

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-On-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 6-1, the interrupt occurs during the 2nd instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

EXAMPLE 6-1: DOZE SOFTWARE EXAMPLE

```
//Mainline operation
bool somethingToDo = FALSE:
void main()
   initializeSystem();
           // DOZE = 64:1 (for example)
           // ROI = 1;
   GIE = 1; // enable interrupts
   while (1)
   {
       // If ADC completed, process data
       if (somethingToDo)
       {
           doSomething();
           DOZEN = 1; // resume low-power
       }
   }
// Data interrupt handler
void interrupt()
   // DOZEN = 0 because ROI = 1
   if (ADIF)
   {
       somethingToDo = TRUE;
       DOE = 0; // make main() go fast
       ADIF = 0;
   // else check other interrupts...
   if (TMROIF)
   {
       timerTick++;
       DOE = 1; // make main() go slow
       TMROIF = 0;
   }
```

6.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0).

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared (Register 10-2)
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set (Register 10-2)
- 4. The CPU clock is disabled
- 5. LFINTOSC, SOSC, HFINTOSC and ADCRC are unaffected and peripherals using them may continue operation in Sleep.
- I/O ports maintain the status they had before Sleep was executed (driving high, low, or highimpedance)
- 7. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 28.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F4Dh	SCANHADRH		HADR<15:8>						11111111	
F4Ch	SCANHADRL		HADR<7:0>						11111111	
F4Bh	SCANLADRU	—	—			LADR	<21:16>			000000
F4Ah	SCANLADRH				LADR	<15:8>				00000000
F49h	SCANLADRL				LADF	R<7:0>				00000000
F48h	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	00000000
F47h	CWG1AS1	—	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	000000
F46h	CWG1AS0	SHUTDOWN	REN	LSBI	D<1:0>	LSAC	C<1:0>	—	—	000101
F45h	CWG1CON1	—	_	IN	—	POLD	POLC	POLB	POLA	x-0000
F44h	CWG1CON0	EN	LD	—	—	—		MODE<2:0>		00000
F43h	CWG1DBF	—	_			DBF	<5:0>			000000
F42h	CWG1DBR	—	_			DBF	<<5:0>			000000
F41h	CWG1ISM	—	_	—	—	—		ISM<2:0>		000
F40h	CWG1CLKCON	—	_	—	—	—	—	—	CS	0
F3Fh	CLKRCLK	—	_	—	—	—	C	CLKRxCLK<2:0)>	000
F3Eh	CLKRCON	CLKREN	_	—	CLKRD	C<1:0>	CLKRDIV<2:0>			010000
F3Dh	CMOUT	—	_	—	—	—	—	MC2OUT	MC1OUT	00
F3Ch	CM1PCH	—	_	—	—	—		PCH<2:0>		000
F3Bh	CM1NCH	—	_	—	—	—		NCH<2:0>		000
F3Ah	CM1CON1	_		_	_	_	_	INTP	INTN	100
F39h	CM1CON0	EN	OUT	_	POL	—	—	HYS	SYNC	00-000
F38h	CM2PCH	_		_	_	_		C2PCH<2:0>		000
F37h	CM2NCH	_	_	—	—	—		C2NCH<2:0>	•	000
F36h	CM2CON1	_		_	_	—	—	INTP	INTN	100
F35h	CM2CON0	EN	OUT	_	POL	_	_	HYS	SYNC	00-000
F34h	DAC1CON1	_	_	_			DAC1R<4:0>			xxxxx
F33h	DAC1CON0	EN	_	OE1	OE2	PSS	<1:0>	_	NSS	0-0000-0
F32h	ZCDCON	SEN		OUT	POL	—	_	INTP	INTN	0-x000
F31h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF\	/R<1:0>	ADF\	/R<1:0>	0x000000
F30h	HLVDCON1	_		_	_		HLVDS	EL<3:0>		0000
F2Fh	HLVDCON0	EN	-	OUT	RDY	-	-	INTH	INTL	0-xx00
F2Eh	-				Unimpl	emented				—
F2Dh	WPUE	_	_	—	—	WPUE3	—	—	—	1
F2Ch	—			Unimplemented				—		
F2Bh	-			Unimplemented				—		
F2Ah	INLVLE	_	_	—	—	INLVLE3	—	—	—	1
F29h	IOCEP	_	_	—	_	IOCEP3	—	—	_	0
F28h	IOCEN	_		_	_	IOCEN3	_	_	_	0
F27h	IOCEF	—	_	_	—	IOCEF3	—	_	_	0

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F24/25K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F26h to	_		I		Unimplemented					_
F22h F21h	ANSELC	ANSEL C7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSEL CO	11111111
F20h	WPLIC	WPLIC7	WPLIC6	WPLIC5	WPLIC4	WPLIC3	WPUC2	WPLIC1	WPLICO	00000000
F1Eb		00007					00002			00000000
F1Eb	SLRCONC	SLRC7	SLRC6	SLRC5	SI RC4	SLRC3	SLRC2	SLRC1	SLRCO	11111111
F1Db				INLVLC5		INLVI C3	INLVI C2			11111111
F1Ch	IOCCP	IOCCP7	IOCCP6	IOCCP5		IOCCP3	IOCCP2	IOCCP1	IOCCPO	00000000
F1Bh	IOCCN			IOCCN5	IOCCN4	IOCCN3	IOCCN2			00000000
F1Ah	IOCCE	IOCCE7	IOCCE6	IOCCE5		IOCCE3	IOCCE2	IOCCE1	IOCCEO	00000000
F10h				ANSEL B5						11111111
F18h	WPUB	WPUB7	WPUB6	WPLIB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	00000000
F17b		ODCB7	ODCB6	ODCB5		ODCB3		ODCB1		00000000
F16h	SLRCONB	SI RB7	SI RB6	SI RB5	SI RB4	SI RB3	SI RB2	SI RB1	SI RB0	11111111
F15h			INI VI B6	INI VI B5		INI VI B3	INI VI B2		INI VI BO	11111111
F14h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBPO	00000000
E12b										00000000
F12h	IOCBE	IOCBE7	IOCBE6	IOCBE5		IOCBE3	IOCBINZ	IOCBE1	IOCBEO	00000000
E11b										11111111
F10b		WDUA7	WPUA6	WPLIA5	WPI IA/	WPI IA3	WPI IA2		WPUAD	00000000
FOEb										00000000
FOEb		SI DA7	SLDAG	SIDAS	SI DA4	SI DA3	SI DA2	SI DA1	SLRAD	11111111
FODh										11111111
FODI										11111111
			IOCANG							00000000
FUBN										00000000
FUAN	IUCAF	IUCAF7	IUCAF6	IUCAF5	IUCAF4	IUCAF3	IUCAF2	IUCAF1	IUCAFU	00000000
to EFFh	—				Unimpl	emented				—
EFEh	RC7PPS	_	_	—			RC7PPS<4:0>			00000
EFDh	RC6PPS	—	—	—			RC6PPS<4:0>			00000
EFCh	RC5PPS	—	—	—			RC5PPS<4:0>			00000
EFBh	RC4PPS	—	—	—			RC4PPS<4:0>			00000
EFAh	RC3PPS	—	—	—			RC3PPS<4:0>			00000
EF9h	RC2PPS	—	—	—	RC2PPS<4:0>				00000	
EF8h	RC1PPS	—	—	—	RC1PPS<4:0>				00000	
EF7h	RCOPPS	_	_	_			RC0PPS<4:0>			00000
EF6h	RB7PPS	—	—	—			RB7PPS<4:0>			00000
EF5h	RB6PPS	—	—	—			RB6PPS<4:0>			00000
EF4h	RB5PPS	—	—	—			RB5PPS<4:0>			00000
EF3h	RB4PPS	_	_	_			RB4PPS<4:0>			00000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

11.4 Register Definitions: Nonvolatile Memory

REGISTER 11-1: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

R/W-0/	0 R/W-0/0	U-0	R/S/HC-0/0	R/W/HS-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0			
NV	MREG<1:0>	_	FREE	WRERR	WREN	WR	RD			
bit 7							bit 0			
Legend:	Legend:									
R = Reada	able bit	W = Writable	bit	HC = Bit is cle	eared by hardw	vare				
x = Bit is ι	Inknown	-n = Value at	POR	S = Bit can be	e set by softwa	re, but not clea	ared			
'0' = Bit is	cleared	'1' = Bit is set		U = Unimplem	nented bit, read	d as '0'				
bit 7-6										
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	FREE: Progra 1 = Perform 0 = The nex	am Flash Mem s an erase ope t WR comman	ory Erase Enal eration on the r d performs a w	ble bit ⁽¹⁾ next WR comma vrite operation	and					
SKO	1 = A write o or WR w or WR w or WR w 0 = All write	operation was vas written to 1 vas written to 1 vas written to 1 operations ha	interrupted by a 'b1 when an in 'b1 when NVM 'b1 when a wri ve completed r	a Reset (hardw walid address is IREG<1:0> and ite-protected ad normally	are set), s accessed (Ta l address do n ldress is acces	able 10-1, Table ot point to the s ssed (Table 10-	e 11-1) same region 2).			
bit 2	WREN: Progr 1 = Allows p 0 = Inhibits p	ram/Erase Ena program/erase programming/e	ble bit and refresh cy erasing and use	cles er refresh of NV	′M					
bit 1	WR: Write Co <u>When NVMR</u> 1 = Initiates <u>When NVMR</u> 1 = Initiates 0 = NVM pro	ontrol bit ^(5,6,7) EG points to a an erase/prog EG points to a the PFM write ogram/erase o	<u>A Memory locat</u> e correspondin data from the h pplete and inact	<u>ion:</u> g Data EEPRC nolding registe ive	DM Memory loo rs	cation				
bit 0	RD: Read Co 1 = Initiates 0 = NVM rea	ntrol bit ⁽⁸⁾ a read at addr ad operation is	ess pointed by complete and	NVMREG and inactive	NVMADR, an	d loads data in	to NVMDAT			
Note 1: 2: 3: 4: 5: 6: 7:	This can only be u This bit is set when completed succes Bit must be cleare Bit may be written This bit can only b Operations are set Once a write opera	sed with PFM. n WR = 1 and sfully. d by the user; to '1' by the us e set by follow lf-timed and the ation is initiated	clears when th hardware will r ser in order to i ing the unlock e WR bit is clea d, setting this b	e internal progr not clear this bit mplement test sequence of Se ared by hardwa it to zero will ha	amming timer sequences. ection 11.1.4 " re when comp ave no effect.	expires or the NVM Unlock a lete.	write is Sequence".			

8: The bit can only be set in software. The bit is cleared by hardware when the operation is complete.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	—	TMR5GIF	TMR3GIF	TMR1GIF
bit 7	-						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	TMR5GIF: TN	/IR5 Gate Inter	rupt Flag bit				
	1 = TMR5 gat	te interrupt occ	urred (must b	e cleared in so	ftware)		
	0 = No TMR5	gate occurred					
bit 1	TMR3GIF: TN	MR3 Gate Inter	rupt Flag bit				
	1 = TMR3 gat 0 = No TMR3	te interrupt occ	urred (must be	e cleared in so	ftware)		
bit 0		/R1 Cate Inter	runt Elag hit				
	1 = TMR1 gai	te interrupt occ	urred (must b	e cleared in so	ftware)		
	0 = No TMR1	gate occurred					

REGISTER 14-7: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

17.8 Register Definitions: PPS Input Selection

REGISTER 17-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

REGISTER 1	/-1: XXXPP	S: PERIPHE	RAL XXX INI	PUI SELECI	ION				
U-0	U-0	U-0	R/W-m/u ⁽¹⁾						
—	—	—			xxxPPS<4:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
u = Bit is unch	anged	x = Bit is unk	nown	q = value dep	ends on periph	eral			
'1' = Bit is set		U = Unimpler	mented bit,	m = value de	pends on defau	It location for th	for that input		
'0' = Bit is cleared		read as '	0'						
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-3	xxxPPS<4:3	>: Peripheral x	xx Input POR	Tx Pin Selection	n bits				
	See Table 17	-1 for the list o	f available por	ts and default p	oin locations.				
	11 = Reserve	ed							
	10 = PORIC								
	00 = PORTB								
bit 2-0	xxxPPS<2:0	>: Peripheral x	xx Input POR	Tx Pin Selectio	n bits				
	111 = Periph	eral input is fro	m PORTx Pin	7 (Rx7)					
	110 = Periph	eral input is fro	m PORTx Pin	6 (Rx6)					
	101 = Periph	eral input is fro	m PORTx Pin	5 (Rx5)					
	100 = Periph	eral input is fro	m PORTx Pin	4 (Rx4)					
	011 = Periph	eral input is fro	m PORTx Pin	3 (Rx3)					

- 010 = Peripheral input is from PORTx Pin 2 (Rx2)
- 001 = Peripheral input is from PORTx Pin 1 (Rx1)
- 000 = Peripheral input is from PORTx Pin 0 (Rx0)

Note 1: The Reset value 'm' of this register is determined by device default locations for that input.

REGISTER 20-3: TxCLKCON: TIMERx CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		CS<	3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CS<3:0>: Timerx Clock Selection bits

00-22-05	TMR2	TMR4	TMR6
03<3:02	Clock Source	Clock Source	Clock Source
1111-1001	Reserved	Reserved	Reserved
1000	ZCD_OUT	ZCD_OUT	ZCD_OUT
0111	CLKREF_OUT	CLKREF_OUT	CLKREF_OUT
0110	SOSC	SOSC	SOSC
0101	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)
0100	LFINTOSC	LFINTOSC	LFINTOSC
0011	HFINTOSC	HFINTOSC	HFINTOSC
0010	Fosc	Fosc	Fosc
0001	Fosc/4	Fosc/4	Fosc/4
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS

24.3 Clock Source

The clock source is used to drive the dead-band timing circuits. The CWG module allows the following clock sources to be selected:

- FOSC (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit of the CWG1CLKCON register (Register 24-3). The system clock Fosc, is disabled in Sleep and thus dead-band control cannot be used.

24.4 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 24-1.

TABLE 24-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name	ISM<2:0>
CWG1PPS	Pin selected by CWG1PPS	000
CCP1	CCP1 Output	001
CCP2	CCP2 Output	010
PWM3	PWM3 Output	011
PWM4	PWM4 Output	100
CMP1	Comparator 1 Output	101
CMP2	Comparator 2 Output	110
DSM	Data signal modulator output	111

The input sources are selected using the ISM<2:0> bits in the CWG1ISM register (Register 24-4).

24.5 Output Control

24.5.1 CWG OUTPUTS

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register (see **Section 17.0 "Peripheral Pin Select (PPS) Module"**).

24.5.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLy bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

24.6 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

24.6.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 24-2.

24.6.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the dead-band counters.

FIGURE 24-12:

PIC18(L)F24/25K40

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
			DBF	R<5:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimple	mented bit, read	as '0'		
u = Bit is unchanged		x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depends on condition				
bit 7-6	Unimplemer	nted: Read as '0)'					
bit 5-0	DBR<5:0>: (CWG Rising Edg	ge Triggered I	Dead-Band Co	unt bits			
	11 1111 =	63-64 CWG clo	ck periods					
	11 1110 =	62-63 CWG clo	ck periods					
	•							
	•							
	00 0010 = 00 0001 = 00 0000 =	2-3 CWG clock 1-2 CWG clock 0 CWG clock pe	periods periods eriods. Dead-	band generatio	on is bypassed			

REGISTER 24-8: CWG1DBR: CWG RISING DEAD-BAND COUNT REGISTER

REGISTER 24-9: CWG1DBF: CWG FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			DBF	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'					
bit 5-0	DBF<5:0>: CWG Falling Edge Triggered Dead-Band Count bits					
	11 1111 = 63-64 CWG clock periods					
	11 1110 = 62-63 CWG clock periods					
	•					
	00 0010 = 2-3 CWG clock periods					
	00 0001 = 1-2 CWG clock periods					
	00 0000 = 0 CWG clock periods. Dead-band generation is bypassed.					

controlled through addressing. Figure 26-9 is a block diagram of the I²C interface module in Master mode.

Figure 26-10 is a diagram of the I^2C interface module

in Slave mode.

26.6 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is

FIGURE 26-9: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

26.8.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 26-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

26.8.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

26.8.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 26-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/W clear in 10-bit mode, a prior match flag is set and maintained until a Stop condition, a high address with R/W clear, or high address match fails.

26.8.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

26.9.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 26.9.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

26.9.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

26.9.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 26-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

 ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

26.10.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 26-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

26.10.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 26-28).

FIGURE 26-27: REPEATED START CONDITION WAVEFORM

27.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

27.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

27.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

27.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

27.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

27.5.1.4 Synchronous Master Transmission Setup:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 27.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

27.5.1.5 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RXx/DTx pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RCxIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pir							
	the corresponding ANSEL bit must be							
	cleared for the receiver to function.							

27.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TXx/CKx pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

27.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

27.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

27.5.1.9 Synchronous Master Reception Setup:

- Initialize the SPxBRGH:SPxBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RXx pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCxIE was set.
- 9. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

32.11 CWG1 Auto-Shutdown Source

The output of the comparator module can be used as an auto-shutdown source for the CWG1 module. When the output of the comparator is active and the corresponding WGASxE is enabled, the CWG operation will be suspended immediately (see Section 24.10.1.2 "External Input Source").

32.12 ADC Auto-Trigger Source

The output of the comparator module can be used to trigger an ADC conversion. When the ADACT register is set to trigger on a comparator output, an ADC conversion will trigger when the Comparator output goes high.

32.13 TMR2/4/6 Reset

The output of the comparator module can be used to reset Timer2. When the TxERS register is appropriately set, the timer will reset when the Comparator output goes high.

32.14 Operation in Sleep Mode

The comparator module can operate during Sleep. The comparator clock source is based on the Timer1 clock source. If the Timer1 clock source is either the system clock (FOSC) or the instruction clock (FOSC/4), Timer1 will not operate during Sleep, and synchronized comparator outputs will not operate.

A comparator interrupt will wake the device from Sleep. The CxIE bits of the PIE2 register must be set to enable comparator interrupts.

33.2 HLVD Setup

To set up the HLVD module:

- Select the desired HLVD trip point by writing the value to the HLVDSEL<3:0> bits of the HLVDCON1 register.
- Depending on the application to detect high-voltage peaks or low-voltage drops or both, set the HLVDINTH or HLVDINTL bit appropriately.
- 3. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD interrupt flag (PIR2 register), which may have been set from a previous interrupt.
- 5. If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE in the PIE2 register and GIE bits.

An interrupt will not be generated until the HLVDRDY bit is set.

Note: Before changing any module settings (HLVDINTH, HLVDINTL, HLVDSEL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

33.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter **D206** (Table 37-3).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

33.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification (Table 37-17), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TFVRST, is an interval that is independent of device clock speed. It is specified in electrical specification (Table 37-17).

The HLVD interrupt flag is not enabled until TFVRST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 33-2 or Figure 33-3).

TABLE 37-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0	
AD21				2		μS	Using FRC as the ADC clock source ADOCS = 1	
AD22	TCNV	Conversion Time ⁽¹⁾		11 + Зтсү		Tad	Set of GO/DONE bit to Clear of GO/ DONE bit	
AD23	TACQ	Acquisition Time	_	2	_	μS		
AD24	THCD	Sample and Hold Capacitor Disconnect Time		_		μS	Fosc-based clock source Frc-based clock source	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Symbol Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—		ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading		—	400	pF	

TABLE 37-25: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.