

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
_	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
u = Bit is uncl	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion		
bit 7	Unimplemen	ted: Read as 'd)'					
bit 6	DACMD: Disa	able DAC bit						
	1 = DAC mod	dule disabled						
	0 = DAC mod	dule enabled						
bit 5	ADCMD: Disa	able ADC bit						
	1 = ADC mod	ule disabled						
	0 = ADC mod	dule enabled						
bit 4-3	Unimplemen	ted: Read as ')'					
bit 2	CMP2MD: Dis	sable Compara	tor CMP2 bit					
	1 = CMP2 m	odule disabled						
	0 = CMP2 m	odule enabled						
bit 1	CMP1MD: Dis	sable Compara	tor CMP1 bit					
	1 = CMP1 module disabled							
bit 0	ZCDMD: Disa	ible Zero-Cross	S Detect modul	e bit ⁽¹⁾				
	$1 = 2CD \mod 1$	ule disabled						
	0 = ZCD mod	ule enabled						

REGISTER 7-3: PMD2: PMD CONTROL REGISTER 2

Note 1: Subject to ZCD bit in CONFIG2H.

					•		
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
		WDTTMR<4:0>			STATE	PSCNT	<17:16>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

	WDT Win	Open Bergent	
WINDOW	Closed	Open	Open Percent
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
F74h	CRCDATL		DATA<7:0>								
F73h	ADFLTRH		ADFLTRH<15:8>								
F72h	ADFLTRL		ADFLTRL<7:0>								
F71h	ADACCH		ADACCH<15:8>								
F70h	ADACCL				ADACO	CL<7:0>				xxxxxxxx	
F6Fh	ADERRH				ADERR	H<15:8>				00000000	
F6Eh	ADERRL				ADERI	RL<7:0>				00000000	
F6Dh	ADUTHH				ADUTH	H<15:8>				00000000	
F6Ch	ADUTHL				ADUTI	HL<7:0>				00000000	
F6Bh	ADLTHH				ADLTH	H<15:8>				00000000	
F6Ah	ADLTHL				ADLTH	IL<7:0>				00000000	
F69h	ADSTPTH				ADSTP	ГН<15:8>				00000000	
F68h	ADSTPTL				ADSTP	TL<7:0>				00000000	
F67h	ADCNT				ADCN	T<7:0>				00000000	
F66h	ADRPT				ADRP	T<7:0>				00000000	
F65h	ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH	-		ADSTAT<2:0	>	0000-000	
F64h	ADRESH		•		ADRES	SH<7:0>				00000000	
F63h	ADRESL				ADRES	SL<7:0>				00000000	
F62h	ADPREVH				ADPRE	/H<15:8>				00000000	
F61h	ADPREVL				ADPRE	:VL<7:0>				00000000	
F60h	ADCON0	ADON	ADCONT	—	ADSC	-	ADFM	—	ADGO	00-000-0	
F5Fh	ADPCH	—	—			ADPC	CH<5:0>			000000	
F5Eh	ADPRE				ADPR	E<7:0>				00000000	
F5Dh	ADCAP	—	—	—			ADCAP<4:0>			00000	
F5Ch	ADACQ		•	•	ADAC	Q<7:0>				00000000	
F5Bh	ADCON3	—		ADCALC<2:0	>	ADSOI		ADTMD<2:0>	>	-0000000	
F5Ah	ADCON2	ADPSIS		ADCRS<2:0>	>	ADACLR		ADMD<2:0>		00000000	
F59h	ADCON1	ADPPOL	ADIPEN	ADGPOL	—	_	_	—	ADDSEN	0000	
F58h	ADREF	—	—	—	ADNREF	—	_	ADPR	EF<1:0>	0-00	
F57h	ADCLK	—	—			ADC	S<5:0>			000000	
F56h	ADACT	—	—	—			ADACT<4:0>			00000	
F55h	MDCARH	—	—	—	—	—		CHS<2:0>		000	
F54h	MDCARL	—	—	—	—	_		CLS<2:0>		000	
F53h	MDSRC	—	—	—	—		SRCS	8<3:0>		0000	
F52h	MDCON1	—	—	CHPOL	CHSYNC	_	—	CLPOL	CLSYNC	0000	
F51h	MDCON0	EN	—	OUT	OPOL	—	—	—	MDBIT	0-000	
F50h	SCANTRIG	—	—	—	—		TSEL	<3:0>		0000	
F4Fh	SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	-	MOD	E<1:0>	00000-00	
F4Eh	SCANHADRU	—	—		·	HADR	<21:16>	·		111111	

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F26h to	_		I		Unimpl	emented				_
F22h F21h	ANSELC	ANSEL C7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSEL CO	11111111
F20h	WPLIC	WPLIC7	WPLIC6	WPLIC5	WPLIC4	WPLIC3	WPUC2	WPLIC1	WPLICO	00000000
F1Eb		00007					00002			00000000
F1Eb	SLRCONC	SLRC7	SLRC6	SLRC5	SI RC4	SLRC3	SLRC2	SLRC1	SLRCO	11111111
F1Db				INLVI C5		INLVI C3	INLVI C2			11111111
F1Ch	IOCCP	IOCCP7	IOCCP6	IOCCP5		IOCCP3	IOCCP2	IOCCP1	IOCCPO	00000000
F1Bh	IOCCN				IOCCN4	IOCCN3	IOCCN2			00000000
F1Ah	IOCCE	IOCCE7	IOCCE6	IOCCE5		IOCCE3	IOCCE2	IOCCE1	IOCCEO	00000000
F10h										11111111
F18h	WPUB	WPUB7	WPUB6	WPLIB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
F17b		ODCB7	ODCB6	ODCB5		ODCB3		ODCB1		00000000
F16h	SLRCONB	SI RB7	SI RB6	SI RB5	SI RB4	SI RB3	SI RB2	SI RB1	SI RB0	11111111
F15h			INI VI B6	INI VI B5		INI VI B3	INI VI B2		INI VI BO	11111111
F14h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBPO	00000000
E12b										00000000
F12h	IOCBE	IOCBE7	IOCBE6	IOCBE5		IOCBE3	IOCBINZ	IOCBE1	IOCBEO	00000000
E11b										11111111
F10b		WDUA7	WPUA6	WPLIA5	WPI IA/	WPI IA3	WPI IA2		WPUAD	00000000
FOEb										00000000
FOEb		SI DA7	SLDAG	SIDAS	SI DA4	SI DA3	SI DA2	SI DA1	SLRAD	11111111
FODh										11111111
FODI										11111111
			IOCANG							00000000
FUBN										00000000
FUAN	IUCAF	IUCAF7	IUCAF6	IUCAF5	IUCAF4	IUCAF3	IUCAF2	IUCAF1	IUCAFU	00000000
to EFFh	—				Unimpl	emented				—
EFEh	RC7PPS	_	_	—			RC7PPS<4:0>			00000
EFDh	RC6PPS	—	—	—			RC6PPS<4:0>			00000
EFCh	RC5PPS	—	—	—			RC5PPS<4:0>			00000
EFBh	RC4PPS	—	—	—			RC4PPS<4:0>			00000
EFAh	RC3PPS	—	—	—			RC3PPS<4:0>			00000
EF9h	RC2PPS	—	—	—			RC2PPS<4:0>			00000
EF8h	RC1PPS	—	—	—			RC1PPS<4:0>			00000
EF7h	RCOPPS	_	_	_			RC0PPS<4:0>			00000
EF6h	RB7PPS	—	—	—			RB7PPS<4:0>			00000
EF5h	RB6PPS	—	—	—			RB6PPS<4:0>			00000
EF4h	RB5PPS	—	—	—			RB5PPS<4:0>			00000
EF3h	RB4PPS	_	_	_			RB4PPS<4:0>			00000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
		TMR0IE ⁽¹⁾	IOCIE ⁽¹⁾		INT2IE ⁽¹⁾	INT1IE ⁽¹⁾	INT0IE ⁽¹⁾
bit 7							bit 0
Legend: IE							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7-6	Unimplement	ted: Read as '	0'				
bit 5	TMR0IE: Time	er0 Interrupt Er	nable bit ⁽¹⁾				
	1 = Enabled						
	0 = Disabled		(4)				
bit 4	IOCIE: Interru	ipt-on-Change	Enable bit ⁽¹⁾				
	1 = Enabled						
hit 2		tod: Dood oo '	o'				
DIL 3	Unimplement	ieu. Redu as	U				
bit 2	INT2IE: Exter	nal Interrupt 2	Enable bit ⁽¹⁾				
	1 = Enabled						
			(1)				
bit 1	INT1IE: Exter	nal Interrupt 1	Enable bit(")				
	1 = Enabled						
hit 0		nal Interrunt ()	Enable bit(1)				
DILO	1 = Enabled	nai interrupt o					
	0 = Disabled						
Note 1. DI	20 intorrunto or	o not disabled		hit in the INITC	ON register are	not disabled b	v the DEIE hit

REGISTER 14-10: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

Note 1: PIR0 interrupts are not disabled by the PEIE bit in the INTCON register. are not disabled by the PEIE bit in the INTCON register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	—	—	IOCEP3 ⁽¹⁾	_	_	_
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF	—	—	—	—	IOCEF3 ⁽¹⁾	—	—	—

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

TABLE 16-2: SI	UMMARY OF REGIS	STERS ASSOCIATED	WITH INTERRUPT	-ON-CHANGE
----------------	-----------------	------------------	----------------	------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	166
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	206
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	206
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	206

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

18.3 **Programmable Prescaler**

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.4 **Programmable Postscaler**

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.5 **Operation During Sleep**

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

18.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = '1'), the CPU will be interrupted and the device may wake from Sleep (see **Section 18.2 "Clock Source Selection"** for more details).

18.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see **Section 17.0 "Peripheral Pin Select (PPS) Module**" for additional information). The Timer0 output can also be used by other peripherals, such as the auto-conversion trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (TOOUT) of the TOCON0 register (Register 18-1).

TMR0_out will be a pulse of one postscaled clock period when a match occurs between TMR0L and PR0 (Period register for TMR0) in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

Rev. 10.000 1988 5/30/2014	
MODE 0b00001	
TMRx_ers	
PRx 5	
$TMRx \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	
TMRx_postscaled	
PWM Duty 3 Cycle	

21.2 Register Definitions: CCP Control

Long bit name prefixes for the CCP peripherals are shown in Table 21-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 21-2:

Peripheral	Bit Name Prefix			
CCP1	CCP1			
CCP2	CCP2			

REGISTER 21-1: CCPxCON: CCPx CONTROL REGISTER

R/W-0/0	U-0	R-x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	FMT		MODE	=<3:0>	
bit 7 bit C							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EN: CCP Module Enable bit1 = CCP is enabled0 = CCP is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OUT: CCPx Output Data bit (read-only)
bit 4	FMT: CCPW (pulse-width) Alignment bit <u>MODE = Capture mode:</u> Unused <u>MODE = Compare mode:</u> Unused <u>MODE = PWM mode:</u> 1 = Left-aligned format 0 = Right-aligned format

- Note 1: The set and clear operations of the Compare mode are reset by setting MODE = 4'b0000 or EN = 0.
 - 2: When MODE = 0001 or 1011, then the timer associated with the CCP module is cleared. TMR1 is the default selection for the CCP module, so it is used for indication purpose only.

21.3 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR6 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

Figure 21-1 shows a simplified diagram of the capture operation.

21.3.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note:	If the CCPx pin is configured as an output,
	a write to the port can cause a capture
	condition.

The capture source is selected by configuring the CTS<1:0> bits of the CCPxCAP register. The following sources can be selected:

- · Pin selected by CCPxPPS
- C1_output
- C2_output
- IOC_interrupt

21.3.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 19.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

FIGURE 21-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

25.2 DSM Operation

The DSM module can be enabled by setting the MDEN bit in the MDCON0 register. Clearing the MDEN bit in the MDCON0 register, disables the DSM module output and switches the carrier high and carrier low signals to the default option of MDCARHPPS and MDCARLPPS, respectively. The modulator signal source is also switched to the MDBIT in the MDCON0 register. This not only assures that the DSM module is inactive, but that it is also consuming the least amount of current.

The values used to select the carrier high, carrier low, and modulator sources held by the Modulation Source, Modulation High Carrier, and Modulation Low Carrier control registers are not affected when the MDEN bit is cleared and the DSM module is disabled. The values inside these registers remain unchanged while the DSM is inactive. The sources for the carrier high, carrier low and modulator signals will once again be selected when the MDEN bit is set and the DSM module is again enabled and active.

The modulated output signal can be disabled without shutting down the DSM module. The DSM module will remain active and continue to mix signals, but the output value will not be sent to the DSM pin. During the time that the output is disabled, the DSM pin will remain low. The modulated output can be disabled by clearing the MDEN bit in the MDCON register.

25.3 Modulator Signal Sources

The modulator signal can be supplied from the following sources:

- · External signal on pin selected by MDSRCPPS
- MDBIT bit in the MDCON0 register
- CCP1/2 Output
- PWM3/4 Output
- Comparator C1/C2 Output
- EUSART RX Signal
- EUSART TX Signal
- MSSP SDO Signal (SPI Mode Only)

The modulator signal is selected by configuring the MDSRCS<3:0> bits in the MDSRC register.

25.4 Carrier Signal Sources

The carrier high signal and carrier low signal can be supplied from the following sources:

- External signal on pin selected by MDCARHPPS/ MDCARLPPS
- Fosc (system clock)
- HFINTOSC
- Reference Clock Module Signal
- CCP1/2 Output Signal
- PWM3/4 Output

The carrier high signal is selected by configuring the MDCHS<2:0> bits in the MDCARH register. The carrier low signal is selected by configuring the MDCLS<2:0> bits in the MDCARL register.

25.5 Carrier Synchronization

During the time when the DSM switches between carrier high and carrier low signal sources, the carrier data in the modulated output signal can become truncated. To prevent this, the carrier signal can be synchronized to the modulator signal. When synchronization is enabled, the carrier pulse that is being mixed at the time of the transition is allowed to transition low before the DSM switches over to the next carrier source.

Synchronization is enabled separately for the carrier high and carrier low signal sources. Synchronization for the carrier high signal is enabled by setting the MDCHSYNC bit in the MDCON1 register. Synchronization for the carrier low signal is enabled by setting the MDCLSYNC bit in the MDCON1 register.

Figure 25-2 through Figure 25-6 show timing diagrams of using various synchronization methods.

26.5.5 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN			INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	_	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	178
PIR3	—	_	RC1IF	TX1IF	_	—	BCL1IF	SSP1IF	170
IPR3	—	_	RC1IP	TX1IP	_	—	BCL1IP	SSP1IP	186
RxyPPS	_		_			RxyPPS<4:0	>		213
SSPxBUF				BUF	<7:0>				330*
SSPxCLKPPS	_	-	_		SS	SPxCLKPPS<	4:0>		211
SSPxCON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		332
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	333
SSPxDATPPS	_	-	_	SSPDATPPS<4:0>					211
SSPxSSPPS	_	_	_	SSPSSPPS<4:0>				211	
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	347

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

Page provides register information.

26.6.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

26.7 Register Definitions: I²C Mode

The MSSPx module has seven registers for I^2C operation.

These are:

- MSSP Status Register (SSPxSTAT)
- MSSP Control Register 1 (SSPxCON1)
- MSSP Control Register 2 (SSPxCON2)
- MSSP Control Register 3 (SSPxCON3)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSP Address Register (SSPxADD)
- I²C Slave Address Mask Register (SSPxMSK)
- MSSP Shift Register (SSPSR) not directly accessible

SSPxCON1, SSPxCON2, SSPxCON3 and SSPxSTAT

are the Control and Status registers in I²C mode operation. The SSPxCON1, SSPxCON2, and SSPxCON3 registers are readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write. SSPSR is the Shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from. SSPxADD contains the slave device address when the MSSP is configured in I²C Slave mode. When the MSSP is configured in Master mode, the lower seven bits of SSPxADD act as the Baud Rate Generator reload value.

SSPxMSK holds the slave address mask value when the module is configured for 7-Bit Address Masking mode. While it is a separate register, it shares the same SFR address as SSPxADD; it is only accessible when the SSPM<3:0> bits are specifically set to permit access. In receive operations, SSPSR and SSPxBUF together, create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set. During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPSR.

FIGURE 26-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

27.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDxCON register selects 16-bit mode.

The SPxBRGH, SPxBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXxSTA register and the BRG16 bit of the BAUDxCON register. In Synchronous mode, the BRGH bit is ignored.

Table 27-3 contains the formulas for determining the baud rate. Example 27-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 27-5. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPxBRGH, SPxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 27-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{Fosc}{64([SPxBRGH:SPxBRGL] + 1)}$

Solving for SPxBRGH:SPxBRGL:

 $SPBRGH:SPBRGL = \frac{Fosc}{Desired Baud Rate} - 1$ $= \frac{16000000}{9600} - 1$ = [25.042] = 25Calculated Baud Rate = $\frac{16000000}{64(25+1)}$ = 9615Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$ $= \frac{(9615 - 9600)}{9600} = 0.16\%$

BCF		Bit Clear	f		BN		Branch if	Negative			
Syntax:	:	BCF f, b	{,a}		Synta	ax:	BN n	BN n			
Operan	nds:	$0 \leq f \leq 255$		Oper	ands:	-128 ≤ n ≤ 1	$-128 \le n \le 127$				
		0 ≤ b ≤ 7 a ∈ [0,1]			Oper	ation:	if NEGATIV (PC) + 2 + 2	if NEGATIVE bit is '1' (PC) + 2 + 2n \rightarrow PC			
Operati	ion:	$0 \rightarrow f \le b >$			Statu	s Affected:	None				
Status /	Affected:	None			Enco	ding:	1110	0110 nn	nn nnnn		
Encodir	ng:	1001	bbba ff:	ff ffff	Desc	ription:	If the NEGA	TIVE bit is '1'	then the		
Worde:		Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.		Word Cycle Q C If Ju	program will branch. The 2's complement nu added to the PC. Since incremented to fetch th instruction, the new ad PC + 2 + 2n. This instru 2-cycle instruction. Words: 1 Cycles: 1(2) Q Cycle Activity: If Jump:		aplement num e PC. Since th d to fetch the i the new addre n. This instruct ruction.	ber '2n' is e PC will have next ess will be tion is then a			
Qualasi		1				Q1	Q2	Q3	Q4		
Q Cycles:	le Activity:	1				Decode	Read literal 'n'	Process Data	Write to PC		
	Q1	Q2	Q3	Q4		No	No	No	No		
	Decode	Read	Process	Write		operation	operation	operation	operation		
			Data	register i	lf No	o Jump:	00	00	04		
Exampl	le:	BCF F	LAG REG.	7, 0		Decode	QZ Read literal	Q3 Process	Q4		
Be	efore Instruc FLAG_R	tion EG = C7	'n	,,, 0		Decode	'n'	Data	operation		
Af	ter Instructio	on Fo			Exan	<u>nple</u> :	HERE	BN Jump			
	FLAG_R	EG = 47	h			Before Instruct PC After Instructio If NEGA PC If NEGA PC	ction = ad on TIVE = 1; = ad TIVE = 0; = ad	dress (HERE) dress (Jump) dress (HERE	+ 2)		

ΒZ		Branch if Zero					
Synta	ax:	BZ n					
Oper	ands:	-128 ≤ n ≤ ′	127				
Oper	ation:	if ZERO bit (PC) + 2 + 2	is '1' 2n → PC				
Statu	s Affected:	None					
Enco	ding:	1110	0000 nr	inn nnnn			
Desc	ription:	If the ZERO bit is '1', then the progra will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.					
Word	ls:	1					
Cycle	es:	1(2)					
Q C If Ju	ycle Activity: mp:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	o Jump:		•				
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
<u>Exan</u>	nple:	HERE	BZ Jump	ò			
	Before Instruc PC After Instructio If ZERO PC If ZERO PC	tion = ad on = 1; = ad = 0; = ad	dress (HERE dress (Jump dress (HERE	(2)			

Syntax:	CALL k {,	s}						
Operands:	$0 \le k \le 104$ s \in [0,1]	18575						
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC<20:1>, \\ \text{if } s = 1 \\ (W) \rightarrow WS, \\ (Status) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$							
Status Affected:	None							
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk kkkk				
	memory range. First, return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, Status and BSF registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:13 CALL is a 2-cycle instruction.							
Words:	2							
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'<7:0>,	PUSH F stac	PC to Re k 'k Wi	ad litera '<19:8> rite to P				
No	No	No	,	No				
operation	operation	opera	tion o	peration				
Example:	HERE	CALL	THERE,	1				
Defense ha f	41 m m							
Before Instruc	tion	e (ਪਦਾਸਾ)					

			` '	
After Instructio	n			
PC TOS	= =	address address	(THERE) (HERE +	4)
WS	=	W		,
BSRS	=	BSR		
STATUSS	5 =	Status		

RRN	ICF	Rotate Right f (No Carry)						
Synta	ax:	RRN	CF	f {,d {,	a}}			
Oper	ands:	0 ≤ f d ∈ [a ∈ [≤ 258 0,1] 0,1]	5				
Oper	ation:	(f <n> (f<0></n>	$(\cdot) \rightarrow (\cdot)$	dest <n dest<7</n 	– 1>, '>			
Statu	is Affected:	N, Z						
Enco	oding:	01	00	00d	la ff	ff	ffff	
Desc	ription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the ress is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected (default), overriding the BSF value. If 'a' is '1', then the bank will b selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See See tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed L eral Offset Mode" for details.					rotated the result result is ault). ill be he BSR k will be struction operates essing See Sec- nd Bit- exed Lit-	
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q	2	Q3		Q4		
	Decode	Re regist	ad ær 'f'	Р	rocess Data	۷ de	Vrite to stination	
<u>Exan</u>	nple 1: Before Instruc REG After Instructic REG	RRNC tion = 1 on = 1	2F 101 110	REG, 0111 1011	1, 0			
Exan	nple <u>2</u> :	RRNO	F	REG,	0, 0			
	Before Instruc	tion						
	W REG After Instructio	= ? = 1 on	101	0111				
	w REG	= 1 = 1	110 101	1011 0111				

SETF	Set f							
Syntax:	SETF f{,;	SETF f {,a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	$FFh\tof$							
Status Affected:	None							
Encoding:	0110	100a	ffff	ffff				
Description:	The conten are set to F If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode when tion 35.2.3 Oriented Ir eral Offset	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- aral Offset Mode" for details						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	1	Q4				
Decode	Read register 'f'	Proce Data	ess a re	Write egister 'f'				
Example: Before Instruc	SETF tion = 54	REG	;, 1					

REG	=	5Ah
After Instruction		
REG	=	FFh

35.2.2 EXTENDED INSTRUCTION SET

ADD	DFSR	Add Lite	Add Literal to FSR			
Synta	ax:	ADDFSR	f, k			
Oper	ands:	0 ≤ k ≤ 63 f ∈ [0, 1, 2	2]			
Oper	ation:	FSR(f) + k	$x \rightarrow FSR($	f)		
Statu	is Affected:	None	None			
Enco	oding:	1110	1110 1000 ffkk kkkk			
Desc	cription:	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.				
Word	ls:	1				
Cycle	es:	1				
Q Cycle Activity:						
	Q1	Q2	Q3		Q4	
	Decode	Read	Proce	SS	Write to	
		literal 'k'	Data	1	FSR	

Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	0422h

ADDULNK	Add Literal to FSR2 and Return			
Syntax:	ADDULN	Κk		
Operands:	$0 \le k \le 63$	3		
Operation:	FSR2 + k	$x \rightarrow FSR2$,	
	$(TOS) \rightarrow$	PC		
Status Affected:	None			
Encoding:	1110	1000	11kk	kkkk
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.			
Words:	1			
Cycles:	2			
O Cuelo A stivit ::				

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

-			
 _	-		

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instruct	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

37.2 Standard Operating Conditions

The standard operating co	onditions for any device are defined as:	
Operating Voltage: Operating Temperature:	$\label{eq:VDDMAX} \begin{array}{l} VDDMN \leq VDD \leq VDDMAX \\ TA MIN \leq TA \leq TA MAX \end{array}$	
VDD — Operating Supply	/ Voltage ⁽¹⁾	
PIC18I F24/25K40		
	aaa < 16 MU=)	1 9 /
VDDMIN (F	$OSC \leq 10 \text{ MHZ}$	
VDDMIN (F	$\operatorname{osc} \leq 32 \; \operatorname{MHz}$)	+2.5V
VDDMIN (F	$osc \le 64 \text{ MHz}$)	+3.0V
VDDMAX		
PIC18F24/25K40		
VDDMIN (F	$\operatorname{osc} \leq 16 \text{ MHz}$)	+2.3V
VDDMIN (F	$osc \leq 32 \text{ MHz}$)	
VDDMIN (F	osc ≤ 64 MHz)	+3.0V
VDDMAX		
TA — Operating Ambient	t Temperature Range	
Industrial Temperat	ure	
TA_MIN		-40°C
Та мах		
Extended Temperat	ture	
TA MIN		-40°C
		+125°C
Note 1: See Paramete	r Supply Voltage, DS Characteristics: Supply Voltage.	