

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

4.3.2.6 Oscillator Status and Manual Enable

The Ready status of each oscillator (including the ADCRC oscillator) is displayed in OSCSTAT (Register 4-4). The oscillators (but not the PLL) may be explicitly enabled through OSCEN (Register 4-7).

4.3.2.7 HFOR and MFOR Bits

The HFOR and MFOR bits indicate that the HFINTOSC and MFINTOSC is ready. These clocks are always valid for use at all times, but only accurate after they are ready.

When a new value is loaded into the OSCFRQ register, the HFOR and MFOR bits will clear, and set again when the oscillator is ready. During pending OSCFRQ changes the MFINTOSC clock will stall at a high or a low state, until the HFINTOSC resumes operation.

4.4 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) bits of the OSCCON1 register. The following clock sources can be selected using the following:

- External oscillator
- Internal Oscillator Block (INTOSC)

Note:	The Clock	Switch	Enable	bit	in
	Configuration	Word 1	can be	used	to
	enable or dis	able the	clock s	witchi	ng
	capability. Whe	en cleare	d, the NC)SC a	nd
	NDIV bits car	not be	changed	by us	ser
	software. Whe	n set, wri	ting to NC	DSC a	nd
	NDIV is allow	ed and	would sw	/itch t	he
	clock frequenc	у.			

4.4.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider Selection Request (NDIV) bits of the OSCCON1 register select the system clock source and frequency that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same, so the old source will be ready immediately. The device may enter Sleep while waiting for the switch as described in **Section 4.4.2 "Clock Switch and Sleep"**. When the new oscillator is ready, the New Oscillator Ready (NOSCR) bit of OSCCON3 is set and also the Clock Switch Interrupt Flag (CSWIF) bit of PIR1 sets. If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

Note:	The CSWIF interrupt will not wake the
	system from Sleep.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the New Oscillator is Ready bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- Set CSWHOLD = 0 so the switch can complete, or
- Copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Changing the clock post-divider without changing the clock source (i.e., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

4.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed.

PIC18(L)F24/25K40

KEGISTER 0-	\mathbf{Z} . CFUDUZ	E. DUZE AN					
R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>	
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable I	oit	U = Unimple	emented bit, re	ead as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value Resets	at POR and I	3OR/Value at a	ll other
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is o	cleared by har	dware	
bit 7	IDLEN: Idle Ena 1 = A SLEEP ins 0 = A SLEEP ins	ble bit struction inhibits struction places	s the CPU clo the device in	ck, but not the to full Sleep n	e peripheral cl node	ock(s)	
bit 6	DOZEN: Doze E 1 = The CPU ex 0 = The CPU ex	nable bit ^(1,2) ecutes instruct ecutes all instr	ion cycles acc	cording to DO (fastest, highe	ZE setting est power ope	ration)	
bit 5	ROI: Recover-O 1 = Entering the operation 0 = Interrupt ent	n-Interrupt bit Interrupt Servi ry does not cha	ce Routine (IS ange DOZEN	R) makes DC)ZEN = 0 bit, b	pringing the CPI	J to full-speed
bit 4	DOE : Doze-On-I 1 = Executing R 0 = RETFIE doe	Exit bit ETFIE makes es not change I	DOZEN = 1, b DOZEN	pringing the C	PU to reduced	d speed operati	on
bit 3	Unimplemented	I: Read as '0'					
bit 2-0	DOZE<2:0>: Ra 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	tio of CPU Inst	ruction Cycles	to Periphera	I Instruction C	ycles	

REGISTER 6-2: CPUDOZE: DOZE AND IDLE REGISTER

- **Note 1:** When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

7.5 Register Definitions: Peripheral Module Disable

		•••••••••••••••••••••••••••••••••••••••					
R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCM	D FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7							0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
u = Bit is ι	unchanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BC	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared	q = Value dep	ends on condi	tion	
bit 7	SYSCMD: Di See descripti 1 = System 0 = System	isable Peripheration in Section 7 clock network di clock network e	al System Cloc .4 "System C isabled (Fosc nabled	ck Network bit ⁽¹⁾ : lock Disable" .)			
bit 6	FVRMD: Disa 1 = FVR mo 0 = FVR mo	able Fixed Volta dule disabled dule enabled	ige Reference	bit			
bit 5	HLVDMD:Di 1 = HLVD m 0 = HLVD m	isable Low-Volta nodule disabled nodule enabled	age Detect bit				
bit 4	CRCMD: Dis 1 = CRC mc 0 = CRC mc	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	SCANMD : D 1 = NVM M 0 = NVM M	isable NVM Me emory Scan mo emory Scan mo	mory Scanner dule disabled dule enabled	bit ⁽²⁾			
bit 2	NVMMD: NV 1 = All Mem 0 = NVM mo	M Module Disal ory reading and odule enabled	ble bit ⁽³⁾ writing is disa	bled; NVMCON	registers canr	not be written	
bit 1	CLKRMD: D 1 = CLKR m 0 = CLKR m	isable Clock Re odule disabled odule enabled	ference bit				
bit 0	IOCMD: Disa 1 = IOC mod 0 = IOC mod	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, <i>I</i>	All Ports			
Note 1:	Clearing the SYS	SCMD bit disable of affected.	es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

8.3 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.4 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV<1:0> bits in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Table 37-11 for more information.

8.4.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.4.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

8.4.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

8.4.4 BOR AND BULK ERASE

BOR is forced ON during PFM Bulk Erase operations to make sure that the system code protection cannot be compromised by reducing VDD.

During Bulk Erase, the BOR is enabled at 2.45V for F and LF devices, even if it is configured to some other value. If VDD falls, the erase cycle will be aborted, but the device will not be reset.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMCC	DN2<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
x = Bit is unkn	own	'0' = Bit is cleare	d	'1' = Bit is set			
-n = Value at F	POR						

REGISTER 11-2: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 NVMCON2<7:0>:

Refer to Section 11.1.4 "NVM Unlock Sequence".

Note 1: This register always reads zeros, regardless of data written.

Register 11-3: NVMADRL: Data EEPROM Memory Address Low

-				•						
R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0	R/W-x/0			
	NVMADR<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set
-n = Value at POR		

bit 7-0 NVMADR<7:0>: EEPROM Read Address bits

REGISTER 11-4: NVMADRH: DATA EEPROM MEMORY ADDRESS HIGH⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u
—	—	—	—	—	_	NVMAE)R<9:8>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
x = Bit is unknown	'0' = Bit is cleared	'1' = Bit is set	
-n = Value at POR			

bit 7-2 Unimplemented: Read as '0'

bit 1-0 NVMADR<9:8>: EEPROM Read Address bits

Note 1: The NVMADRH register is not implemented on PIC18(L)F24/25K40.

R/W-0/0

R/W-0/0

HLVDIF	ZCDIF	—	—	_	—	C2IF	C1IF
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7	HLVDIF: HLV	D Interrupt Flag	g bit				
	1 = HLVD inte	errupt event ha	is occurred				
	0 = HLVD inte	errupt event ha	is not occurre	d or has not be	en set up		
bit 6	ZCDIF: Zero-	Cross Detect Ir	nterrupt Flag b	bit			
	1 = ZCD Out	put has change	ed (must be cl	eared in softwa	are)		
	0 = ZCD Out	put has not cha	anged				
bit 5-2	Unimplement	ted: Read as '	כ'				
bit 1	C2IF: Compar	rator 2 Interrup	t Flag bit				
	1 = Compara	tor C2 output h	as changed (must be cleare	ed by software)		
	0 = Compara	tor C2 output h	as not change	ed			
bit 0	C1IF: Compar	rator 1 Interrup	t Flag bit				
	1 = Compara	tor C1 output h	as changed (must be cleare	ed by software)		
	0 = Compara	tor C1 output h	as not change	ed			

U-0

U-0

REGISTER 14-4: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

U-0

U-0

R/W-0/0

R/W-0/0

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	_	—	_	_	_	CCP2IF	CCP1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 7-2	Unimplement	ted: Read as '	0'				
bit 1	CCP2IF: ECC	P2 Interrupt F	lag bit				
	Capture mode	<u>e:</u>					
	1 = A T	MR register ca	pture occurre	d (must be cle	ared in software)	
	0 = No	TMR register o	apture occurr	ed			
	Compare mod	de:					
	1 = A I	MR register co	mpare match	occurred (mus	st be cleared in s	software)	
	0 = NO	I MR register o	compare matc	n occurred			
	PWW mode:	in PWM mode	`				
bit 0			. In a hit				
Sit 0	Conture mode	P i interrupt F	lag bit				
	1 = A T	<u></u> MR register ca	pture occurre	d (must be cle	ared in software)	
	$0 = No^{-1}$	TMR register o	apture occurr	ed		,	
	Compare mod	de:					
	1 = A T	MR register co	mpare match	occurred (mus	st be cleared in s	software)	
	0 = No	TMR register o	ompare matc	h occurred			
	PWM mode:						
	Unused	in PWM mode) .				

REGISTER 14-8: PIR6: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 6

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRx7	SLRx6	SLRx5	SLRx4	SLRx3	SLRx2	SLRx1	SLRx0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown		
-n/n = Value at POR and BOR/Value at all other Resets							

REGISTER 15-7: SLRCONX: SLEW RATE CONTROL REGISTER

bit 7-0

- SLRx<7:0>: Slew Rate Control on Pins Rx<7:0>, respectively
 - 1 = Port pin slew rate is limited
 - 0 = Port pin slews at maximum rate

TABLE 15-8: SLEW RATE CONTROL REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLx7	INLVLx6	INLVLx5	INLVLx4	INLVLx3	INLVLx2	INLVLx1	INLVLx0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'		l as '0'	
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
-n/n = Value at POR and BOR/Value at all other Resets							

REGISTER 15-8: INLVLx: INPUT LEVEL CONTROL REGISTER

bit 7-0

- INLVLx<7:0>: Input Level Select on Pins Rx<7:0>, respectively
- 1 = ST input used for port reads and interrupt-on-change
- 0 = TTL input used for port reads and interrupt-on-change

TABLE 15-9: INPUT LEVEL PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2 ⁽¹⁾	INLVLB1 ⁽¹⁾	INLVLB0
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4 ⁽¹⁾	INLVLC3 ⁽¹⁾	INLVLC2	INLVLC1	INLVLC0
INLVLE	—	_	_	_	INLVLE3	_	_	_

Note 1: Pins read the I^2C ST inputs when MSSP inputs select these pins, and I^2C mode is enabled.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 21-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 21-4:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

21.5.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

21.5.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

21.5.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWG1A output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWG1B is affected.

The CWG1DBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBR register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 24-1) is set. Refer to Figure 24-12 for an example.

24.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWG1B output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWG1D is affected.

The CWG1DBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBF register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 24-1) is set. Refer to Figure 24-13 for an example.

FIGURE 26-22:

E 26-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC18(L)F24/25K40

28.3 Register Definitions: FVR Control

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF	/R<1:0>	ADFVI	R<1:0>
bit 7							bit (
<u> </u>							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value at POR and BOR/Value at all othe			
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7	FVREN: Fixed 1 ⁼ Fixed Vol 0 ⁼ Fixed Vol	d Voltage Refe Itage Referenc Itage Referenc	rence Enable e is enabled e is disabled	bit			
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Re Itage Referenc Itage Referenc	ference Ready e output is rea e output is not	/ Flag bit ⁽¹⁾ ady for use t ready or not e	nabled		
bit 5	TSEN: Temperation 1 = Temperation 0 = Temperation	erature Indicator ture Indicator i ture Indicator i	or Enable bit ⁽³ s enabled s disabled)			
bit 4	TSRNG: Tem 1 = VOUT = V 0 = VOUT = V	perature Indica ′DD - 4V⊤ (Higł ′DD - 2V⊤ (Low	ator Range Se n Range) Range)	lection bit ⁽³⁾			
bit 3-2	CDAFVR<1:0 11 = Compar 10 = Compar 01 = Compar 00 = Compar	D>: Comparato ator FVR Buffe ator FVR Buffe ator FVR Buffe ator FVR Buffe	r FVR Buffer (er Gain is 4x, (er Gain is 2x, (er Gain is 1x, (er is off	Gain Selection 4.096V) ⁽²⁾ 2.048V) ⁽²⁾ 1.024V)	bits		
bit 1-0	ADFVR<1:0> 11 = ADC FV 10 = ADC FV 01 = ADC FV 00 = ADC FV	ADC FVR Bu R Buffer Gain R Buffer Gain R Buffer Gain R Buffer is off	uffer Gain Sele is 4x, (4.096V is 2x, (2.048V is 1x, (1.024V	ection bit ₎ (2)) ⁽²⁾)			
Note 1: F	VRRDY is always	s'1'.					

DECISTED 28 1.	EVECON: EIVED VOI TAGE REFERENCE CONTROL REGISTER
REGISTER 20-1.	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

2: Fixed Voltage Reference output cannot exceed VDD.

3: See Section 29.0 "Temperature Indicator Module" for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0> ADFVR<1:0>		417	
ADCON0	ADON	ADCONT	_	ADCS	_	ADFM	_	ADGO	441
CMxNCH	—	_	—	_	—	CxNCH<2:0>		463	
CMxPCH	—	_	—	—	—	CxPCH<2:0>		464	
DAC1CON1	_	_	_			DAC1R<4	:0>		423

TABLE 28-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
ADPSI	S	ADCRS<2:0>		ADACLR		ADMD<2:0>	
bit 7				-			bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is ı	u = Bit is unchanged x = Bit		nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HC = Bit is cle	eared by hard	ware	
bit 7	ADPSIS: A 1 = ADFLT 0 = ADRES	ADC Previous Sar R is transfered to S is transfered to	nple Input Sel ADPREV at st	ect bits start-of-convers art-of-conversio	ion on		
bit 6-4	ADCRS<2	:0>: ADC Accum	ulated Calcula	tion Right Shift	Select bits		
	If ADMD = Low-pass f If ADMD = The accur Otherwise: Bits are igr	100: filter time constan 001, 010 or 01 nulated value is ri	t is 2 ^{ADCRS} , fil <u>1</u> : ght-shifted by	ter gain is 1:1 ADCRS (divide	ed by 2 ^{ADCRS})	(1,2)	
bit 3	ADACLR:	A/D Accumulator	Clear Comma	and bit ⁽³⁾			
	0 = Clearin	ng action is compl	ete (or not sta	rted)			
	1 = ADACO	C, ADAOV and Al	DCNT register	s are cleared			
bit 2-0	ADMD<2:0 111-101 = 100 = Low 011 = Burs 010 = Ave 001 = Acc 000 = Bas	D>: ADC Operatin = Reserved I-pass Filter mode st Average mode rage mode umulate mode ic (Legacy) mode	g Mode Selec	tion bits ⁽⁴⁾			
Note 1:	To correctly cal	culate an average	, the number	of samples (set	in ADRPT) m	ust be 2ADCRS	S.
2:	ADCRS = 3 ' b1	111 is a reserved	option.				
3:	This bit is cleared selections, the o	ed by hardware w delay may be mar	hen the accur	nulator operatio	on is complete;	depending on	oscillator
4:	See Table 31-2	for Full mode dea	scriptions				

REGISTER 31-3: ADCON2: ADC CONTROL REGISTER 2

ble 31-2 for Full mode descriptions.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	_	_		PCH<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as 'd)'				
bit 2-0	PCH<2:0>: C	omparator Non	-Inverting Inp	out Channel Se	lect bits		

REGISTER 32-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

			-
111	=	AV ss	

110 = FVR Buffer2

101 = DAC_Output

100 = CxPCH not connected

011 = CxPCH not connected

010 = CxPCH not connected

- 001 = CxIN1+
- 000 = CxIN0+

REGISTER 32-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	—	—	_	—	—	MC2OUT	MC1OUT
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1 MC2OUT: Mirror copy of C2OUT bit

bit 0	MC1OUT: Mirror copy of C1OUT bit
-------	----------------------------------

32.9 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-15 and Table 37-17 for more details.

32.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 32-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D300		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D301			—	_	0.15 VDD	V	$1.8V \leq V \text{DD} \leq 4.5V$		
D302		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$		
D303		with I ² C levels	_	_	0.3 VDD	V			
D304		with SMBus levels	_	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D305		MCLR	_		0.2 Vdd	V			
	Vih	Input High Voltage							
		I/O PORT:							
D320		with TTL buffer	2.0		—	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D321			0.25 VDD + 0.8		—	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D322		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \le V \text{DD} \le 5.5 V$		
D323		with I ² C levels	0.7 Vdd		—	V			
D324		with SMBus levels	2.1		—	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D325		MCLR	0.7 Vdd			V			
	lı∟	Input Leakage Current ⁽¹⁾			•				
D340		I/O Ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C		
D341			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C		
D342		MCLR ⁽²⁾	—	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C		
	IPUR	Weak Pull-up Current							
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS		
	Vol	Output Low Voltage							
D360		I/O ports	—	_	0.6	V	IOL = 10.0mA, VDD = 3.0V		
	Vон	Output High Voltage							
D370		I/O ports	VDD - 0.7	_		V	ЮН = 6.0 mA, VDD = 3.0V		
D380	Сю	All I/O pins	—	5	50	pF			

TABLE 37-4: I/O PORTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined <u>as current</u> sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 37-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0
AD21				2		μS	Using FRC as the ADC clock source ADOCS = 1
AD22	TCNV	Conversion Time ⁽¹⁾		11 + Зтсү		Tad	Set of GO/DONE bit to Clear of GO/ DONE bit
AD23	TACQ	Acquisition Time	_	2	_	μS	
AD24	THCD	Sample and Hold Capacitor Disconnect Time		_		μS	Fosc-based clock source Frc-based clock source

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

