
Microchip Technology - PIC18F25K40T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (16K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 35x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k40t-i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f25k40t-i-so-4401255
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F24/25K40
5.0 REFERENCE CLOCK OUTPUT
MODULE

The reference clock output module provides the ability
to send a clock signal to the clock reference output pin
(CLKR). The reference clock output can also be used
as a signal for other peripherals, such as the Data
Signal Modulator (DSM), Memory Scanner and Timer
module.

The reference clock output module has the following
features:

• Selectable clock source using the CLKRCLK
register

• Programmable clock divider

• Selectable duty cycle

FIGURE 5-1: CLOCK REFERENCE BLOCK DIAGRAM

Rev. 10-000261B
5/11/2016

000

011

010

001

100

101

110

111

CLKRDIV<2:0>

128

64

32

16

8

4

2

CLKREN Counter Reset

Duty Cycle PPS

To Peripherals

CLKR

CLKRCLK<3:0>

See
CLKRCLK
Register

CLKREN

R
ef

er
en

ce
C

lo
ck

D
iv

id
er CLKRDC<1:0>
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 49

PIC18(L)F24/25K40
10.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced
microcontroller devices:

• Program Memory

• Data RAM

• Data EEPROM

As Harvard architecture devices, the data and program
memories use separate buses; this allows for
concurrent access of the two memory spaces. The data
EEPROM, for practical purposes, can be regarded as
a peripheral device, since it is addressed and accessed
through a set of control registers.

Additional detailed information on the operation of the
Program Flash Memory and Data EEPROM Memory is
provided in Section 11.0 “Nonvolatile Memory
(NVM) Control”.

10.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program
counter, which is capable of addressing a 2 Mbyte
program memory space. Accessing a location between
the upper boundary of the physically implemented
memory and the 2 Mbyte address will return all ‘0’s (a
NOP instruction).

These devices contains the following:

• PIC18(L)F24K40: 16 Kbytes of Flash memory, up
to 8,192 single-word instructions

• PIC18(L)F25K40: 32 K bytes of Flash memory, up
to 16,384 single-word instructions

PIC18 devices have two interrupt vectors. The Reset
vector address is at 0000h and the interrupt vector
addresses are at 0008h and 0018h.

Note: For memory information on this family of
devices, see Table 10-1 and Table 10-2.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 88

PIC18(L)F24/25K40

—

11111

00000

00000

11111

11111

00000

00000

00000

11111

00000

00000

11111

11111

00000

00000

00000

11111

00000

00000

11111

11111

00000

00000

00000

—

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

00000

ue on
, BOR
F26h
to
F22h

— Unimplemented

F21h ANSELC ANSELC7 ANSELC6 ANSELC5 ANSELC4 ANSELC3 ANSELC2 ANSELC1 ANSELC0 111

F20h WPUC WPUC7 WPUC6 WPUC5 WPUC4 WPUC3 WPUC2 WPUC1 WPUC0 000

F1Fh ODCONC ODCC7 ODCC6 ODCC5 ODCC4 ODCC3 ODCC2 ODCC1 ODCC0 000

F1Eh SLRCONC SLRC7 SLRC6 SLRC5 SLRC4 SLRC3 SLRC2 SLRC1 SLRC0 111

F1Dh INLVLC INLVLC7 INLVLC6 INLVLC5 INLVLC4 INLVLC3 INLVLC2 INLVLC1 INLVLC0 111

F1Ch IOCCP IOCCP7 IOCCP6 IOCCP5 IOCCP4 IOCCP3 IOCCP2 IOCCP1 IOCCP0 000

F1Bh IOCCN IOCCN7 IOCCN6 IOCCN5 IOCCN4 IOCCN3 IOCCN2 IOCCN1 IOCCN0 000

F1Ah IOCCF IOCCF7 IOCCF6 IOCCF5 IOCCF4 IOCCF3 IOCCF2 IOCCF1 IOCCF0 000

F19h ANSELB ANSELB7 ANSELB6 ANSELB5 ANSELB4 ANSELB3 ANSELB2 ANSELB1 ANSELB0 111

F18h WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 000

F17h ODCONB ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0 000

F16h SLRCONB SLRB7 SLRB6 SLRB5 SLRB4 SLRB3 SLRB2 SLRB1 SLRB0 111

F15h INLVLB INLVLB7 INLVLB6 INLVLB5 INLVLB4 INLVLB3 INLVLB2 INLVLB1 INLVLB0 111

F14h IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0 000

F13h IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0 000

F12h IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0 000

F11h ANSELA ANSELA7 ANSELA6 ANSELA5 ANSELA4 ANSELA3 ANSELA2 ANSELA1 ANSELA0 111

F10h WPUA WPUA7 WPUA6 WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 000

F0Fh ODCONA ODCA7 ODCA6 ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 000

F0Eh SLRCONA SLRA7 SLRA6 SLRA5 SLRA4 SLRA3 SLRA2 SLRA1 SLRA0 111

F0Dh INLVLA INLVLA7 INLVLA6 INLVLA5 INLVLA4 INLVLA3 INLVLA2 INLVLA1 INLVLA0 111

F0Ch IOCAP IOCAP7 IOCAP6 IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 000

F0Bh IOCAN IOCAN7 IOCAN6 IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 000

F0Ah IOCAF IOCAF7 IOCAF6 IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 000

F09h
to
EFFh

— Unimplemented

EFEh RC7PPS — — — RC7PPS<4:0> ---

EFDh RC6PPS — — — RC6PPS<4:0> ---

EFCh RC5PPS — — — RC5PPS<4:0> ---

EFBh RC4PPS — — — RC4PPS<4:0> ---

EFAh RC3PPS — — — RC3PPS<4:0> ---

EF9h RC2PPS — — — RC2PPS<4:0> ---

EF8h RC1PPS — — — RC1PPS<4:0> ---

EF7h RC0PPS — — — RC0PPS<4:0> ---

EF6h RB7PPS — — — RB7PPS<4:0> ---

EF5h RB6PPS — — — RB6PPS<4:0> ---

EF4h RB5PPS — — — RB5PPS<4:0> ---

EF3h RB4PPS — — — RB4PPS<4:0> ---

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Val

POR

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Not available on LF devices.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 109

PIC18(L)F24/25K40
FIGURE 11-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

TABLE 11-3: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

Example Operation on Table Pointer

TBLRD*
TBLWT*

TBLPTR is not modified

TBLRD*+
TBLWT*+

TBLPTR is incremented after the read/write

TBLRD*-
TBLWT*-

TBLPTR is decremented after the read/write

TBLRD+*
TBLWT+*

TBLPTR is incremented before the read/write

21 16 15 8 7 0

TABLE ERASE/WRITE TABLE WRITE

TABLE READ – TBLPTR<21:0>

TBLPTRLTBLPTRHTBLPTRU

TBLPTR<n:0>(1)TBLPTR<21:n+1>(1)

Note 1: Refer to Table 11-3 for the row size values.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 124

PIC18(L)F24/25K40
REGISTER 11-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

NVMCON2<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-0 NVMCON2<7:0>:

Refer to Section 11.1.4 “NVM Unlock Sequence”.

Note 1: This register always reads zeros, regardless of data written.

Register 11-3: NVMADRL: Data EEPROM Memory Address Low

R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0 R/W-x/0

NVMADR<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-0 NVMADR<7:0>: EEPROM Read Address bits

REGISTER 11-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH(1)

U-0 U-0 U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u

— — — — — — NVMADR<9:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown ‘0’ = Bit is cleared ‘1’ = Bit is set

-n = Value at POR

bit 7-2 Unimplemented: Read as ‘0’

bit 1-0 NVMADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K40.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 142

PIC18(L)F24/25K40
15.2.5 SLEW RATE CONTROL

The SLRCONx register (Register 15-7) controls the
slew rate option for each port pin. Slew rate for each
port pin can be controlled independently. When an
SLRCONx bit is set, the corresponding port pin drive is
slew rate limited. When an SLRCONx bit is cleared,
The corresponding port pin drive slews at the maximum
rate possible.

15.2.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 15-8) controls the input
voltage threshold for each of the available PORTx input
pins. A selection between the Schmitt Trigger CMOS or
the TTL compatible thresholds is available. The input
threshold is important in determining the value of a read
of the PORTx register and also the level at which an
interrupt-on-change occurs, if that feature is enabled.
See Table 37-8 for more information on threshold
levels.

15.2.7 WEAK PULL-UP CONTROL

The WPUx register (Register 15-5) controls the
individual weak pull-ups for each port pin.

15.2.8 EDGE SELECTABLE
INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at
the port pin that has either a rising edge or a falling
edge. Any individual pin can be configured to generate
an interrupt. The interrupt-on-change module is pres-
ent on all the pins that are common between 28-pin and
40/44-pin devices. For further details about the IOC
module refer to Section 16.0 “Interrupt-on-Change”.

15.3 PORTE Registers

EXAMPLE 15-2: INITIALIZING PORTE

15.3.1 PORTE ON 28-PIN DEVICES

For PIC18(L)F2xK40 devices, PORTE is only available
when Master Clear functionality is disabled
(MCLRE = 0). In this case, PORTE is a single bit, input-
only port comprised of RE3 only. The pin operates as
previously described. RE3 in PORTE register is a read-
only bit and will read ‘1’ when MCLRE = 1 (i.e., Master
Clear enabled).

15.3.2 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak
internal pull-up. When set, the WPUE3 bit enables the
RE3 pin pull-up. When the RE3 port pin is configured
as MCLR, (CONFIG2L, MCLRE = 1 and CONFIG4H,
LVP = 0), or configured for Low-Voltage Programming,
(MCLRE = x and LVP = 1), the pull-up is always
enabled and the WPUE3 bit has no effect.

15.3.3 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the
RE3 pin for all devices. For further details refer to
Section 14.11 “Interrupt-on-Change”.

Note: Changing the input threshold selection
should be performed while all peripheral
modules are disabled. Changing the
threshold level during the time a module is
active may inadvertently generate a
transition associated with an input pin,
regardless of the actual voltage level on
that pin.

CLRF PORTE ; Initialize PORTE by
; clearing output
; data latches

CLRF LATE ; Alternate method
; to clear output
; data latches

CLRF ANSELE ; Configure analog pins
; for digital only

MOVLW 05h ; Value used to
; initialize data
; direction

MOVWF TRISE ; Set RE<0> as input
; RE<1> as output
; RE<2> as input
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 195

PIC18(L)F24/25K40
19.7 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16
bits of data, to and from, the 8-bit TMRxL and TMRxH
registers, simultaneously. The 16-bit read and write
operations are enabled by setting the RD16 bit of the
TxCON register.

To accomplish this function, the TMRxH register value
is mapped to a buffer register called the TMRxH buffer
register. While in 16-Bit mode, the TMRxH register is
not directly readable or writable and all read and write
operations take place through the use of this TMRxH
buffer register.

When a read from the TMRxL register is requested, the
value of the TMRxH register is simultaneously loaded
into the TMRxH buffer register. When a read from the
TMRxH register is requested, the value is provided
from the TMRxH buffer register instead. This provides
the user with the ability to accurately read all 16 bits of
the Timer1/3/5 value from a single instance in time.
Reference the block diagram in Figure 19-2 for more
details.

In contrast, when not in 16-Bit mode, the user must
read each register separately and determine if the
values have become invalid due to a rollover that may
have occurred between the read operations.

When a write request of the TMRxL register is
requested, the TMRxH buffer register is simultaneously
updated with the contents of the TMRxH register. The
value of TMRxH must be preloaded into the TMRxH
buffer register prior to the write request for the TMRxL
register. This provides the user with the ability to write
all 16 bits to the TMRxL:TMRxH register pair at the
same time.

Any requests to write to the TMRxH directly does not
clear the Timer1/3/5 prescaler value. The prescaler
value is only cleared through write requests to the
TMRxL register.

FIGURE 19-2: TIMER1/3/5 16-BIT
READ/WRITE MODE
BLOCK DIAGRAM

19.8 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the
count can be enabled and disabled using Timer1/3/5
gate circuitry. This is also referred to as Timer1/3/5 gate
enable.

Timer1/3/5 gate can also be driven by multiple
selectable sources.

19.8.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by
setting the TMRxGE bit of the TxGCON register. The
polarity of the Timer1/3/5 Gate Enable mode is
configured using the TxGPOL bit of the TxGCON
register.

When Timer1/3/5 Gate Enable mode is enabled,
Timer1/3/5 will increment on the rising edge of the
Timer1/3/5 clock source. When Timer1/3/5 Gate signal
is inactive, the timer will not increment and hold the
current count. Enable mode is disabled, no
incrementing will occur and Timer1/3/5 will hold the
current count. See Figure 19-4 for timing details.

TABLE 19-3: TIMER1/3/5 GATE ENABLE
SELECTIONS

TMRxCLK TxGPOL TxG
Timer1/3/5
Operation

 1 1 Counts

 1 0 Holds Count

 0 1 Holds Count

 0 0 Counts

TMR1L

Internal Data Bus

8

Set
TMR1IF

on Overflow

TMR1

TMR1H

 High Byte

8
8

8

Read TMR1L

Write TMR1L

8

From
Timer1

Circuitry

Block Diagram of Timer1 Example of TIMER1/3/5
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 230

PIC18(L)F24/25K40
TABLE 19-4: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reset
Values

on
Page

INTCON GIE/GIEH PEIE/GIEL IPEN — — INT2EDG INT1EDG INT0EDG 166

PIE4 — — TMR6IE TMR5IE TMR4IE TMR3IE TMR2IE TMR1IE 179

PIE5 — — — — — TMR5GIE TMR3GIE TMR1GIE 180

PIR4 — — TMR6IF TMR5IF TMR4IF TMR3IF TMR2IF TMR1IF 170

PIR5 — — — — — TMR5GIF TMR3GIF TMR1GIF 171

IPR4 — — TMR6IP TMR5IP TMR4IP TMR3IP TMR2IP TMR1IP 187

IPR5 — — — — — TMR5GIP TMR3GIP TMR1GIP 188

PMD1 — TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD TMR0MD 65

T1CON — — CKPS<1:0> — SYNC RD16 ON 223

T1GCON GE GPOL GTM GSPM GO/DONE GVAL — — 224

T3CON — — CKPS<1:0> — SYNC RD16 ON 223

T3GCON GE GPOL GTM GSPM GO/DONE GVAL — — 224

T5CON — — CKPS<1:0> — SYNC RD16 ON 223

T5GCON GE GPOL GTM GSPM GO/DONE GVAL — — 224

TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register 227

TMR1L Least Significant Byte of the 16-bit TMR1 Register 227

TMR3H Holding Register for the Most Significant Byte of the 16-bit TMR3 Register 227

TMR3L Least Significant Byte of the 16-bit TMR3 Register 227

TMR5H Holding Register for the Most Significant Byte of the 16-bit TMR5 Register 227

TMR5L Least Significant Byte of the 16-bit TMR5 Register 227

T1CKIPPS — — — T1CKIPPS<4:0> 211

T1GPPS — — — T1GPPS<4:0> 211

T3CKIPPS — — — T3CKIPPS<4:0> 211

T3GPPS — — — T3GPPS<4:0> 211

T5CKIPPS — — — T5CKIPPS<4:0> 211

T5GPPS — — — T5GPPS<4:0> 211

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by TIMER1/3/5.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 236

PIC18(L)F24/25K40
REGISTER 26-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

WCOL SSPOV(1) SSPEN(2) CKP SSPM3(4) SSPM2(4) SSPM1(4) SSPM0(4)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 WCOL: Write Collision Detect bit

1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in
software)

0 = No collision

bit 6 SSPOV: Receive Overflow Indicator bit(1)

SPI Slave mode:

1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of
overflow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read
the SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in
software).

0 = No overflow

bit 5 SSPEN: Master Synchronous Serial Port Enable bit(2)

1 = Enables serial port and configures SCKx, SDOx, SDIx and SSx as serial port pins
0 = Disables serial port and configures these pins as I/O port pins

bit 4 CKP: Clock Polarity Select bit

1 = Idle state for the clock is a high level
0 = Idle state for the clock is a low level

bit 3-0 SSPM<3:0>: Master Synchronous Serial Port Mode Select bits(4)

1010 = SPI Master mode: Clock = FOSC/(4 * (SSPxADD + 1))(3)

0101 = SPI Slave mode: Clock = SCKx pin; SSx pin control is disabled; SSx can be used as I/O pin
0100 = SPI Slave mode: Clock = SCKx pin; SSx pin control is enabled
0011 = SPI Master mode: Clock = TMR2 output/2
0010 = SPI Master mode: Clock = FOSC/64
0001 = SPI Master mode: Clock = FOSC/16
0000 = SPI Master mode: Clock = FOSC/4

Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by
writing to the SSPxBUF register.

2: When enabled, these pins must be properly configured as inputs or outputs.

3: SSPxADD = 0 is not supported.

4: Bit combinations not specifically listed here are either reserved or implemented in I2C mode only.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 332

PIC18(L)F24/25K40
26.5.4 SLAVE SELECT
SYNCHRONIZATION

The Slave Select can also be used to synchronize
communication. The Slave Select line is held high until
the master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting.

If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will
eventually become out of sync with the master. If the
slave misses a bit, it will always be one bit off in future
transmissions. Use of the Slave Select line allows the
slave and master to align themselves at the beginning
of each transmission.

The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPxCON1<3:0> = 0100).

When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven.

When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the applica-
tion.

When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.

FIGURE 26-5: SPI DAISY-CHAIN CONNECTION

Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPxCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.

2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.

3: While operated in SPI Slave mode the
SMP bit of the SSPxSTAT register must
remain clear.

SPI Master
SCK

SDO

SDI

General I/O

SCK

SDI

SDO

SS

SPI Slave
#1

SCK

SDI

SDO

SS

SPI Slave
#2

SCK

SDI

SDO

SS

SPI Slave
#3
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 339

PIC18(L)F24/25K40

TABLE 27-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER

TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

BAUDxCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 389

INTCON GIE/GIEH PEIE/GIEL IPEN — — INT2EDG INT1EDG INT0EDG 166

PIE3 — — RC1IE TX1IE — — BCL1IE SSP1IE 178

PIR3 — — RC1IF TX1IF — — BCL1IF SSP1IF 170

IPR3 — — RC1IP TX1IP — — BCL1IP SSP1IP 186

RCxSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 388

RxyPPS — — — RxyPPS<4:0> 213

TXxPPS — — — TXPPS<4:0> 211

SPxBRGH EUSARTx Baud Rate Generator, High Byte 398*

SPxBRGL EUSARTx Baud Rate Generator, Low Byte 398*

TXxREG EUSARTx Transmit Data Register 390*

TXxSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 387

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous master transmission.
* Page provides register information.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 409

PIC18(L)F24/25K40
TABLE 31-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES(1,4)

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

ADC Clock Period (TAD) Device Frequency (FOSC)

ADC
Clock Source

ADCS<5:0> 64 MHz 32 MHz 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz

FOSC/2 000000 31.25 ns(2) 62.5 ns(2) 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s

FOSC/4 000001 62.5 ns(2) 125 ns(2) 200 ns(2) 250 ns(2) 500 ns(2) 1.0 s 4.0 s

FOSC/6 000010 125 ns(2) 187.5 ns(2) 300 ns(2) 375 ns(2) 750 ns(2) 1.5 s 6.0 s

FOSC/8 000011 187.5 ns(2) 250 ns(2) 400 ns(2) 500 ns(2) 1.0 s 2.0 s 8.0 s(3)

...

FOSC/16 000100 250 ns(2) 500 ns(2) 800 ns(2) 1.0 s 2.0 s 4.0 s 16.0 s(3)

...

FOSC/128 111111 2.0 s 4.0 s 6.4 s 8.0 s 16.0 s(3) 32.0 s(2) 128.0 s(2)

FRC ADCS(ADCON0<4>) = 1 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s

Legend: Shaded cells are outside of recommended range.
Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.
3: Outside the recommended TAD time.
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system

clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep
mode.

On the following cycle:
ADRESH:ADRESL is loaded,
GO bit is cleared,
ADIF bit is set,

Rev. 10-000035B
11/3/2016

Set GO bit

External and Internal
Channels are
charged/discharged

If ADPRE 0 If ADACQ 0

External and Internal
Channels share
charge

If ADPRE = 0
If ADACQ = 0
(Traditional Operation Start)

TAD1TCY TCY-TAD TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10TAD11

Holding capacitor CHOLD is disconnected from analog input (typically 100ns)

2 TCY

Conversion starts

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Precharge
Time

1-255 TCY
(TPRE)

Acquisition/
Sharing Time

1-255 TCY
(TACQ)

Conversion Time
(Traditional Timing of ADC Conversion)
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 427

PIC18(L)F24/25K40
31.4 Capacitive Voltage Divider (CVD)
Features

The ADC module contains several features that allow
the user to perform a relative capacitance
measurement on any ADC channel using the internal
ADC sample and hold capacitance as a reference. This
relative capacitance measurement can be used to
implement capacitive touch or proximity sensing
applications. Figure 31-6 shows the basic block
diagram of the CVD portion of the ADC module.

FIGURE 31-6: HARDWARE CAPACITIVE VOLTAGE DIVIDER BLOCK DIAGRAM

Additional
Sample and

Hold Cap

VDD

ADOUT

ADOEN

ADC Conversion Bus

ADOUT Pad

ADIPPOL = 1

ADIPPOL = 0

ADDCAP<2:0>

VGND

ANx

ANx Pads

VGNDVGNDVGND
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 433

PIC18(L)F24/25K40
35.0 INSTRUCTION SET SUMMARY

PIC18(L)F2x/4xK40 devices incorporate the standard
set of 75 PIC18 core instructions, as well as an extended
set of eight new instructions, for the optimization of code
that is recursive or that utilizes a software stack. The
extended set is discussed later in this section.

35.1 Standard Instruction Set

The standard PIC18 instruction set adds many
enhancements to the previous PIC® MCU instruction
sets, while maintaining an easy migration from these
PIC® MCU instruction sets. Most instructions are a
single program memory word (16 bits), but there are
four instructions that require two program memory
locations.

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations

• Bit-oriented operations

• Literal operations

• Control operations

The PIC18 instruction set summary in Table 35-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 35-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by ‘a’)

The file register designator ‘f’ specifies which file
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If ‘d’ is zero, the result is placed in
the WREG register. If ‘d’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register (specified by ‘b’)
3. The accessed memory (specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register
designator ‘f’ represents the number of the file in which
the bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register
(specified by ‘k’)

• The desired FSR register to load the literal value
into (specified by ‘f’)

• No operand required
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)
• The mode of the CALL or RETURN instructions

(specified by ‘s’)
• The mode of the table read and table write

instructions (specified by ‘m’)
• No operand required

(specified by ‘—’)

All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the four MSbs are ‘1’s. If
this second word is executed as an instruction (by
itself), it will execute as a NOP.

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 s. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 s.
Two-word branch instructions (if true) would take 3 s.

Figure 35-1 shows the general formats that the instruc-
tions can have. All examples use the convention ‘nnh’
to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 35-2,
lists the standard instructions recognized by the
Microchip Assembler (MPASMTM).

Section 35.1.1 “Standard Instruction Set” provides
a description of each instruction.
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 479

PIC18(L)F24/25K40

COMF Complement f

Syntax: COMF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f)  dest

Status Affected: N, Z

Encoding: 0001 11da ffff ffff

Description: The contents of register ‘f’ are
complemented. If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: COMF REG, 0, 0

Before Instruction
REG = 13h

After Instruction
REG = 13h
W = ECh

CPFSEQ Compare f with W, skip if f = W

Syntax: CPFSEQ f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) – (W),
skip if (f) = (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 001a ffff ffff

Description: Compares the contents of data memory
location ‘f’ to the contents of W by
performing an unsigned subtraction.
If ‘f’ = W, then the fetched instruction is
discarded and a NOP is executed
instead, making this a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation
No

operation

Example: HERE CPFSEQ REG, 0
NEQUAL :
EQUAL :

Before Instruction
PC Address = HERE
W = ?
REG = ?

After Instruction

If REG = W;
PC = Address (EQUAL)

If REG  W;
PC = Address (NEQUAL)
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 496

PIC18(L)F24/25K40

DECFSZ Decrement f, skip if 0

Syntax: DECFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DECFSZ CNT, 1, 1
 GOTO LOOP
CONTINUE

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT - 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT  0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, skip if not 0

Syntax: DCFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE DCFSNZ TEMP, 1, 0
ZERO :
NZERO :

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP  0;

PC = Address (NZERO)
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 499

PIC18(L)F24/25K40

INCFSZ Increment f, skip if 0

Syntax: INCFSZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result = 0

Status Affected: None

Encoding: 0011 11da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INCFSZ CNT, 1, 0
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT + 1
If CNT = 0;
PC = Address (ZERO)
If CNT  0;
PC = Address (NZERO)

INFSNZ Increment f, skip if not 0

Syntax: INFSNZ f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest,
skip if result  0

Status Affected: None

Encoding: 0100 10da ffff ffff

Description: The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE INFSNZ REG, 1, 0
ZERO
NZERO

Before Instruction
PC = Address (HERE)

After Instruction
REG = REG + 1
If REG  0;
PC = Address (NZERO)
If REG = 0;
PC = Address (ZERO)
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 501

PIC18(L)F24/25K40

LFSR Load FSR

Syntax: LFSR f, k

Operands: 0  f  2
0  k  4095

Operation: k  FSRf

Status Affected: None

Encoding: 1110
1111

1110
0000

00ff
k7kkk

k11kkk
kkkk

Description: The 12-bit literal ‘k’ is loaded into the
File Select Register pointed to by ‘f’.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘k’ MSB

Process
Data

Write
literal ‘k’
MSB to
FSRfH

Decode Read literal
‘k’ LSB

Process
Data

Write literal
‘k’ to FSRfL

Example: LFSR 2, 3ABh

After Instruction
FSR2H = 03h
FSR2L = ABh

MOVF Move f

Syntax: MOVF f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: f  dest

Status Affected: N, Z

Encoding: 0101 00da ffff ffff

Description: The contents of register ‘f’ are moved to
a destination dependent upon the
status of ‘d’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write W

Example: MOVF REG, 0, 0

Before Instruction
REG = 22h
W = FFh

After Instruction
REG = 22h
W = 22h
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 503

PIC18(L)F24/25K40

SUBFSR Subtract Literal from FSR

Syntax: SUBFSR f, k

Operands: 0  k  63

f  [0, 1, 2]

Operation: FSR(f) – k  FSRf

Status Affected: None

Encoding: 1110 1001 ffkk kkkk

Description: The 6-bit literal ‘k’ is subtracted from
the contents of the FSR specified by
‘f’.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: SUBFSR 2, 23h

Before Instruction
FSR2 = 03FFh

After Instruction
FSR2 = 03DCh

SUBULNK Subtract Literal from FSR2 and Return

Syntax: SUBULNK k

Operands: 0  k  63

Operation: FSR2 – k  FSR2

(TOS) PC

Status Affected: None

Encoding: 1110 1001 11kk kkkk

Description: The 6-bit literal ‘k’ is subtracted from the
contents of the FSR2. A RETURN is then
executed by loading the PC with the TOS.
The instruction takes two cycles to
execute; a NOP is performed during the
second cycle.
This may be thought of as a special case of
the SUBFSR instruction, where f = 3 (binary
‘11’); it operates only on FSR2.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

No
Operation

No
Operation

No
Operation

No
Operation

Example: SUBULNK 23h

Before Instruction
FSR2 = 03FFh
PC = 0100h

After Instruction
FSR2 = 03DCh
PC = (TOS)
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 525

PIC18(L)F24/25K40
36.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:

• Integrated Development Environment

- MPLAB® X IDE Software

• Compilers/Assemblers/Linkers

- MPLAB XC Compiler

- MPASMTM Assembler

- MPLINKTM Object Linker/
MPLIBTM Object Librarian

- MPLAB Assembler/Linker/Librarian for
Various Device Families

• Simulators

- MPLAB X SIM Software Simulator

• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator

• In-Circuit Debuggers/Programmers

- MPLAB ICD 3

- PICkit™ 3

• Device Programmers

- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits

• Third-party development tools

36.1 MPLAB X Integrated Development
Environment Software

The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.

With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.

Feature-Rich Editor:

• Color syntax highlighting

• Smart code completion makes suggestions and
provides hints as you type

• Automatic code formatting based on user-defined
rules

• Live parsing

User-Friendly, Customizable Interface:

• Fully customizable interface: toolbars, toolbar
buttons, windows, window placement, etc.

• Call graph window

Project-Based Workspaces:

• Multiple projects

• Multiple tools

• Multiple configurations

• Simultaneous debugging sessions

File History and Bug Tracking:

• Local file history feature

• Built-in support for Bugzilla issue tracker
 2016-2017 Microchip Technology Inc. Preliminary DS40001843C-page 529

