

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18(L)F24/25K40 MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18(L)F24/25K40 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins"**)
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

U-0	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	
—		COSC<2:0>		CDIV<3:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	is set '0' = Bit is cleared q = Reset value is determined by hardware					;		

	REGISTER 4-2:	OSCCON2: OSCILLATOR CONTROL REGISTER 2
--	---------------	--

bit 7	Unimplemented: Read as '0'
	ommplemented. Road as 0
	-

bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ^(1,2)					
	Indicates the current source oscillator and PLL combination per Table 4-2.					

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only)^(1,2) Indicates the current postscaler division ratio per Table 4-2.

2: The Reset value (q/q) is the same as the NOSC/NDIV bits.

TABLE 4-2: NOSC/COSC AND NDIV/CDIV BIT SETTINGS

NOSC<2:0> COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved
010	EXTOSC + 4x PLL ⁽³⁾
001	Reserved
000	Reserved

NDIV<3:0> CDIV<3:0>	Clock Divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 3-1).

2: HFINTOSC frequency is set with the HFFRQ bits of the OSCFRQ register (Register 4-5).

3: EXTOSC must meet the PLL specifications (Table 37-9).

Note 1: The POR value is the value present when user code execution begins.

R/W/HC-0	/0 R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0	
CSWHOL	D SOSCPWR	—	ORDY	NOSCR	—	—	—	
bit 7				•			bit 0	
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared	HC = Bit is cl	eared by hardw	vare		
bit 7	CSWHOLD:	Clock Switch H	lold bit					
	1 = Clock s	witch will hold (with interrupt)	when the oscill	ator selected b	y NOSC is rea	dy	
	0 = Clock s	witch may proc	eed when the c	scillator select	ed by NOSC is	ready; NOSCF	R	
	become	es '1', the switc	h will occur					
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit							
	1 = Secondary oscillator operating in High-Power mode							
L:1 F	U = Secondary oscillator operating in Low-Power mode							
DIT 5	Unimplemen	ited: Read as	0.					
bit 4	ORDY: Oscil	lator Ready bit	(read-only)				_	
	1 = OSCCO	DN1 = OSCCO	N2; the current	system clock i	s the clock spe	cified by NOS	C	
		switch is in pro	gress	(1)				
bit 3	NOSCR: Nev	w Oscillator is F	Ready bit (read	-only)(')				
	1 = A clock	switch is in pro	gress and the	oscillator selec	ted by NOSC in	ndicates a "rea	dy" condition	
h:+ 0 0			, ,			s not yet ready		
DIT 2-0	Unimplemen	ited: Read as	U					
Note 1:	If $CSWHOLD = 0$	the user may	not see this bit	set because, v	when the oscilla	tor becomes re	eady there	

Note 1: If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there may be a delay of one instruction clock before this bit is set. The clock switch occurs in the next instruction cycle and this bit is cleared.

6.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC18LF2x/4xK40 devices do not
	have a configurable Low-Power Sleep
	mode. PIC18LF2x/4xK40 devices are
	unregulated and are always in the lowest
	power state when in Sleep, with no wake-
	up time penalty. These devices have a
	lower maximum VDD and I/O voltage than
	the PIC18F2x/4xK40. See Section
	37.0 "Electrical Specifications" for
	more information.

6.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in Idle.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

6.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

TABLE 10-4: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F24/25K40 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	ADPCH	F31h	FVRCON	F03h	—	ED5h	WDTPSH	EA7h	T3CKIPPS
F5Eh	ADPRE	F30h	HLVDCON1	F02h	_	ED4h	WDTPSL	EA6h	T1GPPS
F5Dh	ADCAP	F2Fh	HLVDCON0	F01h	_	ED3h	WDTCON1	EA5h	T1CKIPPS
F5Ch	ADACQ	F2Eh	_	F00h	_	ED2h	WDTCON0	EA4h	T0CKIPPS
F5Bh	ADCON3	F2Dh	WPUE	EFFh	_	ED1h	PIR7	EA3h	INT2PPS
F5Ah	ADCON2	F2Ch	_	EFEh	RC7PPS	ED0h	PIR6	EA2h	INT1PPS
F59h	ADCON1	F2Bh	_	EFDh	RC6PPS	ECFh	PIR5	EA1h	INT0PPS
F58h	ADREF	F2Ah	INLVLE	EFCh	RC5PPS	ECEh	PIR4	EA0h	PPSLOCK
F57h	ADCLK	F29h	IOCEP	EFBh	RC4PPS	ECDh	PIR3		
F56h	ADACT	F28h	IOCEN	EFAh	RC3PPS	ECCh	PIR2		
F55h	MDCARH	F27h	IOCEF	EF9h	RC2PPS	ECBh	PIR1		
F54h	MDCARL	F26h	_	EF8h	RC1PPS	ECAh	PIR0		
F53h	MDSRC	F25h	_	EF7h	RC0PPS	EC9h	PIE7		
F52h	MDCON1	F24h	_	EF6h	RB7PPS	EC8h	PIE6		
F51h	MDCON0	F23h	_	EF5h	RB6PPS	EC7h	PIE5		
F50h	SCANDTRIG	F22h	_	EF4h	RB5PPS	EC6h	PIE4		
F4Fh	SCANCON0	F21h	ANSELC	EF3h	RB4PPS	EC5h	PIE3		
F4Eh	SCANHADRU	F20h	WPUC	EF2h	RB3PPS	EC4h	PIE2		
F4Dh	SCANHADRH	F1Fh	ODCONC	EF1h	RB2PPS	EC3h	PIE1		
F4Ch	SCANHADRL	F1Eh	SLRCONC	EF0h	RB1PPS	EC2h	PIE0		
F4Bh	SCANLADRU	F1Dh	INLVLC	EEFh	RB0PPS	EC1h	IPR7		
F4Ah	SCANLADRH	F1Ch	IOCCP	EEEh	RA7PPS	EC0h	IPR6		
F49h	SCANLADRL	F1Bh	IOCCN	EEDh	RA6PPS	EBFh	IPR5		
F48h	CWG1STR	F1Ah	IOCCF	EECh	RA5PPS	EBEh	IPR4		
F47h	CWG1AS1	F19h	ANSELB	EEBh	RA4PPS	EBDh	IPR3		
F46h	CWG1AS0	F18h	WPUB	EEAh	RA3PPS	EBCh	IPR2		
F45h	CWG1CON1	F17h	ODCONB	EE9h	RA2PPS	EBBh	IPR1		
F44h	CWG1CON0	F16h	SLRCONB	EE8h	RA1PPS	EBAh	IPR0		
F43h	CWG1DBF	F15h	INLVLB	EE7h	RA0PPS	EB9h	SSP1SSPPS		
F42h	CWG1DBR	F14h	IOCBP	EE6h	PMD5	EB8h	SSP1DATPPS		
F41h	CWG1ISM	F13h	IOCBN	EE5h	PMD4	EB7h	SSP1CLKPPS		
F40h	CWG1CLKCON	F12h	IOCBF	EE4h	PMD3	EB6h	TX1PPS		
F3Fh	CLKRCLK	F11h	ANSELA	EE3h	PMD2	EB5h	RX1PPS		
F3Eh	CLKRCON	F10h	WPUA	EE2h	PMD1	EB4h	MDSRCPPS		
F3Dh	CMOUT	F0Fh	ODCONA	EE1h	PMD0	EB3h	MDCARHPPS		
F3Ch	CM1PCH	F0Eh	SLRCONA	EE0h	BORCON	EB2h	MDCARLPPS		
F3Bh	CM1NCH	F0Dh	INLVLA	EDFh	VREGCON ⁽¹⁾	EB1h	CWGINPPS		
F3Ah	CM1CON1	F0Ch	IOCAP	EDEh	OSCFRQ	EB0h	CCP2PPS		
F39h	CM1CON0	F0Bh	IOCAN	EDDh	OSCTUNE	EAFh	CCP1PPS		
F38h	CM2PCH	F0Ah	IOCAF	EDCh	OSCEN	EAEh	ADACTPPS		
F37h	CM2NCH	F09h	_	EDBh	OSCSTAT	EADh	T6INPPS		
F36h	CM2CON1	F08h	_	EDAh	OSCCON3	EACh	T4INPPS		
F35h	CM2CON0	F07h	_	ED9h	OSCCON2	EABh	T2INPPS		
F34h	DAC1CON1	F06h	_	ED8h	OSCCON1	EAAh	T5GPPS		
F33h	DAC1CON0	F05h	_	ED7h	CPUDOZE	EA9h	T5CKIPPS		
F32h	ZCDCON	F04h		ED6h	WDTTMR	EA8h	T3GPPS		

Note 1: Not available on LF parts

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

10.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

10.7 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

10.7.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

10.7.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 10-7.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 35.2.1 "Extended Instruction Syntax"**.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—		LADR<21:16> ^(1,2)						
bit 7							bit 0		
Legend:	Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all c				other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 13-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LADR<21:16>: Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			LADR<1	5:8> ^(1, 2)			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

20.1 Timer2 Operation

Timer2 operates in three major modes:

- · Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 20-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- a write to the T2CON register
- any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

20.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next cycle and increments the output

postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register then a one clock period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

20.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

20.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

20.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 21.0 "Capture/Compare/PWM Module"** for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 20.5 "Operation Examples"** for examples of how the varying Timer2 modes affect CCP PWM output.

20.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4 and Timer6 with the T2RST, T4RST and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

PIC18(L)F24/25K40

	×							-			
90% 30% 30%											:
- CXE = 0) - SCX - CXF = 1 - CXF = 1	:		· · ·	· · ·	· · ·		· · ·	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			:
- 9732 (* 97) - 99936 (* - 99979,69179 - 9996	: 		9 9 9 9 9 9	1 5 5 5 7	<pre></pre>	: 	5 5 5 7 7	2 6 5 5 2	e e e e s s s s s s s s		· · ·
- SEXC 		7/ , , , , , , , , , , , , , , , , ,	X 58.8 	× 198 5 	2013 4	× 198.3 	× 393, 7	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5# 0 ////////////////////////////////////	
homá Serveis		- 1995, 77 - 1995, 77 - 149, 1		: """"""""""""""""""""""""""""""""""""	(. 4///// 	: " : : Hp. : Hp.	. '4///// : : : 44- : 33		//// 10 2	:
SSPXF	•	· · · · · · · · · · · · · · · · · · ·	e 5 6 9 9	< 	9 2 2 2 3 9	: : : :	6 6 6 9 9	2 2 2 2 3	>		
7 89 559 59 55 559 59 59	•		2 2 2 2 2 2	5 5 7	s s s s		2 2 2 2 2	5 5 7 7	د ۵ ۵ و ۵ ۵۰۰۰۰۰۰	<u></u>	
Verito Custisano desection activo					*******				*******		

FIGURE 26-8: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

26.10.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,								
	writing to the lower five bits of SSPxCON2								
	is disabled until the Start condition is								
	complete.								

26.10.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 26-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is

FIGURE 26-26: FIRST START BIT TIMING

the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C specification states that a bus collision cannot occur on a Start.

© 2016-2017 Microchip Technology Inc.

26.10.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

26.10.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

26.10.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

26.10.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 26-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 26-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

31.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 16-bit wide register which can be accessed through the ADACCH:ADACCL register pair.

Upon each trigger event (the ADGO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated value exceeds $2^{(accumulator_width)} = 2^{16} = 65535$, the overflow bit ADAOV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the ADRPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once ADRPT samples are accumulated (ADCNT = ADRPT), an accumulator clear command can be issued by the software by setting the ADACLR bit in the ADCON2 register. Setting the ADACLR bit will also clear the ADAOV (Accumulator overflow) bit in the ADSTAT register, as well as the ADCNT register. The ADACLR bit is cleared by the hardware when accumulator clearing action is complete.

Note: When ADC is operating from FRC, five FRC clock cycles are required to execute the ADACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCH:ADACCL) register pair. For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average mode, the shift bits are used to determine number of samples for averaging. For the Low-pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 31-4 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TABLE 31-4:	LOW-PASS FILTER -3 dB CUT-OFF FREQUENCY
-	

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

31.5.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

31.5.3 ACCUMULATE MODE

In Accumulate mode (ADMD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the ADCRS bits in the ADCON2 register. This right-shifted value is copied in to the ADFLT register. The Formatting mode does not affect the right-justification of the ADACC value. Upon each sample, ADCNT is also incremented, incrementing the number of samples accumulated. After each sample and accumulation, the ADACC value has a threshold comparison performed on it (see Section 31.5.7 "Threshold Comparison") and the ADTIF interrupt may trigger.

31.5.4 AVERAGE MODE

In Average Mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. The ADFLT register is also updated with the right-shifted value of the ADACC register. The value of the ADCRS bits governs the number of right shifts. However, in Average mode, the threshold comparison is performed upon ADCNT being greater than or equal to a user-defined ADRPT value. In this mode when ADRPT = 2^ADCNT , then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			ADUT	H<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	d as '0'		
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value :	at POR and BC	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ired				

REGISTER 31-30: ADUTHH: ADC UPPER THRESHOLD HIGH BYTE REGISTER

bit 7-0 **ADUTH<15:8>**: ADC Upper Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 31-31: ADUTHL: ADC UPPER THRESHOLD LOW BYTE REGISTER

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADUTH | 1<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADUTH<7:0>**: ADC Upper Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
_	_	—			ADACT<4:0>							
bit 7	·						bit 0					
Legend:												
R = Readable	e bit	W = Writable b	oit	U = Unimpleme	ented bit, read as	s 'O'						
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Res								
'1' = Bit is set	t	'0' = Bit is clea	ared									
hit 7-5	Unimplom	anted: Read as '0'										
bit 1-5			n Trianan Calaat	Dite								
DIT 4-0	11111 = S	U >: Auto-Conversio	PCH	Bits								
	11111 = 00 111110 = Re	11111 = Software write to ADPCH										
	11101 = S o	11101 = Software read of ADRESH										
	11100 = S o	11100 = Software read of ADERRH										
	11011 = R e	11011 = Reserved, do not use										
	•											
	•											
	• 10000 - B	occurred do not use	、 、									
	$10000 = R_0$	terrunt-on-change l	; nterrunt Elaa									
	01111 = 11 01110 = C	2 out	nterrupt i lag									
	01101 = C	1 out										
	01100 = P\	01100 = PWM4 out										
	01011 = P\	01011 = PWM3_out										
	01010 = C	01010 = CCP2_trigger										
	01001 = C	01001 = CCP1_trigger										
	01000 = T	01000 = TMR6_postscaled										
	00111 = 10	VIR5_overflow										
	00110 = 10	VIR4_postscaled										
	00101 = T	MR2 nostscaled										
	00011 = T	MR1 overflow										
	00010 = TM	MR0 overflow										
	00001 = P i	n selected by ADA	CTPPS									
	00000 = Ex	kternal Trigger Disa	bled									

REGISTER 31-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

35.0 INSTRUCTION SET SUMMARY

PIC18(L)F2x/4xK40 devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of eight new instructions, for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

35.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous $PIC^{\textcircled{B}}$ MCU instruction sets, while maintaining an easy migration from these $PIC^{\textcircled{B}}$ MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- **Bit-oriented** operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 35-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 35-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The literal instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The control instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the four MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 35-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 35-2, lists the standard instructions recognized by the Microchip Assembler (MPASMTM).

Section 35.1.1 "Standard Instruction Set" provides a description of each instruction.

PIC18(L)F24/25K40

INCF	SZ	Increment f, skip if 0							
Synta	ax:	INCFSZ f	INCFSZ f {,d {,a}}						
Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Oper	ation:	(f) + 1 \rightarrow de skip if result	est, t = 0						
Statu	s Affected:	None							
Enco	ding:	0011	11da f	fff	ffff				
Desc	ription:	The content incremented placed in W placed back If the result which is alre and a NOP i it a 2-cycle If 'a' is '0', tt If 'a' is '0', tt GPR bank. If 'a' is '0' an set is enabl in Indexed I mode when tion 35.2.3 Oriented In eral Offset	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Word	s:	1	1						
Cycle	es:	1(2) Note: 3 cyc by a	cles if skip a 2-word inst	and follo ruction	owed				
QC	ycle Activity:								
i	Q1	Q2	Q3		Q4				
	Decode	Read	Process Data	V de	Vrite to stination				
lf sk	ip:	register i	Data	ue	Sunation				
	Q1	Q2	Q3		Q4				
	No	No	No		No				
	operation	operation	operation	op	peration				
lf sk	ip and followe	d by 2-word ins	struction:		04				
	QT	Q2	Q3 No	1	Q4				
	operation	operation	operation		peration				
	No	No	No		No				
	operation	operation	operation	op	peration				
<u>Exan</u>	nple:	HERE 1 NZERO : ZERO :	INCFSZ	CNT,	1, 0				
	Before Instruc PC	tion = Address	(HERE)						
	CNT If CNT PC If CNT PC If CNT PC	= CNT + 1 = 0; = Address ≠ 0; = Address	G (ZERO) G (NZERO)						

Syntax:INFSNZ $f \{d \{a\}\}$ Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation:(f) + 1 \rightarrow dest, skip if result $\neq 0$ Status Affected:NoneEncoding: 0100 $10da$ ffffDescription:The contents of register 'f are incremented. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5F). See Sec- tion 35.23 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.Words:1Cycles1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q 1Q2Q3Q4DecodeRead register 'fDatadestinationIf skip:Q1Q2Q3Q4Q4NoNoNo operationIf skip and followed by 2-word instruction: Q1Q2Q1Q2Q3Q4Q4NoNo operationNoNo operationNoNo operationQ1Q2Q2Q3Q4Q4No operationNo operationNo operationNo operationNo	INFS	SNZ	Increment f, skip if not 0					
Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation:(f) + 1 \rightarrow dest, skip if result $\neq 0$ Status Affected:NoneEncoding: 0100 $10da$ ffffDescription:The contents of register 'f are incremented. If 'd' is '0', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction, which is already fetched, is discarded and a NOP is executed instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (SFN). See Sec- tion 35.23 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles1(2) Note:Q 1Q2Q3Q4DecodeRead register 'fDatadestinationIf skip:Q1Q2Q3Q1Q2Q3Q4NoNoNoNoNooperation	Synta	ax:	INFSNZ f	INFSNZ f {,d {,a}}				
Operation: $(f) + 1 \rightarrow dest, skip if result \neq 0$ Status Affected:NoneEncoding: $\boxed{0100}$ $10da$ $ffff$ $ffff$ Description:The contents of register 'f are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction.If 'a' is '0', the Access Bank is selected.If 'a' is '0', the Access Bank is selected.If 'a' is '0', the Access Bank is selected.If 'a' is '0' and the extended instruction operates in Indexed Literal Offset Addressing mode whenever f < 95 (5F.h). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instruction.Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q2Q3Q1Q2Q2Q3Q4DecodeReadProcessVirite to operationoperationoperationoperationoperationoperationoperationoperationoperationNo <t< td=""><td colspan="2">Operands:</td><td>$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$</td><td colspan="5">$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$</td></t<>	Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Status Affected:NoneEncoding:010010daffffffffDescription:The contents of register 'f are incremented. If 'd' is '0', the result is placed back in register 'f (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 35.2.3 "Byte-Oriented and Bit- 	Oper	ation:	(f) + 1 \rightarrow de skip if resul	est, t ≠ 0				
Encoding: 0100 10da ffff ffff Description: The contents of register 'f are incremented. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. If skip: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f Data destination If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation peration operation operation PC = Address (HERE) After Instruction REG = REG + 1 If REG \neq 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)	Statu	is Affected:	None					
Description:The contents of register 'f are incremented. If 'd' is '0', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Cycles1(2) Note: 3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q2Q3Q4Decode register 'fDecodeRead register 'fQ1Q2Q3Q4DecodeRead register 'fProcessWrite to register in operation operationIf skip:Q1Q2Q2Q3Q4No	Enco	oding:	0100	10da fff	f ffff			
Words:1Cycles:1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ Q1Q2Q3Q4DecodeRead register 'f'DecodeRead register 'f'Q1Q2Q3Q4Q4No <t< td=""><td>Desc</td><td>ription:</td><td>The conten incrementer placed in W placed back If the result instruction, discarded a instead, ma instruction. If 'a' is '0', tt If 'a' is '0', tt If 'a' is '0', tt GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 35.2.3 Oriented Ir eral Offset</br></br></br></br></td><td colspan="4">010010dafffffiftffffincremented. If 'd' is '0', the result isplaced in W. If 'd' is '1', the result isplaced back in register 'f' (default).If the result is not '0', the nextinstruction, which is already fetched, isdiscarded and a NOP is executedinstruction.If 'a' is '0', the Access Bank is selected.If 'a' is '0', the BSR is used to select theGPR bank.If 'a' is '0' and the extended instructionst is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details</td></t<>	Desc	ription:	The conten incrementer placed in W placed back If the result instruction, discarded a instead, ma instruction. 	010010dafffffiftffffincremented. If 'd' is '0', the result isplaced in W. If 'd' is '1', the result isplaced back in register 'f' (default).If the result is not '0', the nextinstruction, which is already fetched, isdiscarded and a NOP is executedinstruction.If 'a' is '0', the Access Bank is selected.If 'a' is '0', the BSR is used to select theGPR bank.If 'a' is '0' and the extended instructionst is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f Data destination, If skip: Q1 Q2 Q3 Q4 No No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No operation operation operation PC = Address (HERE) After Instruction REG = REG + 1 If REG \neq 0; PC = Address (NZERO) If REG = 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)	Word	ls:	1					
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination If skip: Q1 Q2 Q3 Q4 No No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation operation No No No No No operation operation operation operation No No No No No operation operation operation operation Example: HERE INFSNZ REG, 1, 0 ZERO NZERO Before Instruction PC = Address (HERE) After Instruction REG = REG + 1 If REG = 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)	Cycle	es:	1(2) Note: 3 o by	cycles if skip a a 2-word instr	nd followed uction.			
$\begin{array}{c ccccc} Q1 & Q2 & Q3 & Q4 \\ \hline Decode & Read & Process & Write to \\ register 'f' & Data & destination \\ \hline If skip: \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline operation & operation & operation \\ \hline If skip and followed by 2-word instruction: \\ \hline Q1 & Q2 & Q3 & Q4 \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline No & No & No & No \\ \hline operation & operation & operation \\ \hline PC & = & Address (HERE) \\ \hline After Instruction \\ REG & = & REG + 1 \\ If REG & \neq & 0; \\ PC & = & Address (NZERO) \\ \hline If REG & = & 0; \\ PC & = & Address (NZERO) \\ \hline If REG & = & 0; \\ PC & = & Address (ZERO) \\ \hline \end{array}$	QC	ycle Activity:						
$\begin{tabular}{ c c c c c } \hline Decode & Read & Process & Write to \\ \hline register 'f' & Data & destination \\ \hline \end{tabular} \end$		Q1	Q2	Q3	Q4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Decode	Read	Process	Write to			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	الا مار		register T	Data	destination			
U1U2U3U4NoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNoNooperationoperationoperationoperationNoNoNoNoNooperationoperationoperationoperationNoNoNoNoNooperationoperationoperationoperationNoNoNoNoNooperationoperationoperationoperationExample:HEREINFSNZREG, 1, 0ZEROZERONZERONZEROBefore InstructionPC=Address (HERE)After InstructionREG=REG + 1If REG \neq 0;PC=Address (NZERO)If REG=PC=Address (ZERO)	II SK	.ıp. 01	02	02	04			
NoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNooperationpc=Address (HERE)After InstructionREG=REG=REG=PC=Address (NZERO)If REG=0;PCPC=Address (ZERO)		Q1 No	Q2	Q3	Q4			
If skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationNoNoNoNoNooperationoperationoperationoperationNoNoNoNoNooperationoperationoperationNoNoNoNooperationoperationoperationExample:HEREINFSNZREG, 1, 0ZEROZERONZEROBefore InstructionPC=After InstructionREG = REG + 1If REG = 0;PC=PC = Address (NZERO)If REG = 0;PC = Address (ZERO)If REG = 0;PC = Address (ZERO)If REG = 0;PC = Address (ZERO)If REG		operation	operation	operation	operation			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lf sk	ip and followe	d by 2-word in	struction:				
$\begin{tabular}{ c c c c c c } \hline No & No & No & No & operation &$		Q1	Q2	Q3	Q4			
$\begin{tabular}{ c c c c c c } \hline operation & operati$		No	No	No	No			
No No No No operation operation operation operation Example: HERE INFSNZ REG, 1, 0 ZERO ZERO NZERO Before Instruction PC = After Instruction REG = REG = REG + 1 If REG ≠ 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)		operation	operation	operation	operation			
operationoperationoperationoperationExample:HERE ZERO NZEROINFSNZ REG, 1, 0Before Instruction PC = Address (HERE)After Instruction REG = REG + 1 If REG \neq 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)		No	No	No	No			
Example: HERE INFSNZ REG, 1, 0 ZERO NZERO Before Instruction PC = Address (HERE) After Instruction REG = REG + 1 If REG ≠ 0; PC = Address (NZERO) If REG = 0; PC = Address (ZERO)		operation	operation	operation	operation			
Before Instruction PC = Address (HERE) After Instruction REG = REG + 1 If $REG \neq 0$; PC = Address (NZERO) If $REG = 0$; PC = Address (ZERO)	<u>Exan</u>	nple:	HERE ZERO NZERO	INFSNZ REG	, 1, 0			
$REG = REG + 1$ $If REG \neq 0;$ $PC = Address (NZERO)$ $If REG = 0;$ $PC = Address (ZERO)$		PC After Instruction	tion = Address	G (HERE)				
		REG If REG PC If REG PC	= REG + ≠ 0; = Address = 0; = Address	1 5 (NZERO) 5 (ZERO)				

PIC18(L)F24/25K40

TSTFSZ	Test f, ski	Test f, skip if 0					
Syntax:	TSTFSZ f {,	TSTFSZ f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	skip if f = 0						
Status Affected:	None						
Encoding:	0110	011a fff	f ffff				
Description: Words: Cycles:	If 'f' = 0, the during the c is discarded making this If 'a' is '0', tf If 'a' is '1', tf GPR bank. If 'a' is '0' an set is enable in Indexed I mode when tion 35.2.3 Oriented In eral Offset 1 1(2)	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details. 1					
	Note: 3 cy by a	Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:	00	00	04				
QI	Q2						
Decode	register 'f'	Data	operation				
If skip:	<u> </u>						
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
It skip and followe	a by 2-word ins	struction:	04				
	Q2	Q3	Q4				
operation	operation	operation	operation				
No	No	No	No				
operation	operation	operation	operation				
Example:	HERE 7 NZERO : ZERO :	rstfsz Cnt :	, 1				
Before Instruc	tion	droce (THERE	N N				
After Instruction If CNT PC If CNT PC	- Ad on = 001 = Ad ≠ 001 = Ad	h, dress (ZERO) h, dress (NZERO))				

XOF	RLW	Exclusiv	Exclusive OR literal with W						
Syntax:		XORLW	XORLW k						
Oper	ands:	$0 \le k \le 25$	$0 \leq k \leq 255$						
Oper	ation:	(W) .XOR	(W) .XOR. $k \rightarrow W$						
Status Affected:		N, Z	N, Z						
Encoding:		0000	1010	kkkk	kkkk				
Description:		The conte the 8-bit li in W.	The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.						
Word	ls:	1	1						
Cycle	es:	1							
Q Cycle Activity:									
	Q1	Q2	Q3		Q4				
	Decode Read F literal 'k'		Proces Data	ss W	rite to W				
Example:		XORLW	0AFh						

Before Instruction W = B5h After Instruction

W = 1Ah

© 2016-2017 Microchip Technology Inc.

TABLE 37-8:	INTERNAL OSCILLATOR PARAMETERS ⁽¹⁾

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32 64		MHz	(Note 2)
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency		1 2	_	MHz MHz	
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency	_	500	_	kHz	
OS53*	FLFOSC	Internal LFINTOSC Frequency	_	31	_	kHz	
OS54*	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20 —	μs μs	VREGPM = 0 VREGPM = 1
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time	_	0.2		ms	

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 37-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

