

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k40-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES

Features	PIC18(L)F24K40	PIC18(L)F25K40			
Program Memory (Bytes)	16384	32768			
Program Memory (Instructions)	8192	16384			
Data Memory (Bytes)	1024	2048			
Data EEPROM Memory (Bytes)	256	256			
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,E ⁽¹⁾			
Capture/Compare/PWM Modules (CCP)	2	2			
10-Bit Pulse-Width Modulator (PWM)	2	2			
10-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	4 internal 24 external	4 internal 24 external			
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN			
Interrupt Sources	3	36			
Timers (16-/8-bit)	4/3				
Serial Communications	1 MSSP, 1 EUSART				
Enhanced Complementary Waveform Generator (ECWG)	1				
Zero-Cross Detect (ZCD)	1				
Data Signal Modulator (DSM)		1			
Peripheral Pin Select (PPS)	Yes				
Peripheral Module Disable (PMD)	Yes				
16-bit CRC with NVMSCAN	Y	es			
Programmable High/Low-Voltage Detect (HLVD)	Y	es			
Programmable Brown-out Reset (BOR)	Y	es			
Resets (and Delays)	POR, RESET Ir Stack C Stack U (PWRT MCLF	BOR, hstruction, overflow, nderflow T, OST), R, WDT			
Instruction Set	75 Instr 83 with Extended Inst	ructions; struction Set enabled			
Operating Frequency	DC – 64 MHz				

Note 1: PORTE contains the single RE3 input-only pin.

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE	<1:0>			WDTCPS<4:0	>	
bit 7			<u>.</u>				bit 0

Legend: R = Readable bit W = Writable bit U = Unir

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		Coffeenan Company			
WDTCPS	Value	Divider Ra	tio	Typical Time Out (Fɪn = 31 kHz)	of WDTPS?
11111	01011	1:65536	2 ¹⁶	2s	Yes
10011	10011		_		
 11110	 11110	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256s	
10001	10001	1:4194304	2 ²²	128s	
10000	10000	1:2097152	2 ²¹	64s	
01111	01111	1:1048576	2 ²⁰	32s	
01110	01110	1:524299	2 ¹⁹	16s	
01101	01101	1:262144	2 ¹⁸	8s	
01100	01100	1:131072	2 ¹⁷	4s	
01011	01011	1:65536	2 ¹⁶	2s	
01010	01010	1:32768	2 ¹⁵	1s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms	
00011	00011	1:256	1:256 2 ⁸		
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

4.3.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 4.4 "Clock Switching"** for more information.

FIGURE 4-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

4.3.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 4.4 "Clock Switching" for more information.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates from 1 to 64 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

4.3.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 64 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (Fosc = 1 MHz) or '000' (Fosc = 64 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4 "Clock Switching" for more information.

The HFINTOSC frequency can be selected by setting the HFFRQ<3:0> bits of the OSCFRQ register.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

4.3.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

4.3.2.3 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 4-3).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE **does not affect** the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), WWDT, Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

4.3.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Windowed Watchdog Timer (WWDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time. See Section 4.4, Clock Switching for more information.

4.3.2.5 ADCRC

The ADCRC is an oscillator dedicated to the ADC^2 module. The ADCRC oscillator can be manually enabled using the ADOEN bit of the OSCEN register. The ADCRC runs at a fixed frequency of 600 kHz. ADCRC is automatically enabled if it is selected as the clock source for the ADC^2 module.

7.5 Register Definitions: Peripheral Module Disable

		•••••••••••••••••••••••••••••••••••••••					
R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCM	D FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7							0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
u = Bit is ι	unchanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BC	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared	q = Value dep	ends on condi	tion	
bit 7	SYSCMD: Di See descripti 1 = System 0 = System	isable Peripheration in Section 7 clock network di clock network e	al System Cloc .4 "System C isabled (Fosc nabled	ck Network bit ⁽¹⁾ : lock Disable" .)			
bit 6	FVRMD: Disa 1 = FVR mo 0 = FVR mo	able Fixed Volta dule disabled dule enabled	ige Reference	bit			
bit 5	HLVDMD:Di 1 = HLVD m 0 = HLVD m	isable Low-Volta nodule disabled nodule enabled	age Detect bit				
bit 4	CRCMD: Dis 1 = CRC mc 0 = CRC mc	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	SCANMD : D 1 = NVM M 0 = NVM M	isable NVM Me emory Scan mo emory Scan mo	mory Scanner dule disabled dule enabled	bit ⁽²⁾			
bit 2	NVMMD: NV 1 = All Mem 0 = NVM mo	M Module Disal ory reading and odule enabled	ble bit ⁽³⁾ writing is disa	bled; NVMCON	registers canr	not be written	
bit 1	CLKRMD: D 1 = CLKR m 0 = CLKR m	isable Clock Re odule disabled odule enabled	ference bit				
bit 0	IOCMD: Disa 1 = IOC mod 0 = IOC mod	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, <i>I</i>	All Ports			
Note 1:	Clearing the SYS	SCMD bit disable of affected.	es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F26h to	_		I		Unimpl	emented				_
F22h F21h	ANSELC	ANSEL C7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSEL CO	11111111
F20h	WPLIC	WPLIC7	WPLIC6	WPLIC5	WPLIC4	WPLIC3	WPUC2	WPLIC1	WPLICO	00000000
F1Eb		00007					00002			00000000
F1Eb	SLRCONC	SLRC7	SLRC6	SLRC5	SI RC4	SLRC3	SLRC2	SLRC1	SLRCO	11111111
F1Db				INLVI C5		INLVI C3	INLVI C2			11111111
F1Ch	IOCCP	IOCCP7	IOCCP6	IOCCP5		IOCCP3	IOCCP2	IOCCP1	IOCCPO	00000000
F1Bh	IOCCN			IOCCN5	IOCCN4	IOCCN3	IOCCN2			00000000
F1Ah	IOCCE	IOCCE7	IOCCE6	IOCCE5		IOCCE3	IOCCE2	IOCCE1	IOCCEO	00000000
F10h				ANSEL B5						11111111
F18h	WPUB	WPUB7	WPUB6	WPLIB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
F17b		ODCB7	ODCB6	ODCB5		ODCB3		ODCB1		00000000
F16h	SLRCONB	SI RB7	SI RB6	SI RB5	SI RB4	SI RB3	SI RB2	SI RB1	SI RB0	11111111
F15h			INI VI B6	INI VI B5		INI VI B3	INI VI B2		INI VI BO	11111111
F14h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBPO	00000000
E12b										00000000
F12h	IOCBE	IOCBE7	IOCBE6	IOCBE5		IOCBE3	IOCBINZ	IOCBE1	IOCBEO	00000000
E11b										11111111
F10b		WDUA7	WPUA6	WPLIA5	WPI IA/	WPI IA3	WPI IA2		WPUAD	00000000
FOEb										00000000
FOEb		SI DA7	SLDAG	SIDAS	SI DA4	SI DA3	SI DA2	SI DA1	SLRAD	11111111
FODh										11111111
FODI										11111111
			IOCANG							00000000
FUBN										00000000
FUAN	IUCAF	IUCAF7	IUCAF6	IUCAF5	IUCAF4	IUCAF3	IUCAF2	IUCAF1	IUCAFU	00000000
to EFFh	—				Unimpl	emented				—
EFEh	RC7PPS	_	_	—			RC7PPS<4:0>			00000
EFDh	RC6PPS	—	—	—			RC6PPS<4:0>			00000
EFCh	RC5PPS	—	—	—			RC5PPS<4:0>			00000
EFBh	RC4PPS	—	—	—			RC4PPS<4:0>			00000
EFAh	RC3PPS	—	—	—			RC3PPS<4:0>			00000
EF9h	RC2PPS	—	—	—			RC2PPS<4:0>			00000
EF8h	RC1PPS	—	—	—			RC1PPS<4:0>			00000
EF7h	RCOPPS	_	_	_			RC0PPS<4:0>			00000
EF6h	RB7PPS	—	—	—			RB7PPS<4:0>			00000
EF5h	RB6PPS	—	—	—			RB6PPS<4:0>			00000
EF4h	RB5PPS	—	—	—			RB5PPS<4:0>			00000
EF3h	RB4PPS	_	_	_			RB4PPS<4:0>			00000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
EB1h	CWGINPPS	—	—	—		(CWGINPPS<4:0)>		01000
EB0h	CCP2PPS	—	—	—			CCP2PPS<4:0	>		10001
EAFh	CCP1PPS	—	—	—			CCP1PPS<4:0	>		10010
EAEh	ADACTPPS	—	—	—		A	ADACTPPS<4:0	>		01100
EADh	T6INPPS	—	—	—			T6INPPS<4:0>	•		01111
EACh	T4INPPS	—	—	—			T4INPPS<4:0>	•		10101
EABh	T2INPPS	—	_	—			T2INPPS<4:0>			10011
EAAh	T5GPPS	—	—	—			T5GPPS<4:0>			01100
EA9h	T5CKIPPS	—	—	—			T5CKIPPS<4:0	>		10010
EA8h	T3GPPS	_	—	—			T3GPPS<4:0>			10000
EA7h	T3CKIPPS	_	—	—			T3CKIPPS<4:0	>		10000
EA6h	T1GPPS	_	—	—			T1GPPS<4:0>			01101
EA5h	T1CKIPPS	-	—	—			T1CKIPPS<4:0	>		10000
EA4h	TOCKIPPS	—	—	—			T0CKIPPS<4:0	>		0100
EA3h	INT2PPS	_	—	—			INT2PPS<4:0>			01010
EA2h	INT1PPS	—	—	—			INT1PPS<4:0>			01001
EA1h	INTOPPS	_	—	—			INT0PPS<4:0>			01000
EA0h	PPSLOCK	—	—	—	—	— — — PPSLOCKED				
E9Fh to E7Eh	_	Unimplemented								

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

Example	Operation on Table Pointer						
TBLRD* TBLWT*	TBLPTR is not modified						
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write						
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write						
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write						

TABLE 11-3: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

FIGURE 11-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

11.1.6.2 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. Since program memory is stored as a full page, the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-10: PROGRAM FLASH MEMORY VERIFY FLOWCHART

11.1.6.3 Unexpected Termination of Write Operation

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

11.1.6.4 Protection Against Spurious Writes

A write sequence is valid only when both the following conditions are met, this prevents spurious writes which might lead to data corruption.

- The WR bit is gated through the WREN bit. It is suggested to have the WREN bit cleared at all times except during memory writes. This prevents memory writes if the WR bit gets set accidentally.
- 2. The NVM unlock sequence must be performed each time before a write operation.

11.2 User ID, Device ID and Configuration Word Access

When NVMREG<1:0> = 0x01 or 0x11 in the NVMCON1 register, the User ID's, Device ID/ Revision ID and Configuration Words can be accessed. Different access may exist for reads and writes (see Table 11-3).

11.2.1 Reading Access

The user can read from these blocks by setting the NVMREG bits to 0x01 or 0x11. The user needs to load the address into the TBLPTR registers. Executing a TBLRD after that moves the byte pointed to the TAB-LAT register. The CPU operation is suspended during the read and resumes after. When read access is initiated on an address outside the parameters listed in Table 11-3, the TABLAT register is cleared, reading back '0's.

11.2.2 Writing Access

The WREN bit in NVMCON1 must be set to enable writes. This prevents accidental writes to the CONFIG words due to errant (unexpected) code execution. The WREN bit should be kept clear at all times, except when updating the CONFIG words. The WREN bit is not cleared by hardware. The WR bit will be inhibited from being set unless the WREN bit is set.

REGISTER 11-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
NVMDAT<7:0>												
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'						
x = Bit is unkno	own	'0' = Bit is clea	ared	'1' = Bit is set								
-n = Value at P	POR											

bit 7-0 **NVMDAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
NVMCON1	NVMRE	G<1:0>	_	FREE	WRERR	WREN	WR	RD	141			
NVMCON2	Unlock Pattern											
NVMADRL	NVMADR<7:0>											
NVMADRH ⁽¹⁾	—	_	_	—	—	—	NVMA	DR<9:8>	142			
NVMDAT				NVME)AT<7:0>				143			
TBLPTRU	—	_		Program N	lemory Table	Pointer (TBL	PTR<21:16>)		123*			
TBLPTRH			Program N	lemory Table	e Pointer (TBI	LPTR<15:8>)			123*			
TBLPTRL			Program I	Memory Table	e Pointer (TB	SLPTR<7:0>)			123*			
TABLAT				TA	BLAT				122*			
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	166			
PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	182			
PIR7	SCANIF	CRCIF	NVMIF	_	_	—	_	CWG1IF	174			
IPR7	SCANIP	CRCIP	NVMIP	_	_	_		CWG1IP	190			

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K40.

20.5.6 EDGE-TRIGGERED ONE-SHOT MODE

The Edge-Triggered One-Shot modes start the timer on an edge from the external signal input, after the ON bit is set, and clear the ON bit when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 01001)
- Falling edge (MODE<4:0> = 01010)
- Rising or Falling edge (MODE<4:0> = 01011)

If the timer is halted by clearing the ON bit then another TMRx_ers edge is required after the ON bit is set to resume counting. Figure 20-9 illustrates operation in the rising edge One-Shot mode.

When Edge-Triggered One-Shot mode is used in conjunction with the CCP then the edge-trigger will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated when the timer halts at the PRx period count match.

FIGURE 20-9: EDGE-TRIGGERED ONE-SHOT MODE TIMING DIAGRAM (MODE = 01001)

MODE	0b01001
TMRx_clk	
PRx	5
Instruction ⁽¹⁾ —	
ON	
TMRx_ers	
TMRx	$0 \qquad 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2$
CCP_pset	
TMRx_postscaled	
PWM Duty	3
PWM Output	

20.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 20-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

REGISTER 20-3: TxCLKCON: TIMERx CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		CS<	3:0>	
bit 7							bit 0

Legend:			
R = Readable	e bit W =	Writable bit	U = Unimplemented bit, read as '0'
u = Bit is uncl	hanged x =	Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	·0' =	Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CS<3:0>: Timerx Clock Selection bits

CS<3:0>	TMR2	TMR4	TMR6	
	Clock Source	Clock Source	Clock Source	
1111-1001	Reserved	Reserved	Reserved	
1000	ZCD_OUT	ZCD_OUT	ZCD_OUT	
0111	CLKREF_OUT	CLKREF_OUT	CLKREF_OUT	
0110	SOSC	SOSC	SOSC	
0101	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)	
0100	LFINTOSC	LFINTOSC	LFINTOSC	
0011	HFINTOSC	HFINTOSC	HFINTOSC	
0010	Fosc	Fosc	Fosc	
0001	Fosc/4	Fosc/4	Fosc/4	
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS	

PIC18(L)F24/25K40

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 27-1, Register 27-2 and Register 27-3, respectively.

The RXx/DTx and TXx/CKx input pins are selected with the RXxPPS and TXxPPS registers, respectively. TXx, CKx, and DTx output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

30.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DAC1CON0 register.

-000026F 8/7/2015 Reserved 11 VSOURCE+ DACR<4:0> FVR Buffer 5 10 R VREF+ 01 AVDD 00 R DACPSS R R 32-to-1 MUX DACx_output 32 To Peripherals Steps . . DACEN R DACxOUT1⁽¹⁾ R DACOE1 R DACxOUT2⁽¹⁾ **VREF-**1 VSOURCE-DACOE2 0 AVss DACNSS Note 1: The unbuffered DACx output is provided on the DACxOUT pin(s).

FIGURE 30-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

31.0 ANALOG-TO-DIGITAL CONVERTER WITH COMPUTATION (ADC²) MODULE

The Analog-to-Digital Converter with Computation (ADC²) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair).

Additionally, the following features are provided within the ADC module:

- 8-bit Acquisition Timer
- Hardware Capacitive Voltage Divider (CVD) support:
 - 8-bit precharge timer
 - Adjustable sample and hold capacitor array
- Guard ring digital output drive
- · Automatic repeat and sequencing:
 - Automated double sample conversion for CVD
 - Two sets of result registers (Result and Previous result)
 - Auto-conversion trigger
 - Internal retrigger
- Computation features:
 - Averaging and low-pass filter functions
 - Reference comparison
 - 2-level threshold comparison
 - Selectable interrupts

Figure 31-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion and upon threshold comparison. These interrupts can be used to wake-up the device from Sleep.

TABLE 31-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4)

ADC Clock Period (TAD)		Device Frequency (Fosc)							
ADC Clock Source	ADCS<5:0>	64 MHz	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000000	31.25 ns ⁽²⁾	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	000001	62.5 ns ⁽²⁾	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/6	000010	125 ns ⁽²⁾	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs	
Fosc/8	000011	187.5 ns ⁽²⁾	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	000100	250 ns ⁽²⁾	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/128	111111	2.0 μs	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾	
FRC	ADCS(ADCON0<4>) = 1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

- **3:** Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

31.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 31-6 shows the basic block diagram of the CVD portion of the ADC module.

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min. Typ† Max. Uni		Units	Conditions			
Data EEPROM Memory Specifications									
MEM20	E _D	DataEE Byte Endurance	100k	—	—	E/W	$-40^\circ C \leq T A \leq +85^\circ C$		
MEM21	T _{D_RET}	Characteristic Retention		40	_	Year	Provided no other specifications are violated		
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —		E/W	$\begin{array}{l} -40^\circ C \leq T_A \leq +60^\circ C \\ -40^\circ C \leq T_A \leq +85^\circ C \end{array}$		
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN	—	VDDMAX	V			
MEM24	$T_{D_{BEW}}$	Byte Erase and Write Cycle Time	_	4.0	5.0	ms			
Program	n Flash Me	emory Specifications							
MEM30	E _P	Flash Memory Cell Endurance	10k	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)		
MEM32	T _{P_RET}	Characteristic Retention		40	_	Year	Provided no other specifications are violated		
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN	—	VDDMAX	V			
MEM34	V _{P_REW}	VDD for Row Erase or Write operation	VDDMIN	_	VDDMAX	V			
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	_	2.0	2.5	ms			

TABLE 37-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX			
Number of Pins	28						
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B