

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k40t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

3.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 3.4 "Write Protection"** for more information.

3.3.2 DATA MEMORY PROTECTION

The entire Data EEPROM Memory space is protected from external reads and writes by the CPD bit in the Configuration Words. When $\overline{CPD} = 0$, external reads and writes of Data EEPROM Memory are inhibited and a read will return all '0's. The CPU can continue to read Data EEPROM Memory regardless of the protection bit settings.

3.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

3.5 User ID

Eight words in the memory space (200000h-200000Fh) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 11.2 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC18(L)F2X/4XK40 Memory Programming Specification" (DS40001772).

U-0	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	
—		COSC<2:0>			CDIV<3:0>			
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Rese			other Resets	
'1' = Bit is set		'0' = Bit is clea	ired	q = Reset value is determined by hardware			9	

bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ^(1,2)
	Indicates the current source oscillator and PLL combination per Table 4-2.

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only)^(1,2) Indicates the current postscaler division ratio per Table 4-2.

2: The Reset value (q/q) is the same as the NOSC/NDIV bits.

TABLE 4-2: NOSC/COSC AND NDIV/CDIV BIT SETTINGS

NOSC<2:0> COSC<2:0>	Clock Source			
111	EXTOSC ⁽¹⁾			
110	HFINTOSC ⁽²⁾			
101	LFINTOSC			
100	SOSC			
011	Reserved			
010	EXTOSC + 4x PLL ⁽³⁾			
001	Reserved			
000	Reserved			

NDIV<3:0> CDIV<3:0>	Clock Divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 3-1).

2: HFINTOSC frequency is set with the HFFRQ bits of the OSCFRQ register (Register 4-5).

3: EXTOSC must meet the PLL specifications (Table 37-9).

Note 1: The POR value is the value present when user code execution begins.

5.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

5.2 Programmable Clock Divider

The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 5-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- · Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

5.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	
oit 7		•			•	•	bit	
Legend:								
R = Reada		W = Writable		•	nented bit, read			
u = Bit is u	0	x = Bit is unkr				R/Value at all c	other Resets	
'1' = Bit is s	set	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion		
bit 7	Unimplemen	ted: Read as ')'					
bit 6	TMR6MD: Di	sable Timer TM	IR6 bit					
	1 = TMR6 m	odule disabled						
	0 = TMR6 m	odule enabled						
bit 5	TMR5MD: Disable Timer TMR5 bit							
	1 = TMR5 m	odule disabled						
	0 = TMR5 m	odule enabled						
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit					
	1 = TMR4 m	odule disabled						
	0 = TMR4 m	odule enabled						
bit 3		sable Timer TM	IR3 bit					
	-	odule disabled						
		odule enabled						
bit 2		sable Timer TM	IR2 bit					
		odule disabled odule enabled						
bit 1	TMR1MD: Di	sable Timer TM	IR1 bit					
	1 = TMR1 m	1 = TMR1 module disabled						
	0 = TMR1 m	odule enabled						
bit 0	TMR0MD: Di	sable Timer TM	IR0 bit					
		odule disabled						
	0 = TMR0 m	odule enabled						

REGISTER 7-2: PMD1: PMD CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	PWM4MD	PWM3MD	CCP2MD	CCP1MD
						bit 0
e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
hanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
Unimplement	ed: Read as '0'					
		th Modulator PV	VM4 bit			
		th Madulatar DV	1/1/2 hit			
0 = PWM3 m	odule enabled					
t 1 CCP2MD: Disable Pulse-Width Modulator CCP2 bit						
1 = CCP2 module disabled						
		Madulation				
		n Modulator CC	P1 DI			
1 = CCP1 module disabled 0 = CCP1 module enabled						
		- - e bit W = Writable I hanged x = Bit is unkn t '0' = Bit is cleat Unimplemented: Read as '0' PWM4MD: Disable Pulse-Widt 1 = PWM4 module disabled 0 = PWM4 module enabled PWM3MD: Disable Pulse-Widt 1 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable Pulse-Widt 1 = CCP2 module enabled CCP1MD: Disable Pulse-Widt 1 = CCP1 module enabled	- - e bit W = Writable bit hanged x = Bit is unknown t '0' = Bit is cleared Unimplemented: Read as '0' PWM4MD: Disable Pulse-Width Modulator PW 1 = PWM4 module disabled 0 = PWM4 module enabled PWM3MD: Disable Pulse-Width Modulator PW 1 = PWM3 module disabled 0 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable Pulse-Width Modulator CC 1 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP1 module disabled	— — — PWM4MD e bit W = Writable bit U = Unimplem hanged x = Bit is unknown -n/n = Value a t '0' = Bit is cleared q = Value dep Unimplemented: Read as '0' PWM4MD: Disable Pulse-Width Modulator PWM4 bit 1 = PWM4 module disabled 0 = PWM4 module enabled PWM3MD: Disable Pulse-Width Modulator PWM3 bit 1 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable Pulse-Width Modulator CCP2 bit 1 = CCP2 module disabled 0 = CCP2 module enabled CCP1MD: Disable Pulse-Width Modulator CCP1 bit 1 = CCP1 module disabled 0 = CCP1 bit	- - PWM4MD PWM3MD e bit W = Writable bit U = Unimplemented bit, read hanged x = Bit is unknown -n/n = Value at POR and BO t '0' = Bit is cleared q = Value depends on condit Unimplemented: Read as '0' PWM4MD: Disable Pulse-Width Modulator PWM4 bit 1 = PWM4 module disabled 0 = PWM4 module enabled PWM3MD: Disable Pulse-Width Modulator PWM3 bit 1 = PWM3 module disabled 0 = PWM3 module disabled 0 = PWM3 module enabled CCP2MD: Disable Pulse-Width Modulator CCP2 bit 1 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP1 module disabled	- - PWM4MD PWM3MD CCP2MD e bit W = Writable bit U = Unimplemented bit, read as '0' hanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of t '0' = Bit is cleared q = Value depends on condition Unimplemented: Read as '0' PWM4MD: Disable Pulse-Width Modulator PWM4 bit 1 = PWM4 module disabled 0 = PWM4 module enabled PWM3MD: Disable Pulse-Width Modulator PWM3 bit 1 = PWM3 module disabled 0 = PWM3 module disabled 0 = PWM3 module disabled 0 = CCP2MD: 0 = CCP2 module disabled 0 = CCP2 module disabled 0 = CCP1 module disabled 0 = CCP1 module disabled 0 = CCP1 module disabled 0 = CCP1 module disabled

REGISTER 7-4: PMD3: PMD CONTROL REGISTER 3

U-0	R/W-0/0	U-0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
_	UART1MD	<u> </u>	MSSP1MD		<u> </u>	—	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
u = Bit is uncl	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOF	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condition	on	
bit 7	Unimplement	ed: Read as '0'					
bit 6	UART1MD: Di	sable EUSART1	bit				
		1 module disable					
		1 module enable	a				
bit 5	Unimplement	ed: Read as '0'					
bit 4		isable MSSP1 b	it				
	1 = MSSP1 module disabled 0 = MSSP1 module enabled						
h: 10 4							
bit 3-1	•	ed: Read as '0'					
bit 0		sable CWG1 Mo	dule bit				
	1 = CWG1 m	odule disabled					
	0 = CWG1 m	odule enabled					

REGISTER 7-5: PMD4: PMD CONTROL REGISTER 4

				•	,		
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
		WDTTMR<4:0>			STATE	PSCNT	<17:16>
bit 7					·		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

	WDT Win	Onen Dersent		
WINDOW	Closed Open		Open Percent	
111	N/A	00000-11111	100	
110	00000-00011	00100-11111	87.5	
101	00000-00111	01000-11111	75	
100	00000-01011	01100-11111	62.5	
011	00000-01111	10000-11111	50	
010	00000-10011	10100-11111	37.5	
001	00000-10111	11000-11111	25	
000	00000-11011	11100-11111	12.5	

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSCFIE	CSWIE		_		_	ADTIE	ADIE
bit 7	•						bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	illator Fail Inte	rupt Enable b	it			
	1 = Enabled						
	0 = Disabled						
bit 6	CSWIE: Cloc	k-Switch Interru	upt Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 5-2	Unimplemen	ted: Read as '	כ'				
bit 1	ADTIE: ADC	Threshold Inter	rrupt Enable b	oit			
	1 = Enabled						
	0 = Disabled						
bit 0	ADIE: ADC Ir	nterrupt Enable	bit				
	1 = Enabled						
	0 = Disabled						

REGISTER 14-11: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK40 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F
	XORWF	XORWF IOCAF,

16.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0				
_	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC				
bit 7							bit (
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, rea											
u = Bit is u	nchanged	x = Bit is unkr	Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is	set	'0' = Bit is clea	ared								
bit 7-6	Unimplem	ented: Read as '	0'								
bit 5	CHPOL: M	CHPOL: Modulator High Carrier Polarity Select bit									
		1 = Selected high carrier signal is inverted									
	0 = Select	0 = Selected high carrier signal is not inverted									
bit 4	CHSYNC:	CHSYNC: Modulator High Carrier Synchronization Enable bit									
	low ti	 1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier 									
	0 = Modula	0 = Modulator output is not synchronized to the high time carrier signal ⁽¹⁾									
bit 3-2	Unimplem	ented: Read as '	0'								
bit 1	CLPOL: M	CLPOL: Modulator Low Carrier Polarity Select bit									
	1 = Select	ed low carrier sig	nal is inverted								
	0 = Select	0 = Selected low carrier signal is not inverted									
bit 0		Modulator Low C									
	1 = Modula time c	ator waits for a fa carrier	lling edge on th	e low time cari	rier signal befor	e allowing a sw	itch to the hig				
	0 = Modula	ator output is not	synchronized t	o the low time	carrier signal ^{(*}	1)					
Note 1 No	rowed corrier p	ulee widthe or en		in the signal o	troom if the on	riar ia natavna	bronized				

REGISTER 25-2: MDCON1: MODULATION CONTROL REGISTER 1

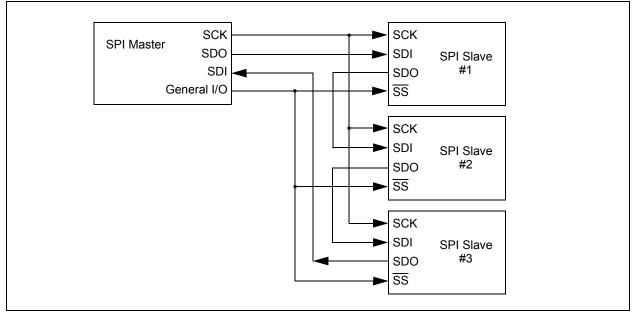
Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

26.5.4 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

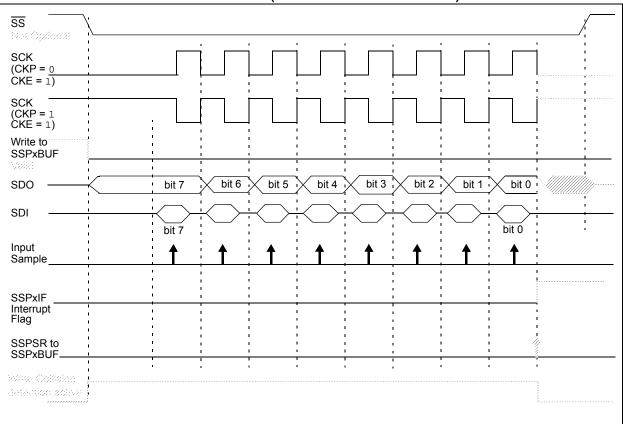
If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100).


FIGURE 26-5: SPI DAISY-CHAIN CONNECTION

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.
 - While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

 98 Caraceusi	×										
	· · ·										: : : :
CKE = 0) SCK (CKF = 1 CKE = 0)	: 				· · · · · · · · · · · · · · · · · · ·				5 5 5		······································
- 2488 (* 27) 99088830 9386236926 14388	; ; ; ;		2 2 2 2 2 2	2 2 2 2 2 2	2 2 3 3		generation 2 2 2 2 2	5 6 6 5 5	<pre></pre>	< : : :	• • • •
- 39240				X 88 8	X 333 4. ,	X 88.3	X 33 Z	X 223 3	X	: 	····t _y
909	· · · :		; ,	; aad <i> </i>	, ,	; ,ac.//////////	; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			//////////////////////////////////////	:
inguit Sampia	5 	, (10. . (10. 	; ; ; ; ;	. //. 	. 49 	. //p . //p	, <i>1</i> 9. . 19. 	. <i>4</i> 4-			
SSPXP Interrupt Plag	: : :	· · ·					- 	- 	<pre><</pre>	· · ·	
932933 85 352733327	· · · ·	· · · ·	* 2 2 2	, 5 , ,	s s s s		* 2 2 2 2	- 5 5 	5 5 5 5 5 5	, //p.	
Valle Culleur detection active					*****				******		

FIGURE 26-8: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

26.10.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

26.10.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

26.10.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

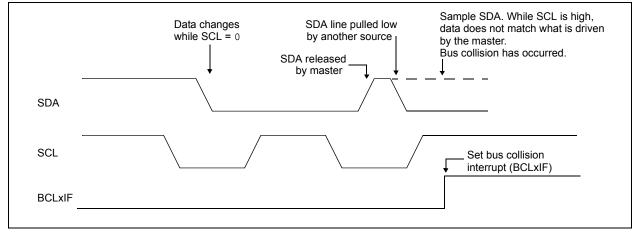
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

26.10.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 26-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

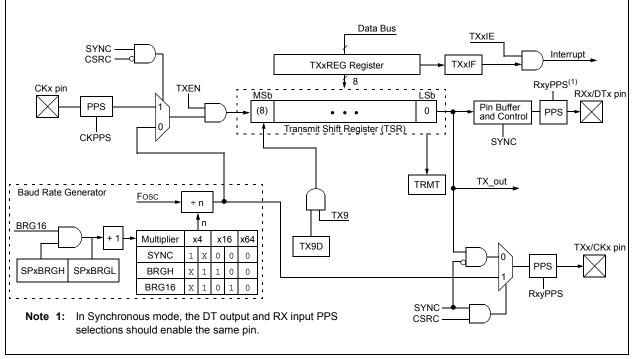
In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 26-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

27.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 27-1 and Figure 27-2.

27.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RXx pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RXx pin. Upon detecting the fifth RX edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDxCON register. The RCxIF flag can be subsequently cleared by reading the RCxREG register. The ABDOVF flag of the BAUDxCON register can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDxCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

27.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 27-7), and asynchronously if the device is in Sleep mode (Figure 27-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

27.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

<u>WUE Bit</u>

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0,
RCxIF bit (Interrupt) ——— Read RCxREG ————	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	199
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	199
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	389
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	_	INT2EDG	INT1EDG	INT0EDG	166
PIE3	_	_	RC1IE	TX1IE	_	—	BCL1IE	SSP1IE	178
PIR3		—	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	170
IPR3	_	_	RC1IP	TX1IP	—	_	BCL1IP	SSP1IP	186
RCxREG			EUS	ARTx Receiv	e Data Regis	ter			393*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	388
RxyPPS	_	_	_		F	RxyPPS<4:0>			213
RXxPPS	_	_	_			RXPPS<4:0>			211
SPxBRGH			EUSART	Baud Rate	Generator, Hi	gh Byte			398*
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	ow Byte			398*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	387

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

POP		Рор Тор	of Return St	ack	PUS	SH	Push Top	of Return S	Stack
Syntax:		POP			Synt	ax:	PUSH		
Operands:		None			Ope	rands:	None		
Operation:		$(TOS) \rightarrow b$	it bucket		Ope	ration:	$(PC + 2) \rightarrow$	TOS	
Status Affect	ted:	None			Statu	us Affected:	None		
Encoding:		0000	0000 000	00 0110	Enco	oding:	0000	0000 00	00 0101
Description:		stack and i then becon was pushe This instruc the user to	alue is pulled of s discarded. The nes the previou d onto the retuction is provide properly mana corporate a soft	ne TOS value us value that rn stack. d to enable uge the return	Desc	cription: ds:	the return s value is pus This instruc software sta	is pushed on tack. The prev shed down on tion allows im ack by modifyi g it onto the r	vious TOS the stack. plementing a ing TOS and
Words:		1			Cycl	es:	1		
Cycles:		1				vcle Activity:			
Q Cycle Ac	tivity:					Q1	Q2	Q3	Q4
Q	Q1	Q2	Q3	Q4		Decode	PUSH	No	No
Dec	code	No operation	POP TOS value	No operation			PC + 2 onto return stack	operation	operation
Example:		POP GOTO	NEW		Exar	<u>nple</u> : Before Instru	PUSH		
т	Instruc OS tack (1	tion level down)	= 0031A = 01433			TOS PC		= 345Ah = 0124h	
	nstructic OS C	on	= 01433 = NEW	2h		After Instructi PC TOS Stack (1	on level down)	= 0126h = 0126h = 345Ah	

PIC18(L)F24/25K40

RET	FIE	Return fr	Return from Interrupt					
Synta	ax:	RETFIE {	s}					
Oper	ands:	$s \in [0,1]$	s ∈ [0,1]					
Oper	ation:	$1 \rightarrow GIE/G$ if s = 1 (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.					
Statu	is Affected:	GIE/GIEH,	GIE/GIEH, PEIE/GIEL.					
Enco	oding:	0000	0000	0001	000s			
Desc	ription:	and Top-of the PC. Int setting eith global inter contents of STATUSS their corres Status and	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).					
Word	ls:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No operation	No operat	tion fro	OP PC om stack t GIEH or GIEL			
	No	No	No		No			
	operation	operation	operat	tion o	peration			
Example:		RETFIE	1					
	After Interrupt PC W BSR Status GIE/GIEF	H, PEIE/GIEL	= V = E = S	TOS VS ISRS STATUSS				

0	LW	Return lit						
Synta			RETLW k					
Oper	ands:		$0 \le k \le 255$					
Oper	ation:	$(TOS) \rightarrow PO$	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Statu	s Affected:	None						
Enco	ding:	0000	1100	kkkk	kkkl			
Description:		program co of the stack high addres	W is loaded with the 8-bit literal 'k'. Th program counter is loaded from the to of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proces Data	fro	POP PC om stact rite to V			
	No	No	No		No			
No operation		operation	operati	on o	peratio			
				0 0	0.000			
<u>Exan</u> :	CALL TABLE	; W contai ; offset v ; W now ha ; table va	ins tab value as					
	CALL TABLE	; offset v ; W now ha ; table va	ns tab value as alue					
: TABI	CALL TABLE .E ADDWF PCL	<pre>; offset v ; W now ha ; table va ; W = offs</pre>	ns tab value as alue set					
: TABI :	CALL TABLE LE ADDWF PCL RETLW k0 RETLW k1	; offset v ; W now ha ; table va	ns tab value as alue set					
: TABI :	CALL TABLE LE ADDWF PCL RETLW k0 RETLW k1	<pre>; offset v ; W now ha ; table va ; W = offs ; Begin ta</pre>	ns tab value as alue set able					
: TABI : :	CALL TABLE LE ADDWF PCL RETLW k0 RETLW k1	<pre>; offset v ; W now ha ; table va ; W = offs ; Begin ta ; ; End of t</pre>	ns tab value as alue set able					

After Instruction W = value of kn

35.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	instruction	set
	extension	may	cause lee	gacy applicat	ions
	to behave	errati	ically or fa	ail entirely.	

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 10.7.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0), or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 35.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

35.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASMTM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_Y$, or the PE directive in the source listing.

35.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18(L)F2x/ 4xK40, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

TABLE 37-23 :	SPI MODE REQUIREMENTS
----------------------	-----------------------

Standard	d Operating Co	onditions (unless otherwise stated)					
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	—	—	ns	
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	_	_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time		10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10		50	ns	
SP78*	TscR	SCK output rise time	_	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)		25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)		10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK edge			50	ns	$3.0V \leq V\text{DD} \leq 5.5V$
	TscL2doV			_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.