

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k40-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	
—	COSC<2:0> CDIV<3:0>							
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ired	q = Reset value is determined by hardware				

	REGISTER 4-2:	OSCCON2: OSCILLATOR CONTROL REGISTER 2
--	---------------	--

bit 7	Unimplemented: Read as '0'
	ommplemented. Road as 0
	-

bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ^(1,2)					
	Indicates the current source oscillator and PLL combination per Table 4-2.					

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only)^(1,2) Indicates the current postscaler division ratio per Table 4-2.

2: The Reset value (q/q) is the same as the NOSC/NDIV bits.

TABLE 4-2: NOSC/COSC AND NDIV/CDIV BIT SETTINGS

NOSC<2:0> COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved
010	EXTOSC + 4x PLL ⁽³⁾
001	Reserved
000	Reserved

NDIV<3:0> CDIV<3:0>	Clock Divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 3-1).

2: HFINTOSC frequency is set with the HFFRQ bits of the OSCFRQ register (Register 4-5).

3: EXTOSC must meet the PLL specifications (Table 37-9).

Note 1: The POR value is the value present when user code execution begins.

8.2 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-0/u	R/W/HC-q/u	
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	
bit 7	•		•			•	bit 0	
Legend:								
HC = Bit is cleared by hardware HS = Bit is set by hardware								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other I						other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion		
bit 7	STKOVF: Sta 1 = A Stack 0 = A Stack	ack Overflow Fl Overflow occu Overflow has r	ag bit rred (more CA not occurred o	LLs than fit on r set to '0' by fi	the stack) rmware			
bit 6	STKUNF: Sta	ack Underflow F	-lag bit					
	1 = A Stack 0 = A Stack	 Underflow occ Underflow has 	curred (more not occurred	RETURNS than or set to '0' by	CALLS) r firmware			
bit 5	WDTWV: Wa	tchdog Windov	Violation bit					
	1 = A WDT 0 = A CLRWI when a	window violatio or instruction w WDT window v	on has not occ vas issued whe riolation Reset	urred or set to en the WDT Re occurs)	'1' by firmware set window was	closed (set to '	0' in hardware	
bit 4	RWDT: WDT	Reset Flag bit						
	1 = A WDT $0 = A WDT$	overflow/time-c overflow/time-c	out Reset has out Reset has	not occurred o occurred (set to	r set to '1' by fir o '0' in hardware	mware e when a WDT	Reset occurs)	
bit 3	RMCLR: MCI	LR Reset Flag	bit					
	$1 = A \frac{MCLF}{MCLF}$	Reset has no Reset has oc	t occurred or s curred (set to	et to '1' by firm 0' in hardware	ware when a MCLR	Reset occurs)		
bit 2	RI: RESET INS	struction Flag b	it					
	1 = A RESET 0 = A RESE instruction	r instruction ha r instruction h on)	is not been ex nas been exe	ecuted or set tecuted (set to	oʻ1'by firmwar ʻ0'in hardwar	e e upon execu	ting a RESET	
bit 1	POR: Power-	on Reset Statu	s bit					
	1 = No Pow 0 = A Powe	er-on Reset oc r-on Reset occ	curred or set t urred (set to 'd	oʻ1' by firmwa)' in hardware v	re when a Power-o	on Reset occur	rs)	
bit 0	BOR: Brown-	out Reset State	us bit					
	1 = No Brow 0 = A Brown	vn-out Reset or n-out Reset occ	ccurred or set curred (set to '	to '1' by firmwa 0' in hardware	are when a Brown-	out Reset occu	urs)	

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

9.7 Operation During Sleep

When the device enters Sleep, the WWDT is cleared. If the WWDT is enabled during Sleep, the WWDT resumes counting. When the device exits Sleep, the WWDT is cleared again.

The WWDT remains clear until the Oscillator Start-up Timer (OST) completes, if enabled. See **Section 4.3.1.3 "Oscillator Start-up Timer (OST)**" for more information on the OST.

When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON0 register can also be used. See **Section 10.0 "Memory Organization"** for more information.

TABLE 9-2: WWDT CLEARING CONDITIONS

Conditions	WWDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

FIGURE 9-2: WINDOW PERIOD AND DELAY

© 2016-2017 Microchip Technology Inc.

13.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE WITH MEMORY SCANNER

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for communication CRC's

13.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using a scanner.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSCFIE	CSWIE	—	—		—	ADTIE	ADIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 bit 6	OSCFIE: Osc 1 = Enabled 0 = Disabled CSWIE: Clock 1 = Enabled 0 = Disabled	illator Fail Inter	rupt Enable b upt Enable bit	it			
bit 5-2	Unimplement	ted: Read as '	כ'				
bit 1	ADTIE: ADC 1 = Enabled 0 = Disabled	Threshold Inte	rrupt Enable b	it			
bit 0	ADIE: ADC In 1 = Enabled 0 = Disabled	iterrupt Enable	bit				

REGISTER 14-11: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1
—	—	RC1IP	TX1IP	_	—	BCL1IP	SSP1IP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplement	ted: Read as '	0'				
bit 5	RC1IP: EUSA	RT1 Receive	nterrupt Prior	ity bit			
	1 = High prior	rity					
	0 = Low prior	rity					
bit 4	TX1IP: EUSA	RT1 Transmit	Interrupt Prior	ity bit			
	1 = High prior	rity					
	0 = Low prior	nty	- 1				
bit 3-2	Unimplement	ted: Read as '	0'				
bit 1	BCL1IP: MSSP1 Bus Collision Interrupt Priority bit						
	1 = High prior	rity					
	0 = Low prior	ity					
bit 0	SSP1IP: Sync	chronous Seria	I Port 1 Interr	upt Priority bit			
	1 = High prior	rity					
	0 = Low prior	ity					

REGISTER 14-21: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
'1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
-n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 15-8: INLVLx: INPUT LEVEL CONTROL REGISTER

bit 7-0

- INLVLx<7:0>: Input Level Select on Pins Rx<7:0>, respectively
- 1 = ST input used for port reads and interrupt-on-change
- 0 = TTL input used for port reads and interrupt-on-change

TABLE 15-9: INPUT LEVEL PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLE	—	_	_	_	INLVLE3	_	_	_

Note 1: Pins read the I^2C ST inputs when MSSP inputs select these pins, and I^2C mode is enabled.

Mode		<4:0>	Output	Oneration	Timer Control			
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 20-4)	ON = 1		ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1	
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	ON = 0	
Period	00	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑		
		101	Pulse	Falling edge Reset		TMRx_ers ↓		
		110	With Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Resel	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 20-8)	ON = 1	_		
		001	Edge triggered start	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_		
	01	010		Falling edge start	ON = 1 and TMRx_ers ↓	—	ON = 0 or Next clock after TMRx = PRx (Note 2)	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_		
One-shot		100	Edge triggered start and hardware Reset (Note 1)	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑		
		101		Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓		
		110		Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0		
		111		Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	rved			
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or	
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)	
Reserved	10	100		•				
Reserved		101		Rese	rved			
		110	L10 Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)	
Reserved	11	xxx	Reserved					

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

20.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 20-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

REGISTER 26-11: SSPxADD: MSSP ADDRESS REGISTER (I²C MASTER MODE)

Master mode: |²C mode

bit 7-0	Baud Rate Clock Divider bits ⁽¹⁾
	SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a don't care. Bit pattern sent by master is fixed by I²C specification and must be equal to, '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<9:8>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a don't care.

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

bit 7-1	7-bit Slave Addres
DIL 7 - I	7-bit Slave Addres

bit 0 Not used: Unused in this mode. Bit state is a don't care.

Note 1: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

REGISTER 26-12: SSPxMSK: MSSPx ADDRESS MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			MSK<7:1>				MSK0
bit 7							bit 0
Leaend:							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1	MSK<7:1>: Mask bits
	1 = The received address bit n is compared to SSPxADDn to detect I ² C address match
	0 = The received address bit n is not used to detect I ² C address match
bit 0	MSK0: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPxADD0 to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored.

26.10.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 26-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

26.10.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 26-28).

FIGURE 26-27: REPEATED START CONDITION WAVEFORM

28.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

28.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 31.0 "Analog-to-Digital Converter with Computation (ADC2) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference **Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module**" and **Section 32.0 "Comparator Module**" for additional information.

28.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.

FIGURE 28-1: VOLTAGE REFERENCE BLOCK DIAGRAM

31.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1: T	The ADIF bit is set at the completion of
e	every conversion, regardless of whether
o	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine.

31.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bits of the ADCON0 register controls the output format.

Figure 31-3 shows the two output formats.

FIGURE 31-3: 10-BIT ADC CONVERSION RESULT FORMAT

31.5 Computation Operation

The ADC module hardware is equipped with post conversion computation features. These features provide data post-processing functions that can be operated on the ADC conversion result, including digital filtering/averaging and threshold comparison functions.

FIGURE 31-11: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is controlled by ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• **Basic**: This is a legacy mode. In this mode, ADC conversion occurs on single (ADDSEN = 0) or double (ADDSEN = 1) samples. ADIF is set after all the conversion are complete.

• Accumulate: With each trigger, the ADC conversion result is added to accumulator and ADCNT increments. ADIF is set after each conversion. ADTIF is set according to the calculation mode.

• Average: With each trigger, the ADC conversion result is added to the accumulator. When the ADRPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the accumulator is cleared. For the subsequent tests, additional ADRPT samples are required to be accumulated.

• **Burst Average**: At the trigger, the accumulator is cleared. The ADC conversion results are then collected repetitively until ADRPT samples are accumulated and finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC conversion result is sent through a filter. When ADRPT samples have occurred, a threshold test is performed. Every trigger after that the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in Table 31-3 below.

© 2016-2017 Microchip Technology Inc.

31.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide register which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the ADGO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated value exceeds $2^{(accumulator_width)} = 2^{16} = 65535$, the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once ADRPT samples are accumulated (ADCNT = ADRPT), an accumulator clear command can be issued by the software by setting the ADACLR bit in the ADCON2 register. Setting the ADACLR bit will also clear the ADAOV (Accumulator overflow) bit in the ADSTAT register, as well as the ADCNT register. The ADACLR bit is cleared by the hardware when accumulator clearing action is complete.

Note: When ADC is operating from FRC, five FRC clock cycles are required to execute the ADACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine number of samples for averaging. For the Low-pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 31-4 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TABLE 31-4:	LOW-PASS FILTER -3 dB CUT-OFF FREQUENCY
-	

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

31.5.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

31.5.3 ACCUMULATE MODE

In Accumulate mode (ADMD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the ADCRS bits in the ADCON2 register. This right-shifted value is copied in to the ADFLT register. The Formatting mode does not affect the right-justification of the ADACC value. Upon each sample, ADCNT is also incremented, incrementing the number of samples accumulated. After each sample and accumulation, the ADACC value has a threshold comparison performed on it (see Section 31.5.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

31.5.4 AVERAGE MODE

In Average Mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. The ADFLT register is also updated with the right-shifted value of the ADACC register. The value of the ADCRS bits governs the number of right shifts. However, in Average mode, the threshold comparison is performed upon ADCNT being greater than or equal to a user-defined ADRPT value. In this mode when ADRPT = 2^ADCNT, then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

33.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 33-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 33-1:

Peripheral	Bit Name Prefix	
HLVD	HLVD	

REGISTER 33-1: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
—	_	_		SEL<3:0>					
bit 7							bit 0		

Legend:			
R = Readable bit	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits

SEL<3:0>	Typical Voltage
1111	Reserved
1110	4.63V
1101	4.32V
1100	4.12V
1011	3.91V
1010	3.71V
1001	3.60V
1000	3.4V
0111	3.09V
0110	2.88V
0101	2.78V
0100	2.57V
0011	2.47V
0010	2.26V
0001	2.06V
0000	1.85V

TABLE 37-15: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	_	_	±30	mV	VICM = VDD/2	
CM02	VICM	Input Common Mode Range	GND	_	Vdd	V		
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	_	dB		
CM04	VHYST	Comparator Hysteresis	10	25	40	mV		
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	—	300	600	ns		
		Response Time, Falling Edge	_	220	500	ns		

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-16: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
DSB01	VLSB	Step Size		(VDACREF+ -VDACREF-) / 32		V			
DSB01	VACC	Absolute Accuracy		—	± 0.5	LSb			
DSB03*	RUNIT	Unit Resistor Value	-	5000	_	Ω			
DSB04*	Тѕт	Settling Time ⁽¹⁾	—		10	μS			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 37-17: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
FVR01	VFVR1	1x Gain (1.024V)	-4	—	+4	%	VDD $\ge 2.5V$, -40°C to 85°C	
FVR02	VFVR2	2x Gain (2.048V)	-4	—	+4	%	VDD \ge 2.5V, -40°C to 85°C	
FVR03	VFVR4	4x Gain (4.096V)	-5	—	+5	%	VDD $\geq 4.75V,$ -40°C to 85°C	
FVR04	TFVRST	FVR Start-up Time	_	25		us		

TABLE 37-18: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min	Тур†	Max	Units	Comments	
ZC01	VPINZC	Voltage on Zero Cross Pin	_	0.75	_	V		
ZC02	IZCD_MAX	Maximum source or sink current		_	600	μA		
ZC03	TRESPH	Response Time, Rising Edge	_	1	_	μS		
	TRESPL	Response Time, Falling Edge	_	1	_	μS		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Contact Pitch E			
Contact Pad Spacing	С			
Contact Pad Width (X28) X				0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads		7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2016-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1641-8