

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

x = Bit is unknown

	0		•	,			
U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	R/W-1
_	—	_	_	—	—	CPD	CP
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable	bit	U = Unimple	mented bit, read	l as '1'	

'0' = Bit is cleared

REGISTER 3-9: Configuration Word 5L (30 0008h): Code Protection

'1' = Bit is set

bit 7-2	Unimplemented: Read as '1'
bit 1	CPD: Data NVM Memory Code Protection bit
	1 = Data NVM code protection disabled
	0 = Data NVM code protection enabled
bit 0	CP: User NVM Program Memory Code Protection bit
	 User NVM code protection disabled
	0 = User NVM code protection enabled

-n = Value for blank device

REGISTER 3-10: Configuration Word 6L (30 000Ah): Memory Read Protection

U-1	U-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	_	EBTR3	EBTR2	EBTR1	EBTR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '1'

bit 3-0

EBTR<3:0>: Table Read Protection bits⁽¹⁾

1 = Corresponding Memory Block NOT protected from table reads executed in other blocks

0 = Corresponding Memory Block protected from table reads executed in other blocks

Note 1: Refer to Table 10-2 for details on implementation of the individual EBTR bits.

REGISTER 3-11: Configuration Word 6H (30 000Bh): Memory Read Protection

	•		•	•			
U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	U-1
_	_	_	_			EBTRB	_
bit 7							bit 0
Legend:							
R = Readable bit W		W = Writable	bit	U = Unimplemented bit, read as '1'			
-n = Value for blank device '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
bit 7-2	Unimplement	ed: Read as '1	3				
bit 1 EBTRB: Table Read Protection bit							
 1 = Memory Boot Block NOT protected from table reads executed in other blocks 							
	0 = Memory	Boot Block pro	tected from ta	ble reads exe	cuted in other b	locks	

bit 0 Unimplemented: Read as '1'

4.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 4-9: FSCM BLOCK DIAGRAM

4.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 4-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

4.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the HFFRQ bits and the NDIV/CDIV bits. The bit flag OSCFIF of the PIR1 register is set. Setting this flag will generate an interrupt if the OSCFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

4.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

6.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC18LF2x/4xK40 devices do not
	have a configurable Low-Power Sleep
	mode. PIC18LF2x/4xK40 devices are
	unregulated and are always in the lowest
	power state when in Sleep, with no wake-
	up time penalty. These devices have a
	lower maximum VDD and I/O voltage than
	the PIC18F2x/4xK40. See Section
	37.0 "Electrical Specifications" for
	more information.

6.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in Idle.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

6.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK40 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F

16.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

19.2 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the ON and GE bits in the TxCON and TxGCON registers, respectively. Table 19-2 displays the Timer1/3/5 enable selections.

TABLE 19-2:TIMER1/3/5 ENABLESELECTIONS

ON	GE	Timer1/3/5 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

19.3 Clock Source Selection

The CS<3:0> bits of the TMRxCLK register (Register 19-3) are used to select the clock source for Timer1/3/5. The four TMRxCLK bits allow the selection of several possible synchronous and asynchronous clock sources. Register 19-3 displays the clock source selections.

19.3.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used at the Timer1/3/5 gate:

- · Asynchronous event on the TxGPPS pin
- TMR0OUT
- TMR1/3/5OUT (excluding the TMR for which it is being used)
- TMR 2/4/6OUT (post-scaled)
- CCP1/2OUT
- PWM3/4OUT
- CMP1/2OUT
- ZCDOUT

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON = 1) when TxCKI is low.

19.3.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKIPPS pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

20.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in Section
 21.0 "Capture/Compare/PWM Module".

The signals are not a part of the Timer2 module.

20.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 20-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

MODE	0b00000
TMRx_clk	
Instruction ⁽¹⁾ ——	BSF BSF BSF
ON	
PRx	5
TMRx 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
TMRx_postscaled	
PWM Duty	3
PWM Output	

21.0 CAPTURE/COMPARE/PWM MODULE

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/Compare/PWM modules (CCP1 and CCP2). Each individual CCP module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CxTSEL bits in the CCPTMRS register (Register 21-2). The default timer selection is TMR1 when using Capture/Compare mode and TMR2 when using PWM mode in the CCPx module.

Please note that the Capture/Compare mode operation is described with respect to TMR1 and the PWM mode operation is described with respect to TMR2 in the following sections.

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

21.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (CCPxCON), a capture input selection register (CCPxCAP) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte).

21.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1 through 6 that vary with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 21-1.

TABLE 21-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource			
Capture				
Compare	Timer1, Timer3 or Timer5			
PWM	Timer2, Timer4 or Timer6			

The assignment of a particular timer to a module is determined by the timer to CCP enable bits in the CCPTMRS register (see Register 21-2) All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time.

21.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

FIGURE 24-12:

PIC18(L)F24/25K40

26.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1)MODULE

26.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The PIC18(L)F24/25K40 devices have one MSSP module that can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

The I^2C interface supports the following modes and features:

- Master mode
- Slave mode
- · Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- General call address matching
- · Address masking
- Address Hold and Data Hold modes
- Selectable SDA hold times

26.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- · Serial Data In (SDI)
- Slave Select (SS)

Figure 26-1 shows the block diagram of the MSSP module when operating in SPI mode.

					<u> </u>	/			
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	_ SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽⁴⁾	SSPM2 ⁽⁴⁾	SSPM1 ⁽⁴⁾	SSPM0 ⁽⁴⁾		
bit 7							bit 0		
Legend:									
R = Read	lable bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	WCOL: Write	e Collision Deteo	ct bit						
	1 = The SSF	PxBUF register i	s written while	e it is still transr	nitting the prev	ious word (mus	t be cleared in		
	software	e)							
bit 6	SSPOV: Red	eive Overflow Ir	idicator bit"						
	SPI Slave mo	<u>ode:</u>				u			
	1 = A new b	yte is received	While the SSP	2XBUF register	is still noiding	the previous da	ata. In case of		
	the SSF	xBUF, even if	only transmit	ting data. to a	avoid setting o	overflow (must	be cleared in		
	software	e).			Jere Comig	(
	0 = No over	flow							
bit 5	SSPEN: Mas	ster Synchronou	s Serial Port I	Enable bit ⁽²⁾					
	1 = Enables	serial port and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins							
	0 = Disables	serial port and o	configures the	se pins as I/O j	port pins				
bit 4	CKP: Clock I	Polarity Select b	it						
	1 = Idle state	for the clock is	a high level						
h:+ 0 0					-+ h :+- (4)				
bit 3-0	SSPM<3:0>:	Master Synchro	onous Serial I		Ct Dits (3)				
	1010 = SPI	Vlaster mode: Cl	OCK = FOSC/	(4 <u>* (S</u> SPxADD a: <u>SSx</u> pin cont	$+1))^{(0)}$		od as I/O pin		
	0101 = SPI3	Slave mode: Clo Slave mode: Clo	ick = SCKx pi	n, <u>SSx</u> pin cont	rol is enabled,	SSX can be use			
	0011 = SPI	Master mode: C	ock = TMR2	output/2					
	0010 = SPI	Master mode: C	ock = Fosc/6	4					
	0001 = SPI	Master mode: C	ock = Fosc/1	6					
	0000 = SPI	vlaster mode: C	OCK = FOSC/4						
Note 1:	In Master mode,	the overflow bit	is not set sind	e each new ree	ception (and tra	ansmission) is ii	nitiated by		
	writing to the SS	PxBUF register.							
2:	When enabled, t	hese pins must	be properly co	onfigured as inp	outs or outputs.				
3:	SSPxADD = 0 is	not supported.							

REGISTER 26-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

4: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

FIGURE 26-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

PIC18(L)F24/25K40

27.2 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 27-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

27.2.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 27-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

27.2.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TXx/CKx I/O pin as an output. If the TXx/CKx pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

27.2.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one Tcy immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

27.2.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 27.5.1.2 "Clock Polarity**".

27.2.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3 register. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

29.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between consecutive conversions of the temperature indicator output.

TABLE 29-2:	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
-	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0>		ADFV	R<1:0>	417

Legend: — = Unimplemented location, read as '0'. Shaded cells are unused by the temperature indicator module.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—			ADCS	6<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	<i>N</i> = Writable bit U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOF				R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	Unimplemer	nted: Read as '	כ'					
bit 5-0	ADCS<5:0>:	ADC Conversion	on Clock Sele	ect bits				
	111111 = F c	osc/128						
	111110 = F c	osc/126						
	111101 = F c	osc/124						
	•							
	•							
	•							
	000000 = Fo	osc/2						

REGISTER 31-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 31-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	ADNREF	—	—	ADPREF<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 bit 4	Unimplemented: Read as '0' ADNREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to AVss
bit 3-2	Unimplemented: Read as '0'
bit 1-0	ADPREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		—	INT2EDG	INT1EDG	INT0EDG	166
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	176
PIR1	OSCFIF	CSWIF	_	_	—	—	ADTIF	ADIF	168
ADCON0	ADON	ADCON	-	ADCS	—	ADFM	—	ADGO	441
ADCON1	ADPPOL	ADIPEN	ADGPOL	—	_	—	—	ADDSEN	442
ADCON2	ADPSIS	A	DCRS<2:0	>	ADACLR		ADMD<2:0>	>	443
ADCON3	—	A	DCALC<2:0	>	ADSOI	A	DTMD<2:0	>	444
ADACT	—	—	—	—		ADAC	T<4:0>		443
ADRESH				ADRES	SH<7:0>				451, 451
ADRESL				ADRES	SL<7:0>				451, 452
ADPREVH				ADPRE	V<15:8>				452
ADPREVL				ADPRE	V<7:0>				453
ADACCH				ADACO	C<15:8>				453
ADACCL				ADAC	C<7:0>				453
ADSTPTH				ADSTP	T<15:8>				454
ADSTPT				ADSTF	PT<7:0>				454
ADERRL				ADER	R<7:0>				455
ADLTHH				ADLTH	l<15:8>				455
ADLTHL				ADLTI	H<7:0>				455
ADUTHH				ADUTH	1<15:8>				456
ADUTHL				ADUT	H<7:0>				456
ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH		ADSTA	T<3:0>		445
ADCLK	—	—			ADCS	S<5:0>			446
ADREF	—	—		ADNREF	—	—	ADPRE	EF<1:0>	446
ADPCH	—	—			ADPC	H<5:0>			447
ADPRE				ADPR	E<7:0>				448
ADACQ				ADAC	Q<7:0>				448
ADCAP	—		—		A	ADCAP<4:0	>		449
ADRPT				ADRP	T<7:0>				449
ADCNT				ADCN	T<7:0>				450
ADFLTRH				ADFLTI	R<15:8>				450
ADFLTRL				ADFLT	R<7:0>				450
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/K<1:0>	ADFV	K<1:0>	417
DAC1CON1		—	-		000		• 		423
USUSTAT	EXTOR	HFUR	MFOR	LFOR	SUR	ADOR		PLLK	35

TABLE 31-5:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC
-------------	--

Legend: -= unimplemented read as '0'. Shaded cells are not used for the ADC module.

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	_	OUT	RDY	—	-	INTH	INTL
bit 7		•	•			•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 7	EN: High/Low	-voltage Detec	t Power Enab	ole bit			
	1 = Enables	HLVD, powers	up HLVD circ	cuit and suppo	rting reference of	circuitry	
	0 = Disables	s HLVD, power	s down HLVD	and supportin	g circuitry		
bit 6	Unimplemen	ted: Read as ')')				
bit 5	OUT: HLVD C	comparator Out	tput bit				
	1 = Voltage	\leq selected dete	ection limit (Hl	_VDL<3:0>)			
	0 = Voltage	≥ selected dete	ection limit (Hl	_VDL<3:0>)			
bit 4	RDY: Band G	ap Reference '	Voltages Stab	le Status Flag	bit		
	1 = Indicates	s HLVD Module	e is ready and	l output is stab	le		
	0 = Indicates	s HLVD Module	e is not ready				
bit 3-2	Unimplemen	ted: Read as ') '				
bit 1	INTH: HLVD F	Positive going	(High Voltage)) Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \geq se	elected detecti	on limit (HLVDS	EL<3:0>)	
	0 = HLVDIF	will not be set					
bit 0	INTL: HLVD N	Vegative going	(Low Voltage) Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \leq s	elected detect	ion limit (HLVDS	SEL<3:0>)	
	U = HLVDIF	will not be set					

REGISTER 33-2: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
HLVDCON0	EN	—	OUT	RDY	-	-	INTH	INTL	476	
HLVDCON1	-	-	-	-		SEL<3:0>				
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	166	
PIR2	HLVDIF	ZCDIF	-	I	I	-	C2IF	C1IF	169	
PIE2	HLVDIE	ZCDIE	-	-	-	-	C2IE	C1IE	177	
IPR2	HLVDIP	ZCDIP	-	-	-	-	C2IP	C1IP	185	
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	64	

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

PIC18(L)F24/25K40

DAW			Decimal Adjust W Register					
Syntax:			DAW					
Operands:			None					
Operation:		lf (V el (V	If [W<3:0> > 9] or [DC = 1] then (W<3:0>) + 6 \rightarrow W<3:0>; else (W<3:0>) \rightarrow W<3:0>;					
			If [W<7:4> + DC > 9] or [C = 1] then (W<7:4>) + 6 + DC \rightarrow W<7:4> ; else (W<7:4>) + DC \rightarrow W<7:4>					
Status Affected:			С					
Encoding:			0000 0000 0000 0111					
Description:			DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.					
Words:			1					
Cycl	es:	1	1					
QC	Cycle Activity:							
	Q1		Q2	Q3		Q4		
	Decode	reg	Read gister W	Process Data		Write W		
<u>Exar</u>	mple1:							
			WA					
Before Instruction								
	W C DC	= = =	A5h 0 0					
	After Instruction	n						
F	W C DC	= = =	05h 1 0					
Exar	<u>npie 2</u> : Roforo Instruo	tion						
		=	CEb					
	C DC	=	0 0					
After Instruction								
	W C DC	= = =	34h 1 0					

DECF		Decrement f							
Syntax:		DECF f{,c	DECF f {,d {,a}}						
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:		$(f) - 1 \rightarrow de$	$(f) - 1 \rightarrow dest$						
Statu	is Affected:	C, DC, N, C	C, DC, N, OV, Z						
Encoding:		0000	01da	ffff	ffff				
Description:		result is sto (default). If 'a' is '0', ti If 'a' is '0', ti GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 35.2.3 Oriented Ir eral Offset	Decrement register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Words:		1	1						
Cycles:		1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Proces Data	ss de	Write to estination				
Example: DECF CNT, 1, 0									
	CNT	tion = 01b							
	Z	= 0							
	After Instructio CNT Z	on = 00h = 1							

PIC18(L)F24/25K40

CAL	LW	Subroutine Call Using WREG			II Using WREG MOVSF				Move Indexed to f			
Synta	ax:	CALLW	CALLW			Syntax:		MOVSF [z _s], f _d				
Operands: None			Oper	ands:	$0 \le z_s \le 12$	$0 \le z_s \le 127$						
Operation:		$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATH) \rightarrow PCH,$			Oper Statu	ration: is Affected:	$0 \le f_d \le 4095$ ((FSR2) + z _s) $\rightarrow f_d$ None					
Statu	s Affected:	None	None			oding:	1110	1011 07				
Encoding:		0000 0000 0001 0100			2nd	word (destin.)	1110	ffff ff	ff ffffd			
Description		First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.			Desc	cription:	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset 'z _s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL TOSH of TOSH of TOSH as the					
Words: 1					destination	register.						
Cycle	es:	2					If the resul	tant source ad	dress points to			
QC	ycle Activity:	02	02	04			value retur	ned will be 001	นเอเต, แกะ า.			
	Decode	Read	PUSH PC to	Q4 No	Word	ds:	2					
	Decede	WREG	stack	operation	Cycle	es:	2					
	No	No	No	No	QC	ycle Activity:						
	operation	operation	operation	operation		Q1	Q2	Q3	Q4			
_						Decode	Determine	Determine	Read			
<u>Exan</u>	<u>nple</u> :	HERE	CALLW			Decode	No	No	Write			
Before Instruction PC = address (HERE) PCLATH = 10h PCLATU = 00h W = 06h						operation No dummy read	operation	register 'f' (dest)				
	After Instructio PC TOS PCLATH PCLATU W	n = 001006l = address = 10h = 00h = 06h	h 3 (HERE + 2)	<u>Exar</u>	nple: Before Instruct FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h REG2	MOVSF totion = 80 = 33 = 11 on = 80 = 33 = 33	[05h], REG2 3h 3h h 3h 3h	2			

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

© 2016-2017 Microchip Technology Inc.