

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k40-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10	Device Overview	9
2.0	Guidelines for Getting Started with PIC18(L)F24/25K40 Microcontrollers	
3.0	Device Configuration	
4.0	Oscillator Module (with Fail-Safe Clock Monitor)	
5.0	Reference Clock Output Module	
6.0	Power-Saving Operation Modes	
7.0	Peripheral Module Disable (PMD)	
8.0	Resets	
9.0	Windowed Watchdog Timer (WWDT)	
10.0	Memory Organization	
11.0	Nonvolatile Memory (NVM) Control	
12.0	8x8 Hardware Multiplier	
13.0	Cyclic Redundancy Check (CRC) Module with Memory Scanner	
14.0	Interrupts	
15.0	I/O Ports	193
16.0	Interrupt-on-Change	
17.0	Peripheral Pin Select (PPS) Module	
18.0	Timer0 Module	
19.0	Timer1/3/5 Module with Gate Control	221
20.0	Timer2/4/6 Module	
21.0	Capture/Compare/PWM Module	
22.0	Pulse-Width Modulation (PWM)	
23.0	Zero-Cross Detection (ZCD) Module	
24.0	Complementary Waveform Generator (CWG) Module	
25.0	Data Signal Modulator (DSM) Module	
26.0	Master Synchronous Serial Port (MSSP1)Module	
27.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
28.0	Fixed Voltage Reference (FVR)	
29.0	Temperature Indicator Module	
30.0	5-Bit Digital-to-Analog Converter (DAC) Module	
31.0	Analog-to-Digital Converter with Computation (ADC2) Module	
32.0	Comparator Module	
33.0	High/Low-Voltage Detect (HLVD)	
34.0	In-Circuit Serial Programming™ (ICSP™)	477
35.0	Instruction Set Summary	
36.0	Development Support	
37.0	Electrical Specifications	533
38.0	DC and AC Characteristics Graphs and Tables	563
39.0	Packaging Information	
Appe	endix A: Revision History	577
Appe	endix B: Device Differences	578
The I	Microchip Website	579
Cust	omer Change Notification Service	
Cust	omer Support	579
Prod	uct Identification System	580

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	WDTE<1:0>				WDTCPS<4:0	>	
bit 7			<u>.</u>				bit 0

Legend: R = Readable bit W = Writable bit U = Unir

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

		WDTPS at POR							
WDTCPS	Value	Divider Ratio		Typical Time Out (Fɪn = 31 kHz)	of WDTPS?				
11111	01011	1:65536 2 ¹⁶		2s	Yes				
10011	10011		_						
 11110	 11110	1:32	2 ⁵	1 ms	No				
10010	10010	1:8388608	2 ²³	256s					
10001	10001	1:4194304	2 ²²	128s					
10000	10000	1:2097152	2 ²¹	64s					
01111	01111	1:1048576	2 ²⁰	32s					
01110	01110	1:524299 2 ¹⁹		16s					
01101	01101	1:262144 2 ¹⁸		8s					
01100	01100	1:131072 2 ¹⁷		4s					
01011	01011	1:65536	2 ¹⁶	2s					
01010	01010	1:32768	2 ¹⁵	1s					
01001	01001	1:16384	2 ¹⁴	512 ms	No				
01000	01000	1:8192	2 ¹³	256 ms					
00111	00111	1:4096	2 ¹²	128 ms					
00110	00110	1:2048	2 ¹¹	64 ms					
00101	00101	1:1024 2 ¹⁰		32 ms					
00100	00100	1:512	2 ⁹	16 ms					
00011	00011	1:256	2 ⁸	8 ms					
00010	00010	1:128	2 ⁷	4 ms					
00001	00001	1:64	2 ⁶	2 ms					
00000	00000	1:32	2 ⁵	1 ms					

5.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner and Timer module.

The reference clock output module has the following features:

- Selectable clock source using the CLKRCLK register
- Programmable clock divider
- · Selectable duty cycle

FIGURE 5-1: CLOCK REFERENCE BLOCK DIAGRAM

8.2 Register Definitions: Power Control

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-0/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7	•		•			•	bit 0
Legend:							
HC = Bit is clea	ared by hardwa	are		HS = Bit is se	t by hardware		
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7 STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred (more CALLs than fit on the stack) 0 = A Stack Overflow has not occurred or set to '0' by firmware							
bit 6	STKUNF: Sta	ack Underflow F	-lag bit				
	 1 = A Stack Underflow occurred (more RETURNS than CALLS) 0 = A Stack Underflow has not occurred or set to '0' by firmware 						
bit 5	WDTWV: Wa	tchdog Windov	Violation bit				
	 1 = A WDT window violation has not occurred or set to '1' by firmware 0 = A CLRWDT instruction was issued when the WDT Reset window was closed (set to '0' in hardware when a WDT window violation Reset occurs) 						0' in hardware
bit 4	RWDT: WDT	Reset Flag bit					
	1 = A WDT $0 = A WDT$	overflow/time-c overflow/time-c	out Reset has out Reset has	not occurred o occurred (set to	r set to '1' by fir o '0' in hardware	mware e when a WDT	Reset occurs)
bit 3	RMCLR: MCI	LR Reset Flag	bit				
	$1 = A \frac{MCLF}{MCLF}$	Reset has no Reset has oc	t occurred or s curred (set to	et to '1' by firm 0' in hardware	ware when a MCLR	Reset occurs)	
bit 2	RI: RESET INS	struction Flag b	it				
	1 = A RESET 0 = A RESE instruction	r instruction ha r instruction h on)	is not been ex nas been exe	ecuted or set tecuted (set to	oʻ1'by firmwar ʻ0'in hardwar	e e upon execu	ting a RESET
bit 1	POR: Power-	on Reset Statu	s bit				
	1 = No Pow 0 = A Powe	er-on Reset oc r-on Reset occ	curred or set t urred (set to 'd	oʻ1' by firmwa)' in hardware v	re when a Power-o	on Reset occur	rs)
bit 0	BOR: Brown-	out Reset State	us bit				
	1 = No Brow 0 = A Brown	vn-out Reset or n-out Reset occ	ccurred or set curred (set to '	to '1' by firmwa 0' in hardware	are when a Brown-	out Reset occu	urs)

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

FC1n TMRSL Holding Register for the Least Significant Byte of the 16-bit TMRS Register 0000000 FC0h T2RST — — — RSEL<3.0> 0000 FBrh T2RLKCON — — — — RSEL<3.0> 0000 FBrh T2RLT PSYNC CPOL CSYNC MODE<4.0> 00000000 FBbh T2CON ON CKPS OUTPS<3.0> 00000000 FBbh T2RR TMR2 Period Register 11111111 11111111 11111111 FBbh T2RR Holding Register for the 8-bit TMR2 Register 00000000 60000000 FBah T4RR Holding Register for the 8-bit TMR2 Register 00010000 653.0> 0000 FBah T4CLKCON — — — RSEL<3.0> 0000 FBah T4CLKCON ON CKPS<2.0> OUTPS<3.0> 00000000 FBah T4CN ON CKPS<2.0> OUTPS<3.0> 00000000 FBah T6CN ON	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FC0h T2RST — — — — — RSEL<3.0> 000 FBFh T2CLKC0N — — — — — 000 FBFh T2CLKC0N ON CKP3 MODE<4.0> 0000000 FBDh T2CN ON CKP3<2.0> MODE<4.0> 0000000 FBCh T2PR TMR2 Period Register 1111111 1111111 FBBh T2TMR Holding Register/strike 8-bit TMR2 Register 0000 0000000 FBAh T4RST — — — — RSEL<3.0> 0000 FBAh T4CLKCON — — — — RSEL<3.0> 0000 FBAh T4CN ON CKPS-2.0> 0000000 0000000 0000000 FBAh T4CN NMR4 Period Register 00000000 0000000 FBAh T4CN NON CKPS-2.0> OUTPS<3.0> 00000000 FBAh T6CN <td>FC1h</td> <td>TMR5L</td> <td>Holding Registe</td> <td>er for the Least</td> <td>Significant Byt</td> <td>e of the 16-bit T</td> <td>MR5 Register</td> <td></td> <td></td> <td></td> <td>00000000</td>	FC1h	TMR5L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR5 Register				00000000
FBFn T2CLKCON — — — — CS<3,0> 000 FBEn T2H.T PSYNC CPOL CSYNC MODE<4.0> 0000000 FBDn T2CON ON CKPS<2.0> OUTPS<3.0> 0000000 FBCn T2PR TMR2 Period Register 1111111 1111111 FBBn TZMR Holding Register for the 8-bit TMR2 Register 0000000 0000 FBAh T4RST — — — RSEL<3.0> 0000 FBAh T4RLT PSYNC CPOL CSYNC MODE<4.0> 0000000 FBAh T4RT PSYNC CPOL CSYNC MODE<4.0> 0000000 FBAh T4RR Holding Register 1111111 1111111 1111111 1111111 1111111 FBAh TARR Holding Register — — RSEL<3.0> 0000 FBAh TGRST — — — RSEL<3.0> 0000 FBAh TGRST<	FC0h	T2RST	—	—	—	—		RSEL	.<3:0>		0000
FBE T2HT PSYNC CPOL CSYNC MODE<4.0> 0000000 FBDh T2CON ON CKPS<2.0> OUTPS<3:0> 0000000 FBC T2PR TMR2 Period Register 1111111 1111111 FBBh T4TR Holding Register for the 8-bit TMR2 Register 0000000 0000000 FBBh T4RST — — — — 0 0000000 FBBh T4RST — — — — RSEL<3:0> 0000 FBBh T4HLT PSYNC CPOL CSYNC MODE<4:0> 00000000 FBBh T4HLT PSYNC CPOL CSYNC MODE<4:0> 00000000 FBBh T4HR MIR4 Period Register 11111111 11111111 11111111 FBBh T4HR Holding Register for the 8-bit TMR4 Register 00000000 00000000 FBBh T6LKCON — — — RSEL<3:0>	FBFh	T2CLKCON	—	—	—	—		CS<	:3:0>		0000
FBD T2CON ON CKPS<2.0> OUTPS<3.0> 0000000 FBD T2PR TMR2 Period Register 1111111 FBB T2TMR Holding Register for the 8-bit TMR2 Register 00000000 FBA T4RST — — — RSEL<3.0> 0000 FBA T4RST — — — — 0000 FBA T4RST — — — — 0000 FBBA T4RST — — — — 0000 FBBA T4CKON ON CKPS<2.0> OUTPS<3.0> 00000000 FBBA T4CN ON CKPS<2.0> OUTPS<3.0> 0000 FBA T4RR Holding Register for the 8-bit TMR4 Register 00000000 0000 0000 FBA T6CLKCON — — — RSEL<3.0> 0000 FBA T6RST — — — RSEL 0000 FBA T6CLKC	FBEh	T2HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000
FBCh T2PR TMR2 Period Register for the 8-bit TMR2 Register 1111111 FBBh T2TMR Holding Register for the 8-bit TMR2 Register 00000000 FBAh T4RST — — — — C000000 FBAh T4RST — — — — CS<3.0> 0000 FBBh T4LCKCON — — — CS<3.0> 00000000 FBBh T4LT PSYNC CPOL CSYNC MODE<4.0> 0000000 FBBh T4PR TMR4 Period Register 11111111 11111111 11111111 FBSh T4TMR Holding Register for the 8-bit TMR4 Register 0000000 0000000 0000000 FB4h T6RST — — — — 0000 00000000 FB3h T6CLKCON — — — — CS<3.0> 0000 FB4h T6RST — — — — CS<3.0> 0000 FB4h T6RCLKCON — — — — CS<3.0> 00000000 FB4h	FBDh	T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000
FBB T2TMR Holding Register for the 8-bit TMR2 Register 0000000 FBA T4RST — — — RSEL<3:0> 0000 FBB T4CLKCON — — — CS<3:0> 0000 FBB T4LLT PSYNC CPOL CSYNC MODE<4:0> 0000000 FB7 T4CON ON CKPS OUTPS<3:0> 0000000 FB6 T4PR TMR4 Period Register 0000000 11111111 FB6 T4PR TMR4 Period Register 0000000 0000 FB6 T4PR TMR4 Period Register 11111111 1111111 FB6 T4PR Molding Register for the 8-bit TMR4 Register 0000 FB3h T6CLKCON — — — 0000 FB4h T6RST — — — 0000 FB3h T6CLKCON — — — 0000 FB4h T6RR TMR6 Period Register 00000000 01111111	FBCh	T2PR	TMR2 Period R	legister							11111111
FBAh T4RST — — — — RSEL<3.0> 0000 FB9h T4CLKCON — — — CS<3.0> 0000 FB8h T4HLT PSYNC CPOL CSYNC MODE<4:0> 00000000 FB7h T4CON ON CKPS<2:0> OUTPS<3:0> 00000000 FB8h T4PR TMR4 Period Register 11111111 1111111 11111111 FB8h T4TMR Holding Register for the 8-bit TMR4 Register 00000000 70000 FB4h T6RST — — — RSEL<3:0> 0000 FB3h T6CLKCON — — — RSEL<3:0> 0000 FB3h T6CLKCON — — — RSEL<3:0> 0000 FB4h T6RST PSYNC CPOL CSYNC MODE<	FBBh	T2TMR	Holding Registe	er for the 8-bit T	MR2 Register						00000000
FB9h T4CLKCON — — — — CS<3:0> 0000 FB8h T4HLT PSYNC CPOL CSYNC MODE<4:0> 00000000 FB7h T4CON ON CKPS<2:0> OUTPS<3:0> 00000000 FB8h T4PR TMR4 Period Register 11111111 1111111 11111111 FB8h T4TMR Holding Register for the 8-bit TMR4 Register 00000000 11111111 FB8h T6RST — — — — RSEL<3:0> 0000 FB3h T6CLKCON — — — — RSEL<3:0> 0000 FB2h T6HLT PSYNC CPOL CSYNC MODE<4:0> 0000000 FB1h T6CON — — — — 000 FB2h T6HR Holding Register CSYNC OUTPS<3:0> 0000000 FAEh T6TRR Holding Register for the 8-bit TMR6 Register 0000000 11111111 FAEh CCPTMRS <td>FBAh</td> <td>T4RST</td> <td colspan="6"> RSEL<3:0></td> <td>0000</td>	FBAh	T4RST	RSEL<3:0>						0000		
FB8h T4HLT PSYNC CPOL CSYNC MODE<4:0> 0000000 FB7h T4CON ON CKPS<2:0> OUTPS<3:0> 0000000 FB8h T4PR TMR4 Period Register 1111111 1111111 1111111 FB5h T4TMR Holding Register for the 8-bit TMR4 Register 00000000 0000000 FB4h T6RST — — — RSEL<3:0> 0000 FB3h T6CLKCON — — — RSEL<3:0> 0000 FB2h T6HLT PSYNC CPOL CSYNC MODE MODE 0000000 FB1h T6CON ON CKPS<2:0> OUTPS<3:0> 0000000 FB1h T6CN ON CKPS<2:0> OUTPS<3:0> 0000000 FA6h CPOR — — — CS3:0> 0000 FA6h CPGRAP P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FA6h CCP1CON EN <t< td=""><td>FB9h</td><td>T4CLKCON</td><td>—</td><td>—</td><td>—</td><td>—</td><td></td><td>CS<</td><td>:3:0></td><td></td><td>0000</td></t<>	FB9h	T4CLKCON	—	—	—	—		CS<	:3:0>		0000
FB7h T4CON ON CKPS<2.0> OUTPS<3.0> 0000000 FB6h T4PR TMR4 Period Register 11111111 1111111	FB8h	T4HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000
FB6hT4PRTMR4 Period Register1111111FB5hT4TMRHolding Register for the 8-bit TMR4 Register0000000FB4hT6RST————FB3hT6CLKCON————CS<3.0>0000FB2hT6HLTPSYNCCPOLCSYNCMODE<4:0>00000000FB1hT6CONONCKPS<2:0>OUTPS<3:0>0000000FB0hT6PRTMR6 Period Register1111111111111111FAFhT6TMRHolding Register for the 8-bit TMR6 Register0000000FAEhCCPTMRSP4TSEL<1:0>P3TSEL<1:0>C1TSEL<1:0>C1TSEL<1:0>FAChCCP1CAP—————00FAChCCP1CAP————CTS<1:0>0000000FABhCCPR1HCapture/Compare/PWM Register 1 (MSB)xxxxxxxxxxxxxxxFAAhCCP2CAP—————00FA8hCCP2CAP—————0000FA8hCCP2CAP—————00FA8hCCP2CAP—————00FA8hCCP2CAP—————00FA8hCCP2CAP—————	FB7h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000
FB5hT4TMRHolding Register for the 8-bit TMR4 Register0000000FB4hT6RST0000FB3hT6CLKCON0000FB2hT6HLTPSYNCCPOLCSYNCMODE<4:0>0000000FB1hT6CONONCKPS<2:0>OUTPS<3:0>00000000FB0hT6PRTMR6 Period Register1111111111111111FAFhT6TMRHolding Register for the 8-bit TMR6 Register00000000FAEhCCPTMRSP4TSEL<1:0>P3TSEL<1:0>C2TSEL<1:0>C1TSEL<1:0>01010101FAChCCP1CAP <td>FB6h</td> <td>T4PR</td> <td>TMR4 Period R</td> <td>legister</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>11111111</td>	FB6h	T4PR	TMR4 Period R	legister			•				11111111
FB4h T6RST - - - - RSEL<3:0> 000 FB3h T6CLKCON - - - CS<3:0> 0000 FB2h T6HLT PSYNC CPOL CSYNC MODE<4:0> 00000000 FB1h T6CON ON CKPS<2:0> OUTPS<3:0> 00000000 FB0h T6PR TMR6 Period Register 11111111 11111111 11111111 FAFh T6TMR Holding Register for the 8-bit TMR6 Register 00000000 0000000 FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP - - - - - - - - - - - - - - 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 000	FB5h	T4TMR	Holding Registe	er for the 8-bit T	MR4 Register						00000000
FB3h T6CLKCON CS<3:0> 000 FB2h T6HLT PSYNC CPOL CSYNC MODE<4:0> 0000000 FB1h T6CON ON CKPS<2:0> OUTPS<3:0> 0000000 FB0h T6PR TM66 Period Register 1111111 1111111 1111111 FAFh T6TMR Holding Register for the 8-bit TMR6 Register 0000000 01010101 FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP - 0000000 01010101 FACh CCP1CAP - 0000000 XXXXXXX	FB4h	T6RST	—	—	—	—		RSEL	<3:0>		0000
FB2hT6HLTPSYNCCPOLCSYNCMODE<4:0>0000000FB1hT6CONONCKPS<2:0>OUTPS<3:0>0000000FB0hT6PRTMR6 Period Register1111111FAFhT6TMRHolding Register for the 8-bit TMR6 Register00000000FAEhCCPTMRSP4TSEL<1:0>P3TSEL<1:0>C2TSEL<1:0>C1TSEL<1:0>FAChCCP1CAPFAChCCP1CONEN-OUTFMTMODE<3:0>0-000000FABhCCPR1LCapture/Compare/PWM Register 1 (MSB)xxxxxxxxxxxxxxxxxxxxxxxFAAhCCP2CAPFA8hCCP2CONEN-OUTFMTMODE<3:0>0-000000FA7hCCPR2LCapture/Compare/PWM Register 2 (MSB)xxxxxxxxxxxxxxxxxxxxxxxxFA6hCCPR2LCapture/Compare/PWM Register 2 (LSB)xxxxxxxxxxxxxxxxFA4hPWM3CONEN-OUTPOLFA4hPWM3CCH-OUTPOLFA4hPWM3CCHEN-OUTPOLFA4hPWM3DCHEN-OUTPOL <td< td=""><td>FB3h</td><td>T6CLKCON</td><td>—</td><td>—</td><td>—</td><td>—</td><td></td><td>CS<</td><td>:3:0></td><td></td><td>0000</td></td<>	FB3h	T6CLKCON	—	—	—	—		CS<	:3:0>		0000
FB1h T6CON ON CKPS<2:0> OUTPS<3:0> 0000000 FB0h T6PR TMR6 Period Register 1111111 1111111 1111111 FAFh T6TMR Holding Register for the 8-bit TMR6 Register 00000000 0000000 FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP — — — — — — 0-000000 FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxxx xxxxxxxx xxxxxxxx XXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FB2h	T6HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000
FB0h T6PR TMR6 Period Register 1111111 FAFh T6TMR Holding Register for the 8-bit TMR6 Register 00000000 FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP — — — — — O 0000000 FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxxx xxxxxxxx FAAh CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxxxxxx xxxxxxxx FA9h CCP2CAP — — — — — — — — — — — — — …	FB1h	T6CON	ON CKPS<2:0> OUTPS<3:0>						00000000		
FAFh T6TMR Holding Register for the 8-bit TMR6 Register 0000000 FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP — — — — — 00 FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxx xxxxxxxx FAAh CCP2CAP — — — — — 00 FA8h CCP2CAP — — OUT FMT MODE<3:0> 0-000000 FA8h CCP2CAP — — — — — 00 FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 FA7h CCP2CN EN — OUT FMT MODE<3:0> 0-000000 FA7h CCP2L Capture/Compare/PWM Register 2 (MSB) xxxxxxxxxx xxxxxxxx <td>FB0h</td> <td>T6PR</td> <td>TMR6 Period R</td> <td colspan="7">TMR6 Period Register</td> <td>11111111</td>	FB0h	T6PR	TMR6 Period R	TMR6 Period Register							11111111
FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0> 01010101 FADh CCP1CAP — — — — — CTS<1:0> 01010101 FADh CCP1CAP — — — — — CTS<1:0> 00 FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1L Capture/Compare/PWM Register 1 (MSB) xxxxxxxx xxxxxxx xxxxxxx FAAh CCP2CAP — — — — CTS<1:0> 00 FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxx xxxxxxx xxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx xxxxxxx FA5h PWM3CON EN — OUT POL — — 0-000 FA4h PWM3	FAFh	T6TMR	Holding Registe	Holding Register for the 8-bit TMR6 Register							00000000
FADh CCP1CAP — — — — — — CTS<1:0> 00 FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxxx xxxxxxxx xxxxxxxx FAAh CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxxxxxx xxxxxxxx xxxxxxxx FA9h CCP2CAP — — — — — — — O-000000 FA8h CCP2CAP — — — — — MODE<3:0> 0-000000 FA7h CCP2CAP — — — — — — — — — — — — COP2CAP — — — — MODE<3:0> 0-000000 FA7h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 XXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	FAEh	CCPTMRS	P4TSEI	_<1:0>	P3TSE	EL<1:0>	C2TSE	EL<1:0>	C1TS	EL<1:0>	01010101
FACh CCP1CON EN — OUT FMT MODE<3:0> 0-000000 FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxxx xxxxxxxx FAAh CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxxxxxx xxxxxxxx FA9h CCP2CAP — — — — — CTS<1:0> 00 FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxxx xxxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx xxxxxxx FA5h PWM3CON EN — OUT POL — — 0-00 FA4h PWM3DCH EN — OUT POL — — 0-00	FADh	CCP1CAP	—	—	—	—	—	—	CTS	S<1:0>	00
FABh CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxxxxxx FAAh CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxxxxxx FA9h CCP2CAP — — — — CTS<1:0> 00 FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxxx xxxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx xxxxxxx FA5h PWM3CON EN — OUT POL — — 0-00-0 FA4h PWM3DCH EN — OUT POL — — 0-00-0	FACh	CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		0-000000
FAAhCCPR1LCapture/Compare/PWM Register 1 (LSB)xxxxxxFA9hCCP2CAPCTS<1:0>FA8hCCP2CONEN-OUTFMTMODE<3:0>0-000000FA7hCCPR2HCapture/Compare/PWM Register 2 (MSB)xxxxxxxxxxxxxxFA6hCCPR2LCapture/Compare/PWM Register 2 (LSB)xxxxxxxFA5hPWM3CONEN-OUTPOL0-00FA4hPWM3DCHDC<7:0>xxxxxxxxxxxxxxxxxxxxx	FABh	CCPR1H	Capture/Compa	are/PWM Regis	ster 1 (MSB)		•				xxxxxxxx
FA9h CCP2CAP — — — — — — CTS<1:0> 00 FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-000000 FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxxx xxxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx xxxxxxxx FA5h PWM3CON EN — OUT POL — — 0-000 FA4h PWM3DCH	FAAh	CCPR1L	Capture/Compa	are/PWM Regis	ster 1 (LSB)						xxxxxxxx
FA8h CCP2CON EN — OUT FMT MODE<3:0> 0-00000 FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxx xxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx xxxxxxx FA5h PWM3CON EN — OUT POL — — 0-000 FA4h PWM3DCH	FA9h	CCP2CAP	-	—	—	—	—	—	CTS	6<1:0>	00
FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxxxxx FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxxx FA5h PWM3CON EN — OUT POL — — 0-00 FA4h PWM3DCH	FA8h	CCP2CON	EN	—	OUT	FMT		MODE	=<3:0>		0-000000
FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxxxxx FA5h PWM3CON EN — OUT POL — — 0-00 FA4h PWM3DCH DC<7:0> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	FA7h	CCPR2H	Capture/Compa	are/PWM Regis	ster 2 (MSB)	L					xxxxxxxx
FA5h PWM3CON EN — OUT POL — — — 0-00 FA4h PWM3DCH DC<7:0> xxxxxxxx xxxxxxxx	FA6h	CCPR2L	Capture/Compa	are/PWM Regis	ster 2 (LSB)						xxxxxxxx
FA4h PWM3DCH DC<7:0> xxxxxxx	FA5h	PWM3CON	EN	—	OUT	POL	—	—	—	—	0-00
	FA4h	PWM3DCH				DC	<7:0>				xxxxxxxx
FA3h PWM3DCL DC<9:8> — — — — — — — xx	FA3h	PWM3DCL	DC<	9:8>	—	—	—	—	—	_	xx
FA2h PWM4CON EN — OUT POL — — — 0-00	FA2h	PWM4CON	EN	—	OUT	POL	—	_	—	—	0-00
FA1h PWM4DCH DC7:0> xxxxxxxx	FA1h	PWM4DCH	DC7:0>								xxxxxxxx
FA0h PWM4DCL DC<9:8> — — — — — — — — xx	FA0h	PWM4DCL	DC<9:8>						xx		
F9Fh BAUD1CON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 01-00-00	F9Fh	BAUD1CON	ABDOVF	RCIDL	-	SCKP	BRG16	—	WUE	ABDEN	01-00-00
F9Eh TX1STA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 00000010	F9Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010
F9Dh RC1STA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 00000000	F9Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000
F9Ch SP1BRGH EUSART1 Baud Rate Generator, High Byte 00000000	F9Ch	SP1BRGH			EUSA	RT1 Baud Rat	e Generator, Hi	gh Byte			00000000

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

 $\label{eq:legend: second sec$

Note 1: Not available on LF devices.

10.5 Register Definitions: Status

	0-2. SIAIO	0. SIA105					
U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	TO	PD	Ν	OV	Z	DC	С
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	<u>Un</u> implemen	ted: Read as '	0'				
bit 6	TO: Time-Out	t bit					
	1 = Set at po 0 = A WDT ti	wer-up or by ex me-out occurre	xecution of CI ed	RWDT OF SLEE	P instruction		
bit 5	PD: Power-De	own bit					
	1 = Set at po	wer-up or by e	xecution of CI	RWDT instructi	ion		
	0 = Set by ex	ecution of the	SLEEP instruc	ction			
bit 4	N: Negative b	it used for sign	ed arithmetic	(2's compleme	ent); indicates if	the result is ne	gative,
		⊥). It is negative					
	0 = The result	It is positive					
bit 3	OV: Overflow	bit used for sig	ned arithmeti	c (2's complen	nent); indicates	an overflow of	the 7-bit
	magnitude, w	hich causes the	e sign bit (bit I	7) to change st	tate.		
	1 = Overflow	occurred for c	urrent signed	arithmetic ope	ration		
hit O		ow occurred					
DIL Z	\mathbf{Z} : Zero bit 1 = The result	It of an arithme	tic or logic on	eration is zero			
	0 = The result	It of an arithme	tic or logic op	eration is not z	zero		
bit 1	DC: Digit Car	ry/Borrow bit (z	ADDWF, ADDLW	I, SUBLW, SUBV	vF instructions) ⁽	1)	
	1 = A carry-o	out from the 4th	low-order bit	of the result of	ccurred		
	0 = No carry-	-out from the 4t	h low-order b	it of the result	<i></i>		
bit 0	C: Carry/Borr	ow bit (ADDWF,	ADDLW, SUBL	W, SUBWF inst r	uctions) ^(1,2)		
	1 = A carry-o	out from the Mo	st Significant	bit of the resul	t occurred		
					uit occurred	o'a complement	at of the
Secon	nd operand.	nity is reversed			by accurring the tw	o s complementer	
2. For B	otate (RRE RU	F) instructions	this hit is load	led with either	the high or low-	order hit of the	Source

REGISTER 10-2: STATUS: STATUS REGISTER

2: For Rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the Source register.

FIGURE 10-7: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations F60h to FFFh (Bank 15) of data memory.

Locations below 60h are not available in this addressing mode.

Note that in this mode, the correct syntax is now: ADDWF [k], d where 'k' is the same as 'f'.

When 'a' = 1 (all values of f):

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	כי				
bit 2	bit 2 TMR5GIE: TMR5 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled						
bit 1	TMR3GIE: TM 1 = Enabled 0 = Disabled	/IR3 Gate Inter	rupt Enable bi	t			
bit 0	TMR1GIE: TM 1 = Enabled 0 = Disabled	/IR1 Gate Inter	rupt Enable bi	t			

REGISTER 14-15: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
		TMR0IP	IOCIP	_	INT2IP	INT1IP	INT0IP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-6	Unimplement	ted: Read as '	כ'				
bit 5	TMR0IP: Time	er0 Interrupt Pr					
	1 = High prior	rity					
	0 = Low prior	ity					
bit 4	IOCIP: Interru	ipt-on-Change	Priority bit				
	1 = High prior	rity					
	0 = Low prior		- 1				
bit 3	Unimplement	ted: Read as '),				
bit 2	INT2IP: Exter	nal Interrupt 2	Priority bit				
	1 = High priority						
	0 = Low priori	ity					
bit 1	INT1IP: Exter	nal Interrupt 1	Priority bit				
	1 = High prior	rity					
h it 0		ily	Dui auitu (bit				
DILU			Priority Dit				
	$\perp = \Pi g n prior$	rity					
		,					

REGISTER 14-18: IPR0: PERIPHERAL INTERRUPT PRIORITY REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_		INT2EDG	INT1EDG	INT0EDG	166
PIE0	—	—	TMR0IE	IOCIE	_	INT2IE	INT1IE	INTOIE	175
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	176
PIE2	HLVDIE	ZCDIE	—	_	—	_	C2IE	C1IE	177
PIE3	_	_	RC1IE	TX1IE	_		BCL1IE	SSP1IE	178
PIE4	_	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	179
PIE5	_	—	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	180
PIE6	_	—	—	_	—	_	CCP2IE	CCP1IE	181
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	_	CWG1IE	182
PIR0	_	—	TMR0IF	IOCIF	_	INT2IF	INT1IF	INT0IF	167
PIR1	OSCFIF	CSWIF	_	_	_	_	ADTIF	ADIF	168
PIR2	HLVDIF	ZCDIF	—	_	—	_	C2IF	C1IF	169
PIR3	_	—	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170
PIR4	_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	171
PIR5	_	—	_	_	_	TMR5GIF	TMR3GIF	TMR1GIF	172
PIR6	_	—	—	_	—	_	CCP2IF	CCP1IF	173
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	_	CWG1IF	174
IPR0	_	—	TMR0IP	IOCIP	_	INT2IP	INT1IP	INT0IP	183
IPR1	OSCFIP	CSWIP	_	_	_	_	ADTIP	ADIP	184
IPR2	HLVDIP	ZCDIP	—	_	—	_	C2IP	C1IP	185
IPR3	_	—	RC1IP	TX1IP	_	_	BCL1IP	SSP1IP	186
IPR4	_	—	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	187
IPR5	_	_	_	_	_	TMR5GIP	TMR3GIP	TMR1GIP	188
IPR6	—	—	—	_	_	_	CCP2IP	CCP1IP	189
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	190

TABLE 14-1:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
-------------	---

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for Interrupts.

15.4 Register Definitions: Port Control

REGISTER 1	5-1: PORT	x: PORTx RE	EGISTER ⁽¹⁾					
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0	
bit 7	•		•		•	•	bit 0	
Legend:	bit		hit		montod hit road	d ac (0)		
R = Readable bitW = Writable bit'1' = Bit is set'0' = Bit is cleared			x = Bit is unknown					
-n/n = Value at	n/n = Value at POR and BOR/Value at all other Resets							
bit 7.0		7.Dv0 Dort I/O	Value hite					

bit 7-0 **Rx<7:0>:** Rx7:Rx0 Port I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

TABLE 15-2: PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTE	—	_	_	_	RE3 ⁽²⁾	_	_	_

Note 1: Bits RB6 and RB7 read '1' while in Debug mode.

2: Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

FIGURE 24-11: SIMPLIFIED CWG BLOCK DIAGRAM (OUTPUT STEERING MODES)

24.3 Clock Source

The clock source is used to drive the dead-band timing circuits. The CWG module allows the following clock sources to be selected:

- FOSC (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit of the CWG1CLKCON register (Register 24-3). The system clock Fosc, is disabled in Sleep and thus dead-band control cannot be used.

24.4 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 24-1.

TABLE 24-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name	ISM<2:0>
CWG1PPS	Pin selected by CWG1PPS	000
CCP1	CCP1 Output	001
CCP2	CCP2 Output	010
PWM3	PWM3 Output	011
PWM4	PWM4 Output	100
CMP1	Comparator 1 Output	101
CMP2	Comparator 2 Output	110
DSM	Data signal modulator output	111

The input sources are selected using the ISM<2:0> bits in the CWG1ISM register (Register 24-4).

24.5 Output Control

24.5.1 CWG OUTPUTS

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register (see **Section 17.0 "Peripheral Pin Select (PPS) Module"**).

24.5.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLy bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

24.6 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

24.6.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 24-2.

24.6.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the dead-band counters.

FIGURE 26-4:

26.5.2 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

26.5.3 DAISY-CHAIN CONFIGURATION

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 26-5 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

27.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDxCON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPxBRG begins counting up using the BRG counter clock as shown in Figure 27-6. The fifth rising edge will occur on the RXx pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPxBRGH, SPxBRGL register pair, the ABDEN bit is automatically cleared and the RCxIF interrupt flag is set. The value in the RCxREG needs to be read to clear the RCxIF interrupt. RCxREG content should be discarded. When calibrating for modes that do not use the SPxBRGH register the user can verify that the SPxBRGL register did not overflow by checking for 00h in the SPxBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 27-6. During ABD, both the SPxBRGH and SPxBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPxBRGH and SPxBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 27.4.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPxBRGH:SPxBRGL register pair.

TABLE 27-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
1	1	Fosc/4	Fosc/32
1	0	Fosc/16	Fosc/128
0	1	Fosc/16	Fosc/128
0	0	Fosc/64	Fosc/512

Note: During the ABD sequence, SPxBRGL and SPxBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 27-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	<u>χ 0000h</u>		001Ch
RXx pin		Sta	rt_bit0_bit1_bit2_bit3_bit4_bit5_bit6_bit7_	Stop bit
BRG Clock		huuuu		ההתקההההההההההההההההה
	Set by User —	1 I		Auto Cleared
ABDEN bit]		1
RCIDL		1 1 1		
RCxIF bit (Interrupt)				
Read RCxREG		1 1		
SPxBRGL		 -	XXh	X 1Ch
SPxBRGH		•	XXh) 00h

31.5.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the ADCNT value is greater than or equal to ADRPT, even if Continuous Sampling mode (see **Section 31.5.8 "Continuous Sampling mode"**) is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

31.5.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until ADCNT value greater than or equal to ADRPT, then triggers threshold comparison), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 31-3 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 31-4).

31.5.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 31-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint
- The result of the calculation (ADERR) is compared to the upper and lower thresholds, ADUTH<ADUTHH:ADUTHL> and ADLTH<ADLTHH:ADLTHL> registers, to set the ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:
 - Never interrupt
 - Error is less than lower threshold
 - Error is greater than or equal to lower threshold
 - Error is between thresholds (inclusive)
 - Error is outside of thresholds
 - Error is less than or equal to upper threshold
 - Error is greater than upper threshold
 - Always interrupt regardless of threshold test results
 - If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1: The threshold tests are signed operations.2: If ADAOV is set, a threshold interrupt is

 If ADAOV is set, a threshold interrupt is signaled.

PIC18(L)F24/25K40

DEC	FSZ	Decremer	nt f, skip if 0)	DCF	SNZ	Decreme	nt f, skip if r	not 0		
Synt	ax:	DECFSZ f	-SZ f {,d {,a}}		Synta	x:	DCFSNZ f {,d {,a}}				
Ope	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	255 ,1] ,1]		Opera	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$			
Ope	ation:	(f) – 1 \rightarrow de skip if result	lest, ult = 0		Opera	Operation: $(f) - 1 \rightarrow dest,$ skip if result $\neq 0$					
Statu	Status Affected: None				Status	s Affected:	None				
Enco	oding:	0010	11da ffi	ff ffff	Enco	ding:	0100	11da ff:	ff ffff		
Desc	pription:	The content decremente placed in W placed back If the result which is alre and a NOP is it a 2-cycle i If 'a' is '0', th If 'a' is '0', th If 'a' is '0', an set is enable in Indexed L mode when tion 35.2.3 Oriented In eral Offset	is of register "i d. If 'd' is '0', '. If 'd' is '1', th is '1', the nex eady fetched, is executed ins instruction. The Access Bail the BSR is use and the extend ed, this instruc- Literal Offset A ever $f \le 95$ (5 "Byte-Orient istructions in Mode" for de	f' are the result is (default). t instruction, is discarded stead, making hk is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails.	Desci	iption:	The contents of register 'f' are decremented. If 'd' is '0', the result placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is select If 'a' is '0', the Access Bank is select GPR bank. If 'a' is '0' and the extended instruct set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See \$ tion 35.2.3 "Byte-Oriented and B Oriented Instructions in Indexed		f' are the result is (default). next ady fetched, is xecuted cle mk is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- ted and Bit- n Indexed Lit-		
Word	ds:	1					eral Offse	t Mode" for de	etails.		
Cycl	es:	1(2)			Word	S:	1				
		Note: 3 cy by a	cles if skip an 2-word instru	d followed Iction.	Cycle	s:	1(2) Note: 3	cycles if skip a	and followed		
QC	ycle Activity:			<i></i>	0.0	cle Activity:	by				
	Q1 Decede	Q2 Bood	Q3	Q4	1	01 01	02	03	04		
	Decode	register 'f'	Data	destination	l r	Decode	Read	Process	Write to		
lf sk		i oglotol i	2010	accuration	1	200000	register 'f'	Data	destination		
	, Q1	Q2	Q3	Q4	lf ski	p:					
	No	No	No	No]	Q1	Q2	Q3	Q4		
	operation	operation	operation	operation		No	No	No	No		
lf sk	ip and followe	d by 2-word ins	struction:		l	operation	operation	operation	operation		
	Q1	Q2	Q3	Q4	lf ski	If skip and followe		d by 2-word instruction:			
	No	No	No	No	l r	Q1	Q2	Q3	Q4		
	operation	operation	operation	operation	-	No	No	No	No		
	No	No	NO	No	-	No	No	No	No		
	operation	operation	operation	operation	J	operation	operation	operation	operation		
<u>Exar</u>	<u>nple</u> :	HERE	DECFSZ GOTO	CNT, 1, 1 LOOP	Exam	ple:	HERE ZERO NZERO	DCFSNZ TEI	MP, 1, 0		
	Before Instruc	tion	(1100 -)		I	Refore Instruc	tion				
	PC After Instructio CNT	= Address on = CNT - 1	(HERE)			TEMP	= on	?			
	If CNT	= 0;	(TEMP	=	TEMP – 1,			
	If CNT	= Aaaress ≠ 0;	(CONTINUE	;)		PC	=	0; Address (ZERO)		
	PC	= Áddress	(HERE + 2	:)		If TEMP	≠	0; Address			
						PU	=	Auuress (NZERU)		

35.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	instruction	set		
	extension	may	cause lee	gacy applicat	tions		
	to behave erratically or fail entirely.						

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 10.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 35.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

35.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

35.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2x/ 4xK40, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

TABLE 37-9:	PLL	SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
PLL01	FPLLIN	PLL Input Frequency Range	4	_	16	MHz		
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	64	MHz	Note 1	
PLL03	TPLLST	PLL Lock Time from Start-up	_	200	_	μS		
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	—	0.25	%		
*	These p	arameters are characterized but not tested.						

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	¢	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B