TMR1IF: TMF	R1 Overflow Int	errupt Flag bi	t			
	1 = TMR1 reg	ister overflowe	d (must be cl	eared in softwa	are)		
	0 = IMR1 reg	lister did not ov	retiow				

REGISTER 14-6: PIR4: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 4

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
SCANIF	CRCIF	NVMIF	_	_	—	—	CWG1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	ıown
bit 7	SCANIF: SCA	AN Interrupt Fla	ig bit				
	1 = SCAN inte	errupt has occu	rred (must be	cleared in sof	ftware)		
	0 = SCAN inte	errupt has not o	occurred or ha	is not been sta	arted		
bit 6	CRCIF: CRC	Interrupt Flag b	bit				
	1 = CRC inter	rupt has occuri	red (must be o	cleared in soft	ware)		
	0 = CRC inter	rupt has not oc	curred or has	not been star	ted		
bit 5	NVMIF: NVM	Interrupt Flag I	oit				
	1 = NVM inter	rrupt has occur	red (must be o	cleared in soft	ware)		
	0 = NVM inter	rrupt has not oc	curred or has	not been star	ted		
bit 4-1	Unimplemen	ted: Read as 'd)'				
bit 0	CWG1IF: CW	/G Interrupt Fla	g bit				
	1 = CWG inte 0 = CWG inte	rrupt has occur rrupt has not o	red (must be ccurred or has	cleared in soft s not been sta	ware) rted		

REGISTER 14-9: PIR7: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 7

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE
bit 7					·		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	TMR6IE: TMF	R6 to PR6 Mate	ch Interrupt Er	nable bit			
	1 = Enabled						
b :4 4				L :4			
DIL 4	1 = Enabled	R5 Overnow in	terrupt Enable				
	0 = Disabled						
bit 3	TMR4IE: TMF	R4 to PR4 Mate	ch Interrupt Er	nable bit			
	1 = Enabled						
h it 0				- L-14			
DIT 2	1 = Enabled	R3 Overnow In	terrupt Enable	DI			
	0 = Disabled						
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Er	nable bit			
	1 = Enabled						
	0 = Disabled						
bit 0	TMR1IE: TMF	R1 Overflow In	terrupt Enable	e bit			
	0 = Disabled						

REGISTER 14-14: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

Rev. 10.000 1988 5/30/2014	
MODE 0b00001	
TMRx_ers	
PRx 5	
$TMRx \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	
TMRx_postscaled	
PWM Duty 3 Cycle	

20.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

FIGURE 20-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

20.7 Register Definitions: Timer2/4/6 Control

Long bit name prefixes for the Timer2/4/6 peripherals are shown in Table 20-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information. **TABLE 20-2:**

Peripheral	Bit Name Prefix
Timer2	T2
Timer4	T4
Timer6	T6

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
TxON		CKPS<2:0>			OUTP	S<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re						
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	eared by hardv	vare				
bit 7	ON: Timerx	On bit ⁽¹⁾								
	1 = Timerx i	s on								
	0 = Timerx i	s off: all counte	rs and state m	achines are res	set					
bit 6-4	CKPS<2:0>	: Timerx-type C	lock Prescale	Select bits						
	111 = 1:128	8 Prescaler								
	110 = 1:64	Prescaler								
	101 = 1:32	Prescaler Prescaler								
	100 = 1.16 011 = 1.8 P	: 1:16 Prescaler								
	011 = 1.01	rescaler								
	001 = 1:2 P	Prescaler								
	000 = 1:1 P	Prescaler								
bit 3-0	OUTPS<3:0	>: Timerx Output	ut Postscaler S	Select bits						
	1111 = 1:16	6 Postscaler								
	1110 = 1:15	5 Postscaler								
	1101 = 1.14 1100 = 1.13	Postscaler								
	1011 = 1:12	2 Postscaler								
	1010 = 1:11	Postscaler								
	1001 = 1:10) Postscaler								
	1000 = 1:9	Postscaler								
	0111 = 1:8 Postscaler									
	0110 = 1:7	Postscaler								
	0101 = 1.6	Postscaler								
	0.000 = 1.3	Postscaler								
	0010 = 1:3	Postscaler								
	0001 = 1:2	Postscaler								
	0000 = 1:1	Postscaler								

REGISTER 20-1: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the TxON bit will be auto-cleared by hardware. See Section 20.5 "Operation Examples".

23.10 Register Definitions: ZCD Control

R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ZCDSEN	_	ZCDOUT	ZCDPOL	_	_	ZCDINTP	ZCDINTN	
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	ZCDSEN: Zer This bit is igno 1= Zero-cro 0= Zero-cro	ro-Cross Detect pred when ZCI ss detect is en ss detect is dis	t Software Er DSEN fuse is abled. ZCD p sabled. ZCD p	able bit set. in is forced to o in operates ac	output to sourc	e and sink curres and TRIS cont	ent. rols.	
bit 6	Unimplement	ted: Read as '	0'	-	-			
bit 5	ZCDOUT : Zero-Cross Detect Data Output bit							
	$\frac{ZCDPOL \text{ bit } = 0:}{1 = ZCD \text{ pin is sinking current}}$ $0 = ZCD \text{ pin is sourcing current}$ $\frac{ZCDPOL \text{ bit } = 1:}{1 = ZCD \text{ pin is sourcing current}}$ $0 = ZCD \text{ pin is sinking current}$							
bit 4	ZCDPOL: Zer	o-Cross Detec	t Polarity bit					
	1 = ZCD logic 0 = ZCD logic	output is inver output is not i	ted nverted					
bit 3-2	Unimplement	ted: Read as '	0'					
bit 1	ZCDINTP: Ze 1 = ZCDIF bit 0 = ZCDIF bit	ro-Cross Deter is set on low-t is unaffected b	ct Positive-Go o-high ZCD_c oy low-to-high	ning Edge Inter output transition ZCD_output ti	rupt Enable bit า ransition			
bit 0	ZCDINTN: Ze 1 = ZCDIF bit 0 = ZCDIF bit	ro-Cross Deters is set on high- is unaffected to	ct Negative-G to-low ZCD_c by high-to-low	oing Edge Inte output transition ZCD_output tr	rrupt Enable bi า ransition	it		

REGISTER 23-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

FIGURE 24-15: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (REN = 0, LSAC = 01, LSBD = 01)

31.5.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the ADCNT value is greater than or equal to ADRPT, even if Continuous Sampling mode (see **Section 31.5.8 "Continuous Sampling mode"**) is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

31.5.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until ADCNT value greater than or equal to ADRPT, then triggers threshold comparison), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 31-3 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 31-4).

31.5.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 31-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint
- The result of the calculation (ADERR) is compared to the upper and lower thresholds, ADUTH<ADUTHH:ADUTHL> and ADLTH<ADLTHH:ADLTHL> registers, to set the ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:
 - Never interrupt
 - Error is less than lower threshold
 - Error is greater than or equal to lower threshold
 - Error is between thresholds (inclusive)
 - Error is outside of thresholds
 - Error is less than or equal to upper threshold
 - Error is greater than upper threshold
 - Always interrupt regardless of threshold test results
 - If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1: The threshold tests are signed operations.2: If ADAOV is set, a threshold interrupt is

 If ADAOV is set, a threshold interrupt is signaled.

REGISTER 31-4:	ADCON3: ADC CONTROL REGISTER 3
----------------	--------------------------------

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
-		ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0
Legend:							

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

	Action During			
ADCALC	ADDSEN = 0 Single-Sample Mode	ADDSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application	
111	Reserved Reserved F		Reserved	
110	Reserved	Reserved	Reserved	
101	ADLFTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint	
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)	
011	Reserved	Reserved	Reserved	
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value	
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint	
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾	
			Actual CVD result in CVD mode ⁽²⁾	

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

- 1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
- 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
- 110 = Interrupt if ADERR>ADUTH
- 101 = Interrupt if ADERR≤ADUTH
- 100 = Interrupt if ADERR<ADLTH or ADERR>ADUTH
- 011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
- 010 = Interrupt if ADERR≥ADLTH
- 001 = Interrupt if ADERR<ADLTH
- 000 = Never interrupt
- Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 31-3.
 - 2: When ADPSIS = 0
 - 3: When ADPSIS = 1.

PIC18(L)F24/25K40

BTG	Bit Toggle f		BOV	BOV		Branch if Overflow			
Syntax:	BTG f, b {,a}		Synta	ax:	BOV n				
Operands:	ds: $0 \le f \le 255$		Oper	Operands:		$-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]		Oper	ation:	if OVERFLOW bit is '1' (PC) + 2 + 2n \rightarrow PC				
Operation: $(\overline{f^{}}) \rightarrow f^{}$			Statu	Status Affected: None					
Status Affected: None			Enco	Encoding:		0100	nnnn	nnnn	
Encoding: 0111 bbba ffff ffff		Desc	Description:		RFLOW hit i	is '1' th	en the		
Description.	Bit 'b' in data memory location 'f' is inverted. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-		Word Cycle Q C	Words: Cycles: Q Cycle Activity:		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)			
Mordo			cialis.	If Ju	mp:	02	02		04
Wolus.	1				Decode	Read literal	Process	Wr	ite to PC
	I				Debbac	'n'	Data		
	02	02	04		No	No	No		No
Decode	Read	Process	Write	16.51	operation	operation	operation	n op	peration
Doodd	register 'f'	Data	register 'f'	IT NO	o Jump:	00	00		04
					Decode	Q2 Read literal	Q3 Process		Q4 No
Example:	BTG P	ORTC, 4, (0		Decoue	'n'	Data	, ot	peration
Before Instruction: PORTC = 0111 0101 [75h] After Instruction: PORTC = 0110 0101 [65h]		<u>Exan</u>	nple: Before Instruct PC After Instructio	HERE ction = ac on ELOW = 1:	BOV Ju	mp RE)			
					If OVERI PC If OVERI PC	FLOW = 0; = ac	dress (Jui	mp) RE + 2	2)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch			0.65 BSC			
Optional Center Pad Width	W2			4.25		
Optional Center Pad Length	T2			4.25		
Contact Pad Spacing	C1		5.70			
Contact Pad Spacing	C2		5.70			
Contact Pad Width (X28)	X1			0.37		
Contact Pad Length (X28)	Y1			1.00		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A