

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf24k40-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 10.1.1 "Program Counter").

Figure 10-3 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 10-3 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 35.0 "Instruction Set Summary" provides further details of the instruction set.

10.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 10-4 shows how this works.

Note: See Section 10.8 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

FIGURE 10-3: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	lemory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

EXAMPLE 10-4: TWO-WORD INSTRUCTIONS

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG	2 ; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG	2 ; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

D ALL O IS			Б Í		11.0	DAAL O/O		
R/W-0/0		R-0 BUSV		R/W-0/0	U-0	R/W-0/0	R/W-0/0	
SCANEN	JUSCANGU	6031	IINVALID			MODE	51.UZ	
DIC 7							DIt U	
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all oth	ner Resets	
'1' = Bit is s	set	'0' = Bit is clea	ared	HC = Bit is cle	eared by hardwa	are		
bit 7 bit 6	SCANEN: Sc 1 = Scanner is 0 = Scanner is SCANGO: Sc 1 = When the	anner Enable b s enabled s disabled, inte anner GO bit ⁽²	_{pit} (1) rnal states are , 3)	reset		a to MDy and d	to pocoed to	
bit 5	1 = When the the client 0 = Scanner of BUSY: Scann 1 = Scanner of	peripheral. perations will r er Busy Indica cycle is in proce	not occur tor bit ⁽⁴⁾ ess	atod)			ata passed to	
bit 4	0 = Scanner C INVALID: Sca 1 = SCANLAE 0 = SCANLAE	nner Abort Sig RL/H/U has in DRL/H/U points	nal bit cremented to a to a valid add	in invalid addres ress	ss ⁽⁶⁾ or the scan	ner was not setu	ıp correctly ⁽⁷⁾	
bit 3	 INTM: NVM Scanner Interrupt Management Mode Select bit If MODE = 10: This bit is ignored If MODE = 01 (CPU is stalled until all data is transferred): 1 = SCANGO is overridden (to zero) during interrupt operation; scanner resumes after returning interrupt 0 = SCANGO is not affected by interrupts, the interrupt response will be affected If MODE = 00 or 11: 1 = SCANGO is overridden (to zero) during interrupt operation; scan operations resume after returning interrupt 							
bit 2	Unimplemen	ted: Read as 'd)'					
bit 1-0	MODE<1:0>: 11 = Triggere 10 = Peek mo 01 = Burst mo 00 = Concurre	Memory Acces d mode ode ode ent mode	ss Mode bits ⁽⁵⁾					
Note 1: 2: 3: 4: 5: 6: 7:	Setting SCANEN = This bit is cleared v If INTM = 1, this bi BUSY = 1 when th See Table 13-2 for An invalid address invalid address can mapped in the men CRCEN and CRCC Scan Configuratio	0 (SCANCON when LADR > I t is overridden e NVM is being more detailed i can occur whe n also occur if t mory map of th GO bits must be n".	I0 register) doe HADR (and a c (to zero, but no accessed, or information. n the entire ran he value in the e device. e set before set	es not affect any lata cycle is not ot cleared) durir when the CRC nge of PFM is so Scan Low add tting SCANGO b	y other register of occurring). Ing an interrupt ro sends a ready s canned and the ress registers p bit. Refer to Sec	content. esponse. signal. value of LADR r oints to a locatic tion 13.9 "Prog i	olls over. An on that is not ram Memory	

REGISTER 13-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R-x	U-0	U-0		
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	_		
bit 7							bit 0		
r									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpleme	nted bit, read as	s 'O'			
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clear	ed	x = Bit is unkn	own		
bit 7 GE: Timerx Gate Enable bit <u>If TMRxON = 1</u> : 1 = Timerx counting is controlled by the Timerx gate function 0 = Timerx is always counting <u>If TMRxON = 0</u> :									
bit 6	GPOL: Timer 1 = Timerx 0 = Timerx	rx Gate Polari gate is active gate is active	ty bit -high (Timerx -low (Timerx o	counts when gat	e is high) e is low)				
bit 5	GTM: Timerx 1 = Timerx 0 = Timerx Timerx Gate	Gate Toggle Gate Toggle n Gate Toggle n Flip Flop Togg	Mode bit node is enable node is disabl gles on every	ed ed and Toggle fli rising edge	o-flop is cleared				
bit 4	GSPM: Time 1 = Timerx 0 = Timerx	rx Gate Single Gate Single P Gate Single P	e Pulse Mode ulse mode is ulse mode is	bit enabled and is co disabled	ontrolling Timer	x gate)			
bit 3	bit 3 GGO/DONE: Timerx Gate Single Pulse Acquisition Status bit 1 = Timerx Gate Single Pulse Acquisition is ready, waiting for an edge 0 = Timerx Gate Single Pulse Acquisition has completed or has not been started. This bit is automatically cleared when TxGSPM is cleared.								
bit 2 bit 1-0	GVAL: Timer Indicates the Unaffected by	x Gate Currer current state y Timerx Gate nted: Read as	nt State bit of the Timerx Enable (TMF '0'	gate that could b RxGE)	e provided to TI	MRxH:TMRxL			
			-						

REGISTER 19-2: TxGCON: TIMERx GATE CONTROL REGISTER

24.14 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripheral is shown in Table 24-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 24-2:

Peripheral	Bit Name Prefix
CWG	CWG

L

REGISTER 24-1: CWG1CON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
EN	LD ⁽¹⁾	—	—	—	MODE<2:0>			
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	EN: CWG1 Enable bit 1 = Module is enabled 0 = Module is disabled
bit 6	 LD: CWG1 Load Buffers bit⁽¹⁾ 1 = Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set 0 = Buffers remain unchanged
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits 111 = Reserved 110 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 001 = CWG outputs operate in Synchronous Steering mode 000 = CWG outputs operate in Asynchronous Steering mode
Note 1: T	his bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

26.5 SPI Mode Operation

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 26-3 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own. When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding
 TRIS bit cleared
- SCK (Slave mode) must have corresponding TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPxBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

controlled through addressing. Figure 26-9 is a block diagram of the I²C interface module in Master mode.

Figure 26-10 is a diagram of the I^2C interface module

in Slave mode.

26.6 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is

FIGURE 26-9: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 26-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode
 - (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device. If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 26-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable b	it	HC = Bit is cle	ared by hardw	vare				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	 WCOL: Write Collision Detect bit <u>In Master Transmit mode:</u> A write to the SSPxBUF register was attempted while the I²C conditions were not valid fo transmission to be started (must be cleared in software) No collision <u>In Slave Transmit mode:</u> 									
	1 = The SSP software) 0 = No collision In Receive mo	on on <u>ode (Master or S</u>	Siave modes)	it is still transm	litting the previ	ous word (mus	t de cleared in			
	This is a "don"	't care" bit.								
bit 6	SSPOV: Rece	eive Overflow In	dicator bit							
	In Receive mo 1 = A byte is software) 0 = No overfle	ode: received while th ow	he SSPxBUF	register is still h	olding the prev	vious byte (mus	at be cleared in			
	<u>In Transmit m</u> This is a "don"	<u>ode:</u> 't care" bit in Tra	ansmit mode.							
bit 5	SSPEN: Mast	er Synchronous	Serial Port E	nable bit ⁽¹⁾						
	1 = Enables th 0 = Disables s	ne serial port an serial port and c	d configures onfigures the	the SDAx and S se pins as I/O p	SCLx pins as th ort pins	ne serial port pi	ns			
bit 4	CKP: SCKx R	Release Control	bit							
	In Slave mode 1 = Releases 0 = Holds cloo	<u>e:</u> clock ck low (clock str	etch), used to	ensure data se	tup time					
	In Master mod Unused in this	<u>de:</u> s mode.								
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial F	ort Mode Selec	t bits ⁽²⁾					
	$1111 = I^{2}C SI$ $1110 = I^{2}C SI$ $1011 = I^{2}C Fi$ $1000 = I^{2}C M$ $0111 = I^{2}C SI$ $0110 = I^{2}C SI$	ave mode: 10-b ave mode: 7-bit rmware Control aster mode: Clc ave mode: 10-b ave mode: 7-bit	it address with address with led Master mo ock = Fosc/(4 it address ^{(3,4}	h Start and Stop Start and Stop ode (slave Idle) * (SSPxADD +)	o bit interrupts bit interrupts e 1))	enabled nabled				
Note 1:	When enabled, th	e SDAx and SC	Lx pins must	be configured a	as inputs.					
•	D'L CONTRACTOR CONTRACTOR			- : 4	1					

REGISTER 26-7: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C MASTER MODE)

2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

26.10 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

26.10.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 26.11 "Baud Rate Generator"** for more detail.

26.10.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 26-25).

27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	—	RC1IE	TX1IE	—	—	BCL1IE	SSP1IE	178
PIR3	_	_	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170
IPR3	_	—	RC1IP	TX1IP	—	—	BCL1IP	SSP1IP	186
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	_	—	_			RxyPPS<4:0	>		213
TXxPPS	_	—				TXPPS<4:0>	>		211
SPxBRGH			EUSARTx	Baud Rate	Generator, H	igh Byte			398*
SPxBRGL			EUSART	Baud Rate	Generator, L	ow Byte			398*
TXxREG			EUSA	ARTx Transm	nit Data Regi	ster			390*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

TABLE 27-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

27.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 27.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 27.5.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CKx and DTx pins (if applicable).
- 3. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCxIF bit will be set when reception is complete. An interrupt will be generated if the RCxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	389	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	166	
PIE3	_	—	RC1IE	TX1IE	_	—	BCL1IE	SSP1IE	178	
PIR3	—	—	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	170	
IPR3	_	_	RC1IP	TX1IP	_	_	BCL1IP	SSP1IP	186	
RCxREG			EUS	ART Receive	e Data Regist	ter			393*	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388	
RxyPPS	—	—	_		RxyPPS<4:0>					
RXxPPS	—	—	_			RXPPS<4:0>	•		211	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387	

TABLE 27-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.
* Page provides register information.

31.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 31-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 31-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 31-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 31-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

ł

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.37\mus

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

PIC18(L)F24/25K40

REGISTER 31-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0		
ADPPOL	ADIPEN	ADGPOL	-	-	-	_	ADDSEN		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 ADDPOL: Precharge Polarity bit If ADPRE>0x00:

	Action During 1st Precharge Stage							
ADFFUL	External (selected analog I/O pin)	Internal (AD sampling capacitor)						
1	Shorted to AVDD	C _{HOLD} shorted to Vss						
0	Shorted to Vss	C _{HOLD} shorted to AVDD						

Otherwise:

The bit is ignored

bit 6 ADIPEN: A/D Inverted Precharge Enable bit

If ADDSEN = 1

- 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
- 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 ADGPOL: Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 ADDSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in ADPREV
- 0 = One conversion is performed for each trigger

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
CMxCON0	EN	OUT	_	POL	—	—	HYS	SYNC	462	
CMxCON1	_	_	_	_	—	—	CxINTP	CxINTN	463	
CMxNCH	_	_	_	_	—		NCH<2:0>		463	
CMxPCH	_	_	_	_	—			464		
CMOUT	_	_	_	_	—	—	MC2OUT	MC1OUT	464	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVI	R<1:0>	417	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		—	INT2EDG	INT1EDG	INT0EDG	166	
PIR2	HLVDIF	ZCDIF	_	_	—	—	C2IF	C1IF	169	
PIE2	HLVDIE	ZCDIE	_	_	—	—	C2IE	C1IE	177	
IPR2	HLVDIP	ZCDIP	_	_	—	—	C2IP	C1IP	185	
PMD2	—	DACMD	ADCMD		—	CMP2MD	CMP1MD	ZCDMD	66	
RxyPPS	_	_	_		RxyPPS<4:0>					

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

PIC18(L)F24/25K40

GO	ю	Uncondit	ional Bra	anch		INC	F	Incremen	tf				
Synt	ax:	GOTO k	GOTO k			Synt	ax:	INCF f{,c	INCF f {,d {,a}}				
Oper	ands:	$0 \le k \le 1048575$		Ope	rands:	$0 \le f \le 255$							
Oper	ation:	$k \rightarrow PC<20$):1>					d ∈ [0,1]					
Statu	s Affected:	None				0		a ∈ [0,1]	4				
Enco 1st w 2nd y	oding: /ord (k<7:0>) word(k<19:8>)	1110 1111	1111 k10kkk	k ₇ kkk kkkk	kkkk ₀ kkkko	Statu Enco	ration: us Affected: oding:	(f) + 1 \rightarrow do C, DC, N,	OV, Z	ffff	ffff		
Description:		GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction			Desc	Description: The contents of register 'f' are incremented. If 'd' is '0', the result placed in W. If 'd' is '1', the result placed back in register 'f' (default If 'a' is '0', the Access Bank is set If 'a' is '1' the BSR is used to set				re result is result is efault). is selected. to select the			
Word	ls:	2						GPR bank.					
Cycle	es:	2						set is enab	nd the ext led this in	ended structio	instruction		
QC	ycle Activity:							in Indexed	Literal Off	set Add	dressing		
	Q1	Q2 Q3 Q4					mode whenever $f \le 95$ (5Fh). See Sec						
	Decode	Read literal 'k'<7:0>,	No operati	on 'k W	ead literal 2<19:8>, rite to PC			Oriented Instructions in Ir eral Offset Mode" for detail			Indexed Lit- ails.		
	No	No	No		No	Wore	ds:	1					
	operation	operation	operati	on o	peration	Cycl	es:	1					
						QC	sycle Activity:						
Exar	nple:	GOTO THE	RE				Q1	Q2	Q3		Q4		
	After Instructio PC =	n Address (T	HERE)				Decode	Read register 'f'	Proces Data	ss (Write to destination		
						Exar	nple:	INCF	CNT, 1	, 0			

Before Instru		
CNT	=	FFh
Z	=	0
С	=	?
DC	=	?
After Instruc	tion	
CNT	=	00h
Z	=	1
С	=	1
DC	=	1

PIC18(L)F24/25K40

NEGF	Negate f							
Syntax:	NEGF f {,a}							
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	$(\overline{f}) + 1 \rightarrow f$							
Status Affected:	N, OV, C, DC, Z							
Encoding:	0110 110a ffff ffff							
	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details							
Words:	1							
Cycles:	1							
0.0								

NOF	•	No Operation								
Synta	ax:	NOP	NOP							
Oper	ands:	None								
Oper	ation:	No operati	on							
Statu	s Affected:	None								
Enco	ding:	0000 1111	0000 xxxx	000 xxx	00 xx	0000 xxxx				
Desc	ription:	No operati	No operation.							
Word	ls:	1	1							
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	No operation	No opera	No operation		No operation				

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4	
Decode	Read	Process	Write	
	register 'f'	Data	register 'f'	

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]

© 2016-2017 Microchip Technology Inc.

TABLE 37-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0		
AD21				2		μS	Using FRC as the ADC clock source ADOCS = 1		
AD22	TCNV	Conversion Time ⁽¹⁾		11 + Зтсү		Tad	Set of GO/DONE bit to Clear of GO/ DONE bit		
AD23	TACQ	Acquisition Time	_	2	_	μS			
AD24	THCD	Sample and Hold Capacitor Disconnect Time		_		μS	Fosc-based clock source Frc-based clock source		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2