

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k40-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE	<1:0>			WDTCPS<4:0	>	
bit 7							

Legend: R = Readable bit W = Writable bit U = Unir

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		Coffeenan Company				
WDTCPS	Value	Divider Ratio		Typical Time Out (Fɪn = 31 kHz)	of WDTPS?	
11111	01011	1:65536	2 ¹⁶	2s	Yes	
10011	10011		_			
 11110	 11110	1:32	2 ⁵	1 ms	No	
10010	10010	1:8388608	2 ²³	256s		
10001	10001	1:4194304	2 ²²	128s		
10000	10000	1:2097152	2 ²¹	64s		
01111	01111	1:1048576	2 ²⁰	32s		
01110	01110	1:524299	2 ¹⁹	16s		
01101	01101	1:262144	2 ¹⁸	8s		
01100	01100	1:131072	2 ¹⁷	4s		
01011	01011	1:65536	2 ¹⁶	2s		
01010	01010	1:32768	2 ¹⁵	1s		
01001	01001	1:16384	2 ¹⁴	512 ms	No	
01000	01000	1:8192	2 ¹³	256 ms		
00111	00111	1:4096	2 ¹²	128 ms		
00110	00110	1:2048	2 ¹¹	64 ms		
00101	00101	1:1024	2 ¹⁰	32 ms		
00100	00100	1:512	2 ⁹	16 ms		
00011	00011	1:256	2 ⁸	8 ms		
00010	00010	1:128	2 ⁷	4 ms		
00001	00001	1:64	2 ⁶	2 ms		
00000	00000	1:32	2 ⁵	1 ms		

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	166
PIE0	_	—	TMR0IE	IOCIE	-	INT2IE	INT1IE	INT0IE	175
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	176
PIE2	HLVDIE	ZCDIE	_	_	_	_	C2IE	C1IE	177
PIE3	_	—	RC1IE	TX1IE	-	-	BCL1IE	SSP1IE	178
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIE5	_	—	_	_	—	TMR5GIE	TMR3GIE	TMR1GIE	180
PIE6	_	—	_	—	_	_	CCP2IE	CCP1IE	181
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	182
PIR0	_	—	TMR0IF	IOCIF	—	INT2IF	INT1IF	INT0IF	167
PIR1	OSCFIF	CSWIF	_	_	_	_	ADTIF	ADIF	168
PIR2	HLVDIF	ZCDIF ⁽¹⁾	_	_	_	_	C2IF	C1IF	169
PIR3	_	_	RC1IF	TX1IF	-	_	BCL1IF	SSP1IF	170
PIR4	_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	170
IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	206
IOCAN	_	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	206
IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	206
IOCCP ⁽¹⁾	_	—	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	206
IOCCN ⁽¹⁾	_	_	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	206
IOCCF ⁽¹⁾	_	—	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	206
STATUS	_	_	_	TO	PD	Z	DC	С	114
VREGCON	_	_	_	_	_	_	VREGPM	Reserved	60
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		61
WDTCON0	—	_			WDTPS<4:0>			SEN	81
WDTCON1	—		WDTPS<2:0>		_		WINDOW<2:0>	•	82
Note 1: -	– = unimplemen	ted location, rea	ad as '0'. Shade	d cells are not u	sed in Power-D	own mode.			

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

10.3 PIC18 Instruction Cycle

10.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 10-2.

10.3.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 10-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 10-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 10-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	Tcy2	Тсү3	TcY4	TcY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—	_	TSEL<3:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unknown		vn -n/n = Value at POR and BOR/Value at all other Res					
'1' = Bit is set		'0' = Bit is clea	ared						
hit 7 4	Unimplomon	tod: Pood as '	0'						
DIL 7-4	ommpiemen	leu. Redu as	0						
bit 3-0	TSEL<3:0>: S	Scanner Data 1	Frigger Input S	Selection bits					
1111-1001 = Reserved 1000 = TMR6_postscaled									
	0111 = IMR5	5 output							

REGISTER 13-18: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

1000 = TMR6_postscaled 0111 = TMR5_output 0110 = TMR4_postscaled 0101 = TMR3_output 0100 = TMR2_postscaled 0011 = TMR1_output 0010 = TMR0_output 0001 = CLKREF_output

0000 = LFINTOSC

15.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 17.0** "**Peripheral Pin Select** (**PPS**) **Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over digital outputs and force the digital output driver into a high-impedance state.

The pin function priorities are as follows:

- 1. Configuration bits
- 2. Analog outputs (disable the input buffers)
- 3. Analog inputs
- 4. Port inputs and outputs from PPS

15.2 PORTx Registers

In this section the generic names such as PORTx, LATx, TRISx, etc. can be associated with PORTA, PORTB, PORTC and PORTD. For availability of PORTD refer to Table 15-1. The functionality of PORTE is different compared to other ports and is explained in a separate section.

15.2.1 DATA REGISTER

PORTx is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISx (Register 15-2). Setting a TRISx bit ('1') will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISx bit ('0') will make the corresponding PORTx pin an output (i.e., it enables output driver and puts the contents of the output latch on the selected pin). Example 15-1 shows how to initialize PORTx.

Reading the PORTx register (Register 15-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATx).

The PORT data latch LATx (Register 15-3) holds the output port data and contains the latest value of a LATx or PORTx write.

EXAMPLE 15-1: INITIALIZING PORTA

;	This	code	exa	ample	e illus	strates	
;	initi	ializi	lnq	the	PORTA	register.	The

; other ports are initialized in the same

	OCHCI	POLCO	arc	INTETATIOCA	T 11	CIIC	ban
:	manne	r					

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'11111000'	;Set RA<7:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

15.2.2 DIRECTION CONTROL

The TRISx register (Register 15-2) controls the PORTx pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISx register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

15.2.3 ANALOG CONTROL

The ANSELx register (Register 15-4) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELx bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELx bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELx bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

15.2.4 OPEN-DRAIN CONTROL

The ODCONx register (Register 15-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONx bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONx bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

EQUATION 23-2: R-C CALCULATIONS

- VPEAK = External voltage source peak voltage
- f = External voltage source frequency
- C = Series capacitor
- R = Series resistor
- V_{c} = Peak capacitor voltage
- Φ = Capacitor induced zero crossing phase advance in radians
- $T_\Phi\,$ = Time ZC event occurs before actual zero crossing

$$Z = \frac{VPEAK}{3 \times 10^{-4}}$$
$$XC = \frac{1}{2\pi fC}$$
$$R = \sqrt{Z^2 - Xc^2}$$
$$VC = XC(3 \times 10^{-4})$$
$$\Phi = Tan^{-1}\left(\frac{XC}{R}\right)$$
$$T\Phi = \frac{\Phi}{2\pi f}$$

EXAMPLE 23-1: R-C CALCULATIONS

VRMS = 120
VPEAK = VRMS *
$$\sqrt{2}$$
 = 169.7
f = 60 Hz
C = 0.1 µF

$$Z = \frac{VPEAK}{3 \times 10^{-4}} = \frac{169.7}{3 \times 10^{-4}} = 565.7 k\Omega$$
XC = $\frac{1}{2\pi fC} = \frac{1}{(2\pi \times 60 \times 1 \times 10^{-7})} = 26.53 k\Omega$
R = $\sqrt{(Z^2 \times Xc^2)} = 565.1 k\Omega$ (computed)
R = 560k Ω (used)
ZR = $\sqrt{R^2 + Xc^2} = 560.6 k\Omega$ (using actual resistor)
IPEAK = $\frac{VPEAK}{ZR} = 302.7 \times 10^{-6}$
VC = XC × Ipeak = 8.0V
 $\Phi = Tan^{-1}(\frac{XC}{R}) = 0.047$ radians
T $\Phi = \frac{\Phi}{2\pi f} = 125.6 \mu s$

23.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 23-3.

EQUATION 23-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 23-4.

EQUATION 23-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{CPINV})}{V_{CPINV}}$$

When External Signal is relative to VDD:

$$R_{PULLDOWN} = \frac{R_{SERIES}(VCPINV)}{(VDD - VCPINV)}$$

24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC18(L)F2x/4xK40 family has one instance of the CWG module.

The CWG has the following features:

- Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

24.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 24.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 24.10 "Auto-Shutdown"**.

24.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE<2:0> bits of the CWG1CON0 register:

- Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 24.10 "Auto-Shutdown"

Note: Except as noted for Full-bridge mode (Section 24.2.3 "Full-Bridge Modes"), mode changes should only be performed while EN = 0 (Register 24-1).

24.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 24-2. A non-overlap (dead-band) time is inserted between the two outputs to prevent shoot through current in various power supply applications. Dead-band control is described in **Section 24.6 "Dead-Band Control"**. The output steering feature cannot be used in this mode. A basic block diagram of this mode is shown in Figure 24-1.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

FIGURE 24-15: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (REN = 0, LSAC = 01, LSBD = 01)

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

FIGURE 26-3: SPI MASTER/SLAVE CONNECTION

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 26-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode
 - (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device. If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 26-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

26.6.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

26.7 Register Definitions: I²C Mode

The MSSPx module has seven registers for I^2C operation.

These are:

- MSSP Status Register (SSPxSTAT)
- MSSP Control Register 1 (SSPxCON1)
- MSSP Control Register 2 (SSPxCON2)
- MSSP Control Register 3 (SSPxCON3)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSP Address Register (SSPxADD)
- I²C Slave Address Mask Register (SSPxMSK)
- MSSP Shift Register (SSPSR) not directly accessible

SSPxCON1, SSPxCON2, SSPxCON3 and SSPxSTAT

are the Control and Status registers in I²C mode operation. The SSPxCON1, SSPxCON2, and SSPxCON3 registers are readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write. SSPSR is the Shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from. SSPxADD contains the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

SSPxMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPxADD; it is only accessible when the SSPM<3:0> bits are specifically set to permit access. In receive operations, SSPSR and SSPxBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set. During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPSR. After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

26.10.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

26.10.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

The WCOL bit must be cleared by software before the next transmission.

26.10.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

26.10.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.

- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

FIGURE 31-9: DIFFERENTIAL CVD WITH GUARD RING OUTPUT WAVEFORM

Precharge Time 1-255 TINST	Acquisition/ Sharing Time 1-255 TINST	Conversion Time (Traditional Timing of ADC Conversion) (Tap: Tap: Tap: Tap: Tap: Tap: Tap: Tap:					
	(TACQ)	ICY - IAD IAD1 IAD2 IAD3 IAD4 IAD5 IAD6 IAD7 IAD8 IAD9 IAD10 IAD11					
External and Internal Channels are charged/discharged	External and Internal Channels share charge	Conversion starts Holding capacitor CHOLD is disconnected from analog input (typically 100 ns)					
If ADPRE ≠ 0	If ADACQ ≠ 0	If ADPRE = 0 If ADACQ = 0 (Traditional Operation Start) On the following cycle: AADRES0H:AADRES0L is loaded, ADIF bit is set, GO/DONE bit is cleared					

31.4.5 ADDITIONAL SAMPLE AND HOLD CAPACITANCE

Additional capacitance can be added in parallel with the internal sample and hold capacitor (CHOLD) by using the ADCAP register. This register selects a digitally programmable capacitance which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 31-11.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	_	_		PCH<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as 'd)'				
bit 2-0	PCH<2:0>: C	omparator Non	-Inverting Inp	out Channel Se	lect bits		

REGISTER 32-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

			-
111	=	AV ss	

110 = FVR Buffer2

101 = DAC_Output

100 = CxPCH not connected

011 = CxPCH not connected

010 = CxPCH not connected

- 001 = CxIN1+
- 000 = CxIN0+

REGISTER 32-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	—	—	_	—	—	MC2OUT	MC1OUT
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1 MC2OUT: Mirror copy of C2OUT bit

bit 0	MC1OUT: Mirror copy of C1OUT bit
-------	----------------------------------

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	_	OUT	RDY	—	-	INTH	INTL
bit 7		•	•			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 7	EN: High/Low	-voltage Detec	t Power Enab	ole bit			
	1 = Enables	HLVD, powers	up HLVD circ	cuit and suppo	rting reference of	circuitry	
	0 = Disables	s HLVD, power	s down HLVD	and supportin	g circuitry		
bit 6	Unimplemen	ted: Read as ')')				
bit 5	OUT: HLVD C	comparator Out	tput bit				
	1 = Voltage	\leq selected dete	ection limit (Hl	_VDL<3:0>)			
	0 = Voltage	≥ selected dete	ection limit (Hl	_VDL<3:0>)			
bit 4	RDY: Band G	ap Reference '	Voltages Stab	le Status Flag	bit		
	1 = Indicates	s HLVD Module	e is ready and	l output is stab	le		
	0 = Indicates	s HLVD Module	e is not ready				
bit 3-2	Unimplemen	ted: Read as ') '				
bit 1	INTH: HLVD F	Positive going	(High Voltage)) Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \geq se	elected detecti	on limit (HLVDS	EL<3:0>)	
	0 = HLVDIF	will not be set					
bit 0	INTL: HLVD N	Vegative going	(Low Voltage) Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \leq s	elected detect	ion limit (HLVDS	SEL<3:0>)	
	U = HLVDIF	will not be set					

REGISTER 33-2: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	—	OUT	RDY	-	-	INTH	INTL	476
HLVDCON1	-	-	-	-		SEL<3:0>			
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	166
PIR2	HLVDIF	ZCDIF	-	I	I	-	C2IF	C1IF	169
PIE2	HLVDIE	ZCDIE	-	-	-	-	C2IE	C1IE	177
IPR2	HLVDIP	ZCDIP	-	-	-	-	C2IP	C1IP	185
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	64

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

TABLE 35-2: INSTRUCTION SET

Mnemonic,		Deperimtion	Qualas	16-Bit Instruction Word				Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	0 u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow						,	
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

TBLWT	Table W	rite						
Syntax:	TBLWT (*	*; *+; *-; +*	f)					
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TABLAT) \rightarrow Holding Register; (TABLAT) \rightarrow Holding Register;							
Status Affected:	None							
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*				
Description:	=3 +* This instruction uses the three LSBs of TBLPTR to determine which of the eight holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 11.1 "Program Flash Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to cache byte in the program memory. TBLPTR has a 2-MByte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-increment							
Words:	1							
Cycles:	2							
Q Cycle Activity:								
	Q1	Q2	Q3	Q4				
	Decode	No	No	No				
	N1-	operation	operation	operation				
	operation	operation (Read	operation	operation (Write to				

TBLWT Table Write (Continued)

Example1: TBLWT *+;		
Before Instruction		
TABLAT	=	55h
	=	00A356h
(00A356h)	=	FFh
After Instructions (table write	comp	letion)
TABLAT	=	55h
	=	00A357h
(00A356h)	=	55h
Example 2: TBLWT +*;		
•		
Before Instruction		
Before Instruction TABLAT	=	34h
Before Instruction TABLAT TBLPTR	= =	34h 01389Ah
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah)	= = =	34h 01389Ah FFh
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER	= = =	34h 01389Ah FFh
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh)	= = =	34h 01389Ah FFh FFh
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh) After Instruction (table write of	= = = comple	34h 01389Ah FFh FFh etion)
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh) After Instruction (table write of TABLAT	= = = comple	34h 01389Ah FFh FFh etion) 34h
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh) After Instruction (table write of TABLAT TBLPTR HOLDING REGISTER	= = = comple = =	34h 01389Ah FFh FFh etion) 34h 01389Bh
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh) After Instruction (table write of TABLAT TBLPTR HOLDING REGISTER (01389Ah)	= = = comple = = =	34h 01389Ah FFh FFh etion) 34h 01389Bh FFh
Before Instruction TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER (01389Bh) After Instruction (table write of TABLAT TBLPTR HOLDING REGISTER (01389Ah) HOLDING REGISTER	= = = comple = = =	34h 01389Ah FFh FFh etion) 34h 01389Bh FFh

TABLAT)

Holding Register)

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.20		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.50	0.55	0.70		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (6/2016)

Initial release of this document.

Revision B (9/2016)

Updated Peripheral Module, Memory and Core features descriptions on cover page. Updated the PIC18(L)F2x/4xK40 Family Types Table. Updated Examples 11-1, 11-3, 11-5 and 11-6; Figures 14-1 and 31-2; Registers 4-2, 4-5, 13-18 and 31-6; Sections 1.2, 4.4.1, 4.5, 4.5.4, 17.3, 17.5, 17.7, 18.1, 18.1.1, 18.1.1.1, 18.1.2, 18.1.6, 18.3, 18.4, 18.7, 19.0, 19.8.1, 20.0, 21.3, 25.3, and 26.3; Tables 4-2, 37-2, 37-3, 37-5, 37-13 and 37-14.

Revision C (4/2017)

Updated Cover page. Updated Example 13-1; Figures 6-1 and 11-11; Registers 3-6, 17-2, 19-1, and 26-9; Sections 1.1.2, 4.3, 13.8, 23.5, 26.5.1, 26.10, 31.1.2, and 31.1.6; Tables 4-1, 10-5, 37-11 and 37-15.

New Timer 2 chapter.

Removed Section 4.4.2 and 31.2.3.

Added Section 23.5.1