

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k40-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

3.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 3.4 "Write Protection"** for more information.

3.3.2 DATA MEMORY PROTECTION

The entire Data EEPROM Memory space is protected from external reads and writes by the CPD bit in the Configuration Words. When $\overline{CPD} = 0$, external reads and writes of Data EEPROM Memory are inhibited and a read will return all '0's. The CPU can continue to read Data EEPROM Memory regardless of the protection bit settings.

3.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

3.5 User ID

Eight words in the memory space (200000h-200000Fh) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 11.2 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC18(L)F2X/4XK40 Memory Programming Specification" (DS40001772).

4.2 Register Definitions: Oscillator Control

REGISTER 4-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f	R/W-f/f	R/W-f/f	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—		NOSC<2:0>			NDIV	<3:0>	
bit 7				·			bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	nented bit, read	1 as '0'		

u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting		
		q = Reset value is determined by hardware		

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits ^(1,2,3)
	The setting requests a source oscillator and PLL combination per Table 4-2.
	POR value = RSTOSC (Register 3-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits ^(2,3)

The setting determines the new postscaler division ratio per Table 4-2.

- Note1: The default value (f/f) is determined by the RSTOSC Configuration bits. See Table 4-1below.
 - 2: If NOSC is written with a reserved value (Table 4-2), the operation is ignored and neither NOSC nor NDIV is written.
 - 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.

TABLE 4-1:	DEFAULT OSCILLATOR SETTINGS USING RSTOSC BITS
------------	---

RSTOSC	SF	R Reset Value	S			
	NOSC/COSC	CDIV	OSCFRQ	Initial FOSC Frequency		
111	111	1:1		EXTOSC per FEXTOSC		
110	110	4:1	4 1411-	Fosc = 1 MHz (4 MHz/4)		
101	101	1:1	4 MHZ	LFINTOSC		
100	100	1:1		SOSC		
011			Reserve	ed		
010	010	1:1	4 MHz	EXTOSC + 4xPLL (1)		
001		Reserved				
000	110	1:1	64 MHz	Fosc = 64 MHz		

Note 1: EXTOSC must meet the PLL specifications (Table 37-9).

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	U = Unimple	mented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Reset va	lue is determine	ed by hardware	•
bit 7	EXTOR: EXT	OSC (external)	Oscillator Re	ady bit			
	1 = The os	cillator is ready	to be used	t vot roodv to k			
hit C			ableu, or is no	i yel ready to i	be used		
DILO	1 = The ose	cillator is ready	to be used				
	0 = The osc	illator is not en	abled, or is no	t yet ready to b	be used		
bit 5	MFOR: MFIN	ITOSC Oscillate	or Ready				
	1 = The osc	illator is ready	to be used				
	0 = The osc	illator is not en	abled, or is no	t yet ready to b	be used		
bit 4	LFOR: LFINT	FOSC Oscillato	r Ready bit				
	1 = 1he oscillations = The oscillations of the oscillation of the os	cillator is ready	to be used	t vet ready to h			
hit 3	SOR: Second	harv (Timer1) (scillator Read	v hit			
bit 0	1 = The os	cillator is ready	to be used	y bit			
	0 = The osc	cillator is not en	abled, or is no	ot yet ready to	be used		
bit 2	ADOR: ADC	Oscillator Read	dy bit				
	1 = The os	cillator is ready	to be used				
	0 = The osc	cillator is not en	abled, or is no	ot yet ready to	be used		
bit 1	Unimplemen	ited: Read as	0′				
bit 0	PLLR: PLL is	Ready bit	uppd				
	1 = The PL	is not enabled	, the required	input source is	s not ready, or t	he PLL is not lo	ocked.
			.,				

REGISTER 4-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1

4.3 Clock Source Types

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

A 4x PLL is provided that can be used in conjunction with the external clock. When used with the HFINTOSC the 4x PLL has input frequency limitations.See **Section 4.3.1.4 "4x PLL"** for more details.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 4-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 4.4 "Clock Switching"** for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 3-2). If enabled, the clock out signal is always at a frequency of FOSC/4.

4.3.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 4.4 "Clock Switching"** for more information.

4.3.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 4-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, above 8 MHz
- ECM Medium power, 100 kHz-8 MHz
- ECL Low power, below 100 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION

4.3.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

PIC18(L)F24/25K40

© 2016-2017 Microchip Technology Inc.

					•		
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
		WDTTMR<4:0>			STATE	PSCNT	<17:16>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

	WDT Win	Open Bereent	
WINDOW	Closed	Open	Open Percent
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

FXAMPI F 11_4 ·	WRITING TO PROGRAM FLASH MEMORY

	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
PEAD BLOCK	MOVWF	IBLFIRL	
READ_DEOCK	TBL.PD*+		: read into TABLAT and inc
	MOVE	TABLAT W	; get data
	MOVWF	POSTINCO	; store data
	DECESZ	COUNTER	; done?
	BRA	READ BLOCK	; repeat
MODIFY_WORD		_	-
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	IBLFIRH	
	MOVINE	TEL DTEL	
	BOE	NUMCON1 NUMPECO	: point to Program Elash Memory
	BSF	NVMCON1 NVMREG1	; point to Program Flash Memory
	BSF	NVMCON1, WREN	; enable write to memory
	BSF	NVMCON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	-
Required	MOVWF	NVMCON2	; write 55h
Sequence	MOVLW	AAh	
	MOVWF	NVMCON2	; write OAAh
	BSF	NVMCON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWE	FSRUL	
WKIIE_BOFFER		BlockGize	: number of bytes in holding register
		COINTED	, number of bytes in notaing register
		D'64'/Blockeize	: number of write blocks in 64 bytes
	MOVWE	COINTER?	, number of wires brocks in of bytes
	1.10 A MIT.	CONTERZ	

REGISTER 13-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DATA	<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 DATA<15:8>: CRC Input/Output Data bits

'1' = Bit is set

REGISTER 13-4: CRCDATL: CRC DATA LOW BYTE REGISTER

'0' = Bit is cleared

R/W-xx	R/W-x/x							
DATA<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **DATA<7:0>**: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 13-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACC<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: CRC Accumulator Register bits Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

© 2016-2017 Microchip Technology Inc.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—		LADR<21:16> ^(1,2)					
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unknown -n/n = Value at POR and BC			at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 13-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LADR<21:16>: Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
LADR<15:8> ^(1, 2)								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

TABLE 13-2: SUMMARY OF SCANNER MODE

MODE<1:0>		Description					
		First Scan Access CPU Operation					
11	Triggered	As soon as possible following a trigger	Stalled during NVM access	CPU resumes execution following each access			
10	Peek	At the first dead cycle	Timing is unaffected	CPU continues execution following each access			
01	Burst		Stalled during NV/M appage	CPU suspended until scan completes			
00	Concurrent	AS SOUL AS POSSIBLE	Stalled during NVM access	CPU resumes execution following each access			

13.11.5 INTERRUPT INTERACTION

The INTM bit of the SCANCON0 register controls the scanner's response to interrupts depending on which mode the NVM scanner is in, as described in Table 13-3.

TABLE 13-3: SCAN INTERRUPT MODES

	MODE<1:0>						
INTM	MODE == Burst	MODE == CONCURENT or TRIGGERED	MODE ==PEEK				
1	Interrupt overrides SCANGO (to zero) to pause the burst and the interrupt handler executes at full speed; Scanner Burst resumes when interrupt completes.	Scanner suspended during interrupt response (SCANGO = 0); interrupt executes at full speed and scan resumes when the interrupt is complete.	This bit is ignored				
0	Interrupts do not override SCANGO, and the scan (burst) operation will continue; interrupt response will be delayed until scan completes (latency will be increased).	Scanner accesses NVM during interrupt response.	This bit is ignored				

In general, if INTM = 0, the scanner will take precedence over the interrupt, resulting in decreased interrupt processing speed and/or increased interrupt response latency. If INTM = 1, the interrupt will take precedence and have a better speed, delaying the memory scan.

13.11.6 WWDT INTERACTION

Operation of the WWDT is not affected by scanner activity. Hence, it is possible that long scans, particularly in Burst mode, may exceed the WWDT time-out period and result in an undesired device Reset. This should be considered when performing memory scans with an application that also utilizes WWDT.

© 2016-2017 Microchip Technology Inc.

PIC18(L)F24/25K40

19.0 TIMER1/3/5 MODULE WITH GATE CONTROL

Timer1/3/5 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- · 2-bit prescaler
- Dedicated Secondary 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1/3/5 gate (count enable) sources
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- 16-Bit Read/Write Operation
- Time base for the Capture/Compare function with the CCP modules
- Special Event Trigger (with CCP)
- Selectable Gate Source Polarity
- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 19-1 is a block diagram of the Timer1/3/5 module.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
TxON	TxON CKPS<2:0>				OUTP	S<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	eared by hardv	vare			
bit 7	ON: Timerx	On bit ⁽¹⁾							
	1 = Timerx i	s on							
	0 = Timerx i	s off: all counte	rs and state m	achines are res	set				
bit 6-4	CKPS<2:0>	: Timerx-type C	lock Prescale	Select bits					
	111 = 1:128	8 Prescaler							
	110 = 1:64	Prescaler							
	101 = 1:32	Prescaler	rescaler						
	100 = 1.10 011 = 1.8 P	= 1:16 Prescaler							
	011 = 1.01	rescaler							
	001 = 1:2 P	Prescaler							
	000 = 1:1 P	Prescaler							
bit 3-0	OUTPS<3:0	>: Timerx Output	ut Postscaler S	Select bits					
	1111 = 1:16	6 Postscaler							
	1110 = 1:15	5 Postscaler							
	1101 = 1.14 1100 = 1.13	Postscaler							
	1011 = 1:12	2 Postscaler							
	1010 = 1:11	Postscaler							
	1001 = 1:10) Postscaler							
	1000 = 1:9	Postscaler							
	0111 = 1:8 Postscaler								
	0110 = 1:7	Postscaler							
	0101 = 1.6	Postscaler							
0100 = 1.3 0011 = 1.4		Postscaler							
	0010 = 1:3	Postscaler							
	0001 = 1:2	Postscaler							
	0000 = 1:1	Postscaler							

REGISTER 20-1: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the TxON bit will be auto-cleared by hardware. See Section 20.5 "Operation Examples".

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
CCPRx<15:8>									
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	OR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unk	nown		

REGISTER 21-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0
MODE = Capture Mode:
CCPRxH<7:0>: MSB of captured TMR1 value
MODE = Compare Mode:
CCPRxH<7:0>: MSB compared to TMR1 value
MODE = PWM Mode && FMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<7:2>: Not used
CCPRxH<1:0>: CCPW<9:8> - Pulse-Width MS 2 bits
MODE = PWM Mode && FMT = 1:
CCPRxH<7:0>: CCPW<9:2> - Pulse-Width MS 8 bits

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable b	it	HC = Bit is cle	ared by hardw	vare		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
 bit 7 WCOL: Write Collision Detect bit In Master Transmit mode: 1 = A write to the SSPxBUF register was attempted while the I²C conditions were not valid for transmission to be started (must be cleared in software) 0 = No collision In Slave Transmit mode: 								
	 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision In Receive mode (Master or Slave modes): 							
	This is a "don"	't care" bit.						
bit 6	SSPOV: Rece	eive Overflow In	dicator bit					
	In Receive mo 1 = A byte is software) 0 = No overflo	ode: received while th ow	ne SSPxBUF	register is still h	olding the prev	vious byte (mus	t be cleared in	
	<u>In Transmit m</u> This is a "don"	<u>ode:</u> 't care" bit in Tra	ansmit mode.					
bit 5	SSPEN: Mast	er Synchronous	Serial Port E	nable bit ⁽¹⁾				
	1 = Enables th 0 = Disables s	ne serial port an serial port and c	d configures onfigures the	the SDAx and S se pins as I/O p	SCLx pins as th ort pins	ne serial port pi	ns	
bit 4	CKP: SCKx R	Release Control	bit					
	In Slave mode 1 = Releases 0 = Holds cloo	<u>e:</u> clock ck low (clock str	etch), used to	ensure data se	tup time			
	In Master mod Unused in this	<u>de:</u> s mode.						
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial F	ort Mode Selec	t bits ⁽²⁾			
	$1111 = I^{2}C SI$ $1110 = I^{2}C SI$ $1011 = I^{2}C Fi$ $1000 = I^{2}C M$ $0111 = I^{2}C SI$ $0110 = I^{2}C SI$	ave mode: 10-b ave mode: 7-bit rmware Control aster mode: Clc ave mode: 10-b ave mode: 7-bit	it address with address with led Master mo ock = Fosc/(4 it address ^{(3,4}	h Start and Stop Start and Stop ode (slave Idle) * (SSPxADD +)	o bit interrupts bit interrupts e 1))	enabled nabled		
Note 1:	When enabled, th	e SDAx and SC	Lx pins must	be configured a	as inputs.			
•	D'1			- : 41	•			

REGISTER 26-7: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C MASTER MODE)

2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

R/HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		HS/HC = Bit is	s set/cleared by	y hardware	
x = Bit is unki	nown	'0' = Bit is clea	ared				
bit 7	ACKTIM: Ack	knowledge Time	e Status bit				
	Unused in Ma	aster mode.					
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ⁽¹)			
	1 = Enable in	nterrupt on dete	ction of Stop of	condition			
	0 = Stop dete	ection interrupts	s are disabled	、			
bit 5	SCIE: Start C	ondition Interru	pt Enable bit ⁽¹)			
	1 = Enable int 0 = Start dete	terrupt on dete	ction of Start of are disabled	r Restart condit	ions		
bit 4	BOEN: Buffer	r Overwrite Ena	able bit				
	1 = SSPxBU	F is updated e	every time a n	iew data byte i	is available, ig	noring the SSF	POV effect on
	updating	the buffer	5	2		0	
	0 = SSPxBUF	is only update	d when SSPO	V is clear			
bit 3	SDAHT: SDA	Hold Time Sel	ection bit				
	1 = Minimum	of 300ns hold t	ime on SDA a	fter the falling e	dge of SCL		
1.1.0		of Toons hold t	ime on SDA a	tter the failing e	age of SCL		
DIT 2	SBCDE: Slav	e Mode Bus Co	Dilision Detect	Enable bit			
		ister mode.	1.11				
bit 1	AHEN: Addre	ess Hold Enable	e bit				
	Unused in Ma	aster mode.					
bit 0	DHEN: Data I	Hold Enable bit					
	Unused in Ma	aster mode.					

REGISTER 26-9: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C MASTER MODE)

Note 1: This bit has no effect when SSPM<3:0> = 1111 or 1110.In these Slave modes the START and STOP condition interrupts are always enabled.

REGISTER 26-10: SSPxBUF: MSSP DATA BUFFER REGISTER (I²C MASTER MODE)

					•		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			BUF	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimpler	mented bit, read	as '0'	

R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 BUF<7:0>: MSSP Buffer bits

0

2016-2017 Microchip Technology Inc

PIC18(L)F24/25K4(

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TXx/CKx pin (SCKP = 1) Write to	
SREN bit CREN bit	.0,
RCxIF bit (Interrupt) ——— Read RCxREG ————	
Note: Timing dia	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	199
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	199
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		—	INT2EDG	INT1EDG	INT0EDG	166
PIE3		_	RC1IE	TX1IE	_		BCL1IE	SSP1IE	178
PIR3	-	_	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170
IPR3		_	RC1IP	TX1IP	_		BCL1IP	SSP1IP	186
RCxREG			EUS	ARTx Receiv	e Data Regis	ter			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	_	—	_		F	RxyPPS<4:0>			213
RXxPPS	_	—	_			RXPPS<4:0>			211
SPxBRGH			EUSART	Baud Rate	Generator, Hi	gh Byte			398*
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	w Byte			398*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

PIC18(L)F24/25K40

MO\	/SS	Move Ind	Move Indexed to Indexed						
Synta	ax:	MOVSS [z	z _s], [z _d]						
Oper	ands:	0 ≤ z _s ≤ 127 0 ≤ z _d ≤ 127	7						
Oper	ation:	((FSR2) + z	$z_{s}) \rightarrow ((FS))$	SR2) ·	+ z _d))			
Statu	s Affected:	None							
Enco	ding:								
1st w	ord (source)	1110	1011	lzz	z	ZZZZS			
2nd v	vord (dest.)	1111	xxxx	XZZ	Z	zzzzd			
Worc	moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets 'z _s ' or 'z _d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP.								
Cycle	26.	2	2						
QC	ycle Activity:	£							
	Q1	Q2	Q3			Q4			
	Decode	Determine	Determ	ine		Read			
		source addr	source a	addr	SO	urce reg			
	Decode	Determine dest addr	Determ dest ac	ine ddr	to	Write dest reg			

Example:	MOVSS	[05h],	[06h]
Before Instructio	on	0.01-	
FSR2 Contents	=	80h	
of 85h	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents	_	22h	
Contents	-	3311	
of 86h	=	33h	

PUSHL	Store Liter	al at FSR	2, Decr	ement FSR2
Syntax:	PUSHL k			
Operands:	$0 \le k \le 255$			
Operation:	$k \rightarrow (FSR2)$ FSR2 – 1 –), → FSR2		
Status Affected:	None			
Encoding:	1111	1010	kkkk	kkkk
2000194011	memory address specified by FSR2. FSF is decremented by 1 after the operation. This instruction allows users to push valu onto a software stack.			
Words:	1			
Cycles:	1			
Q Cycle Activity	y:			
Q1	Q2		Q3	Q4
Decode	Read '	k' Pro	ocess lata	Write to destination
Example:	PUSHL	08h		
Before Inst FSR2 Memo	ruction H:FSR2L pry (01ECh)	= =	01ECh 00h	
After Instru	iction			

rinstruction		
FSR2H:FSR2L	=	01EBh
Memory (01ECh)	=	08h

35.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	instruction	set			
	extension	may	cause lee	gacy applicat	tions			
	to behave erratically or fail entirely.							

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 10.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 35.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

35.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

35.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2x/ 4xK40, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820