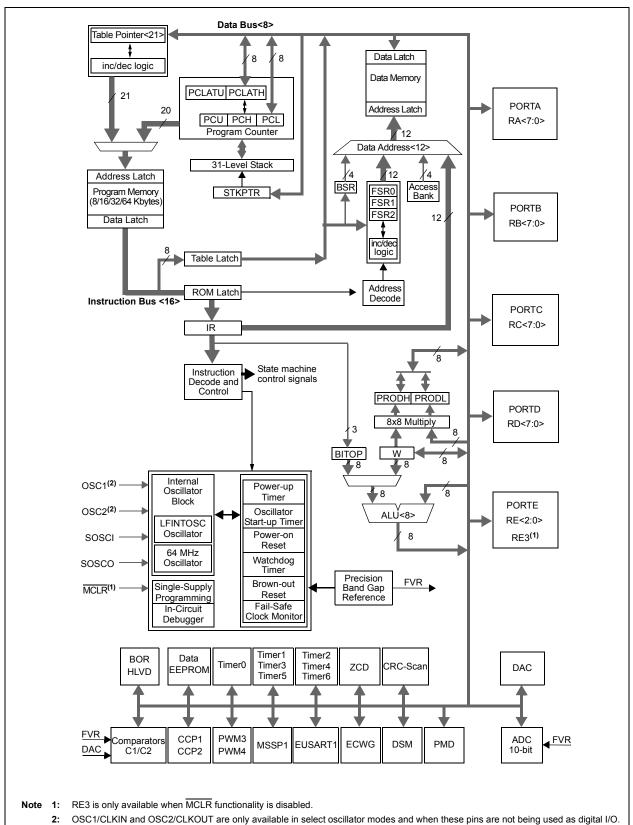


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

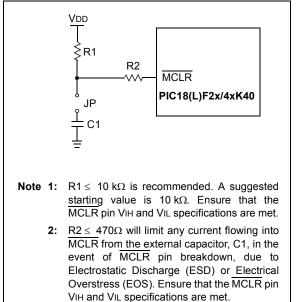
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC18(L)F24/25K40 FAMILY BLOCK DIAGRAM

2: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional information.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP[™] Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 36.0 "Development Support"**.

······································									
U-1	U-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	_	_	WRT3	WRT2	WRT1	WRT0		
bit 7					•		bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '1'									
-n = Value for bl	lank device	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit			x = Bit is unk	nown		

Register 3-7: Configuration Word 4L (30 0006h): Memory Write Protection

bit 7-4 Unimplemented: Read as '1'	
------------------------------------	--

bit 3-0 WRT<3:0>: User NVM Self-Write Protection bits⁽¹⁾

1 = Corresponding Memory Block NOT write-protected

0 = Corresponding Memory Block write-protected

Note 1: Refer to Table 10-2 for details on implementation of the individual WRT bits.

Register 3-8: Configuration Word 4H (30 0007h): Memory Write Protection

U-1	U-1	R/W-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1
_	-	LVP	SCANE	_	WRTD	WRTB	WRTC
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '1'	
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	Unimplemented: Read as '1'
bit 5	 LVP: Low-Voltage Programming Enable bit 1 = Low-voltage programming enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored. The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the Configuration state. 0 = HV on MCLR/VPP must be used for programming
bit 4	 SCANE: Scanner Enable bit 1 = Scanner module is available for use, SCANMD bit enables the module 0 = Scanner module is NOT available for use, SCANMD bit is ignored
bit 3	Unimplemented: Read as '1'
bit 2	 WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM NOT write-protected 0 = Data EEPROM write-protected
bit 1	 WRTB: Boot Block Write Protection bit 1 = Boot Block NOT write-protected 0 = Boot Block write-protected
bit 0	 WRTC: Configuration Register Write Protection bit 1 = Configuration Register NOT write-protected 0 = Configuration Register write-protected

5.5 **Register Definitions: Reference Clock**

Long bit name prefixes for the Reference Clock peripherals are shown in Table 5-1. Refer to Section 1.4.2.2 "Long Bit Names" for more information. TABLE 5-1:

Porinheral Dif Norm

Peripheral	Bit Name Prefix
CLKR	CLKR

REGISTER 5-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

R/W-0/0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0	
EN	_		DC<1:0>		DIV<2:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Reference Clock Module Enable bit
	 1 = Reference clock module enabled 0 = Reference clock module is disabled
bit 6-5	Unimplemented: Read as '0'
	•
bit 4-3	DC<1:0>: Reference Clock Duty Cycle bits ⁽¹⁾
	11 = Clock outputs duty cycle of 75%
	10 = Clock outputs duty cycle of 50%
	01 = Clock outputs duty cycle of 25%
	00 = Clock outputs duty cycle of 0%
bit 2-0	DIV<2:0>: Reference Clock Divider bits
	111 = Base clock value divided by 128
	110 = Base clock value divided by 64
	101 = Base clock value divided by 32
	100 = Base clock value divided by 16
	011 = Base clock value divided by 8
	010 = Base clock value divided by 4
	001 = Base clock value divided by 2
	000 = Base clock value

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

REGISTER 11-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NVMD	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
x = Bit is unkn	own	'0' = Bit is clea	ared	'1' = Bit is set			
-n = Value at F	POR						

bit 7-0 **NVMDAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
NVMCON1	NVMRE	G<1:0>	—	FREE	WRERR	WREN	WR	RD	141
NVMCON2		Unlock Pattern							
NVMADRL				NVMA	DR<7:0>				142
NVMADRH ⁽¹⁾	— — — — — NVMADR<9:8>								142
NVMDAT	NVMDAT<7:0>								143
TBLPTRU	Program Memory Table Pointer (TBLPTR<21:16>)								123*
TBLPTRH	Program Memory Table Pointer (TBLPTR<15:8>)								123*
TBLPTRL	Program Memory Table Pointer (TBLPTR<7:0>)								123*
TABLAT	TABLAT							122*	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	166
PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	182
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	_	CWG1IF	174
IPR7	SCANIP	CRCIP	NVMIP	—	—	_	—	CWG1IP	190

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K40.

16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK40 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F
	XORWF	XORWF IOCAF,

16.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

16.6 Register Definitions: Interrupt-on-Change Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0		
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'					
u = Bit is unchan	= Bit is unchanged x = Bit is unknown		wn	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed						

REGISTER 16-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER EXAMPLE

bit 7-0

IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 16-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER EXAMPLE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOCxN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 16-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER EXAMPLE

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCxF7 | IOCxF6 | IOCxF5 | IOCxF4 | IOCxF3 | IOCxF2 | IOCxF1 | IOCxF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCxF<7:0>: Interrupt-on-Change Flag bits

1 = A enabled change was detected on the associated pin. Set when IOCP[n] = 1 and a positive edge was detected on the IOCn pin, or when IOCN[n] = 1 and a negative edge was detected on the IOCn pin

0 = No change was detected, or the user cleared the detected change

24.2.3.1 Direction Change in Full-Bridge Mode

In Full-Bridge mode, changing MODE<2:0> controls the forward/reverse direction. Changes to MODE<2:0> change to the new direction on the next rising edge of the modulated input.

A direction change is initiated in software by changing the MODE<2:0> bits of the CWG1CON0 register. The sequence is illustrated in Figure 24-8.

- The associated active output CWG1A and the inactive output CWG1C are switched to drive in the opposite direction.
- The previously modulated output CWG1D is switched to the inactive state, and the previously inactive output CWG1B begins to modulate.
- CWG modulation resumes after the directionswitch dead band has elapsed.

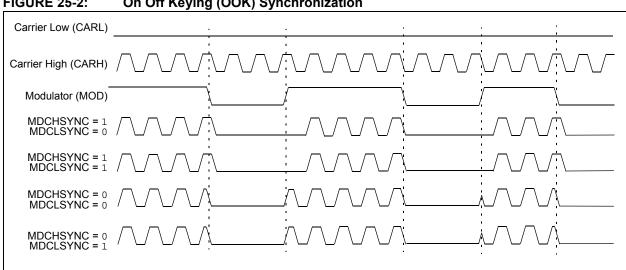
24.2.3.2 Dead-Band Delay in Full-Bridge Mode

Dead-band delay is important when either of the following conditions is true:


- The direction of the CWG output changes when the duty cycle of the data input is at or near 100%, or
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

The dead-band delay is inserted only when changing directions, and only the modulated output is affected. The statically-configured outputs (CWG1A and CWG1C) are not afforded dead band, and switch essentially simultaneously.

Figure 24-8 shows an example of the CWG outputs changing directions from forward to reverse, at near 100% duty cycle. In this example, at time t1, the output of CWG1A and CWG1D become inactive, while output CWG1C becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shootthrough current will flow through power devices QC and QD for the duration of 't'. The same phenomenon will occur to power devices QA and QB for the CWG direction change from reverse to forward.


When changing the CWG direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce the CWG duty cycle for one period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

FIGURE 24-8: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

© 2016-2017 Microchip Technology Inc.

FIGURE 25-2: On Off Keying (OOK) Synchronization

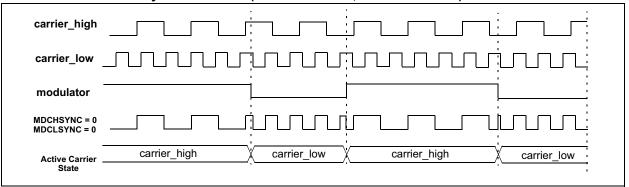
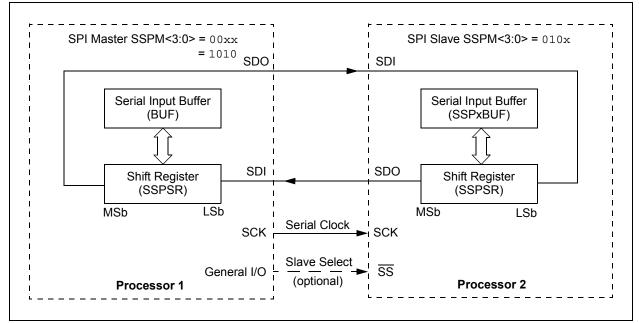
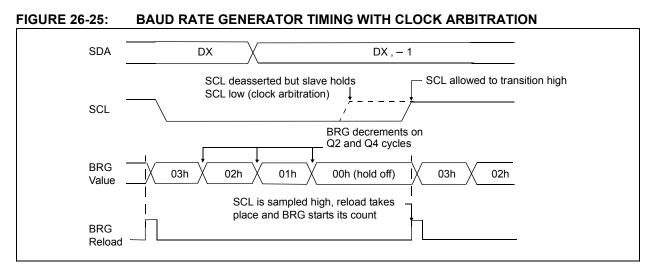



FIGURE 25-4: Carrier High Synchronization (MDSHSYNC = 1, MDCLSYNC = 0)


carrier_high	
carrier_low	
modulator	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	carrier_high / both carrier_low / carrier_high / both \ carrier_low

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

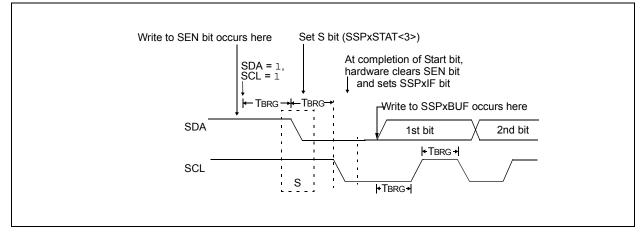
The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

FIGURE 26-3: SPI MASTER/SLAVE CONNECTION

26.10.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,
	writing to the lower five bits of SSPxCON2
	is disabled until the Start condition is
	complete.


26.10.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 26-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is

FIGURE 26-26: FIRST START BIT TIMING

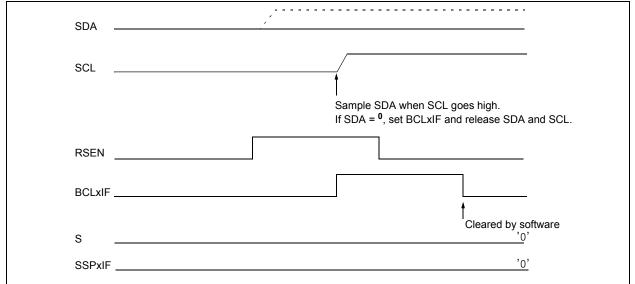
the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C specification states that a bus collision cannot occur on a Start.

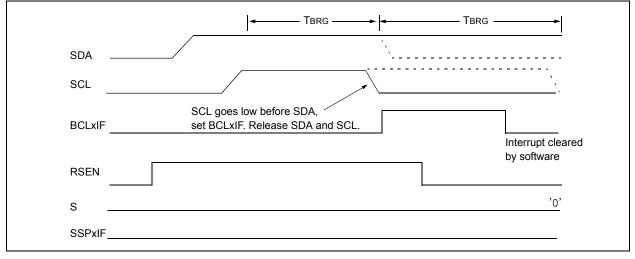
© 2016-2017 Microchip Technology Inc.

26.10.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 26-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 26-37.

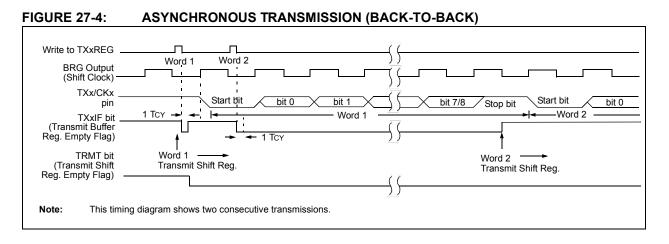

If, at the end of the BRG time out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 26-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	—	_	RC1IE	TX1IE	_		BCL1IE	SSP1IE	178
PIR3	—	_	RC1IF	TX1IF	_		BCL1IF	SSP1IF	170
IPR3	—	—	RC1IP	TX1IP	_	-	BCL1IP	SSP1IP	186
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	—	—	_			RxyPPS<4:0	>		213
TXxPPS	—	—	_			TXPPS<4:0	>		211
SPxBRGH			EUSARTx	Baud Rate	Generator, H	ligh Byte			398*
SPxBRGL			EUSARTx	Baud Rate	Generator, I	ow Byte			398*
TXxREG			EU	SARTx Tran	ismit Registe	er			390*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

FIGURE 27-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

: 		: : ::::::::::::::::::::::::::::::::::	: ////////////////////////////////////	: ////////////////////////////////////	Ciparati IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ora (n' Spire Farm. 111111111111111111111111111111111111	n en	::::::::::::::::::::::::::::::::::::::	
1.302 	: : 	: : 	: 444774 : 4		 ·····	·····	с , , , , , , , , , , , , , , , , , , ,	·····	
- 280 (390 99) 					-		r . Geografia	· · · · · · · · · · · · · · · · · · ·	
1 1255-0	aat ary doodae i mini	ананананананананананананананананананан			 	andara.	,	- Auto-Meored	

© 2016-2017 Microchip Technology Inc.

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0,
RCxIF bit (Interrupt) ——— Read RCxREG ————	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	199
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	199
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	_	RC1IE	TX1IE	—	—	BCL1IE	SSP1IE	178
PIR3		—	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	170
IPR3	_	—	RC1IP	TX1IP	—	_	BCL1IP	SSP1IP	186
RCxREG			EUS	ARTx Receiv	e Data Regis	ter			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	_	_	_		F	RxyPPS<4:0>			213
RXxPPS	_	—	_			RXPPS<4:0>			211
SPxBRGH			EUSART	Baud Rate	Generator, Hi	gh Byte			398*
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	ow Byte			398*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

32.2 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 32-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 32-1:

Peripheral	Bit Name Prefix			
C1	C1			
C2	C2			

REGISTER 32-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0	
EN	OUT	—	POL	—	—	HYS	SYNC	
bit 7 bit								

Legend:					
R = Readable bit	dable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	EN: Comparator Enable bit						
	 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power 						
bit 6	OUT: Comparator Output bit						
	$\frac{\text{If POL} = 0 \text{ (non-inverted polarity)}}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$ $\frac{\text{If POL} = 1 \text{ (inverted polarity)}}{1 = CxVP < CxVN}$						
	0 = CxVP > CxVN						
bit 5	Unimplemented: Read as '0'						
bit 4	POL: Comparator Output Polarity Select bit						
	 1 = Comparator output is inverted 0 = Comparator output is not inverted 						
bit 3	Unimplemented: Read as '0'						
bit 2	Unimplemented: Read as '1'						
bit 1	HYS: Comparator Hysteresis Enable bit						
	 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 						
bit 0	SYNC: Comparator Output Synchronous Mode bit						
	 1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source. 0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous Output updated on the falling edge of Timer1/3/5 clock source. 						

32.4 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-15 for more information.

32.5 Timer1/3/5 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1/3/5. See **Section 19.8 "Timer1/3/5 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

32.5.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the SYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 32-2) and the Timer1 Block Diagram (Figure 19-1) for more information.

32.6 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- EN and POL bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- INTP bit of the CMxCON1 register (for a rising edge detection)
- INTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxEN bit of the CMxCON0 register.

32.7 Comparator Positive Input Selection

Configuring the PCH<2:0> bits of the CMxPCH register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

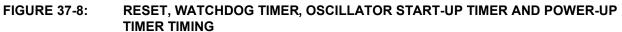
- CxIN0+, CxIN1+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- AVss (Ground)

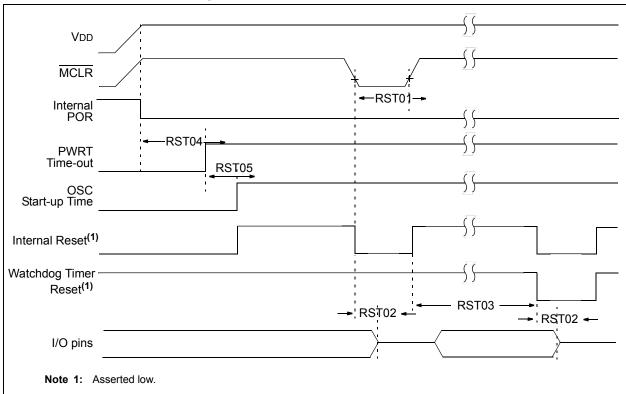
See Section 28.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

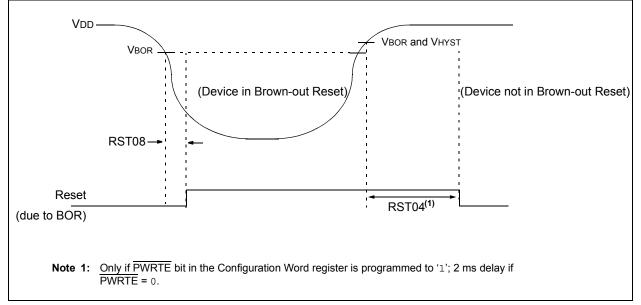
Any time the comparator is disabled (CxEN = 0), all comparator inputs are disabled.

32.8 Comparator Negative Input Selection


The NCH<2:0> bits of the CMxNCH register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:


- · CxIN0-, CxIN1-, CxIN2-, CxIN3- analog pin
- FVR (Fixed Voltage Reference)
- Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.


PIC18(L)F24/25K40

DEC	FSZ	SZ Decrement f, skip if 0		DCF	SNZ	Decrement f, skip if not 0					
Synta	ax:	DECFSZ f {,d {,a}}		Synta	ix:	DCFSNZ f {,d {,a}}					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Oper	ation:	$(f) - 1 \rightarrow dest,$ skip if result = 0		Opera	ation:	(f) – 1 \rightarrow de skip if resul					
Statu	is Affected:	None			Status	s Affected:	None				
Enco	oding:	0010	11da ffi	ff ffff	Enco	Encoding:		11da fff	ff ffff		
Desc	ription: The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.		Desc	ription:	decremente placed in W placed back if the result instruction, discarded a instead, ma instruction. If 'a' is '0', tt If 'a' is '0', tt If 'a' is '0', tt GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Lit-					
Word	ds:	1						Mode" for de	tails.		
Cycle	es:	1(2)			Word		1				
		Note: 3 cycles if skip and followed by a 2-word instruction.			Cycle	Cycles:		1(2)Note: 3 cycles if skip and followed by a 2-word instruction.			
QC	ycle Activity:	00	00	04	0.0	cle Activity:	Uy				
	Q1 Decode	Q2 Read	Q3 Process	Q4 Write to		Q1	Q2	Q3	Q4		
	Decoue	register 'f'	Data	destination		Decode	Read	Process	Write to		
lf sk	ip:						register 'f'	Data	destination		
	Q1	Q2	Q3	Q4	lf ski	p:					
	No	No	No	No	Г	Q1	Q2	Q3	Q4		
16 - 1	operation	operation		operation		No operation	No operation	No operation	No operation		
IT SK	Q1	d by 2-word instruction: Q2 Q3 Q4		lf ski	•		d by 2-word instruction:				
	No	No	No	No		Q1	Q2	Q3	Q4		
	operation	operation	operation	operation		No	No	No	No		
	No	No	No	No		operation	operation	operation	operation		
	operation	operation	operation	operation		No	No	No	No		
<u>Exan</u>	nple:	HERE CONTINUE	DECFSZ GOTO	CNT, 1, 1 LOOP	<u>Exam</u>	operation	ZERO	:	operation		
	Before Instruc	tion						:			
			G (HERE)		I	Before Instruc TEMP	tion =	?			
	After Instruction CNT = CNT - 1					After Instruction		!			
	If CNT	= 0;			,	TEMP		= TEMP – 1,			
	PC If CNT	= $Address$ (CONTINUE) \neq 0:			If TEMP PC If TEMP		= 0; = Address (ZERO) ≠ 0; = Address (NZERO)				
	PC										
						PC	=	AUULESS (]	NABRUI		

38.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and tables are not available at this time.