

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 24-Core
Speed	4000MIPS
Connectivity	-
Peripherals	-
Number of I/O	176
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xl232-512-fb374-c40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Pin Configuration

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
A	GND	VDDIO	X1D11	X1D32	X1D26		X1D41	X0D31	X0D29	TDI	VDDIO	CLK	TDO	X3D32	X3D30	VDDIOT	X2D31	x2D29	x2D32	VDDIO	GND
В	X0D37 X(2)	X0D36	X1D10	X1D33	X1027	x1D42	X1D40	X0D30	X0D28	X2D36	GND	RST_N	тск	X3D33	X3D31	X3D27	X2D30	X2D28	X2D27 X,07	X2D26 X,(?)	X2D35 X ₂ L ⁽¹⁾
С	X0D39 X ₁ L ²	X0D38 X ₀ X ¹⁰ X ₀ X ⁰	VDD	X1D30	X1D28	x1D43	GND	x0D33	X0D32	MODE1	OTP VCC	TRST_N	X3D10	x3D29	GND	x3D43	X3D41	x2D33	VDD	1.1 X2D25 X_{1}T_1	X2D34 X2C34
D	X0D41 ×,c,	X0D40 X ₁ Z ₀	X1D34 X,C;	X1D31	x1D29	GND	VDDIO	NC	DEBUG_ N	MODE0		TMS	X3D11	x3D28	X3D26	X3D42	X3D40	22A X2D70 X,L_1	X3D00 X,J ²	18 X3D01 X,21	я Х2Д24 Х ₍ L) ⁸
E	X0D43	X0D42 X,(2)	X1D35 X,22	VDD	VDD	GND	VDDIO	VDD	VDD				VDD	VDD	VDDIO	GND	VDD	VDD	22A X2D69 X,12	4А X3D08 X,L?	X3D09 X ₁ L ⁰
F	X1D36	VDDIO	GND	VDD	VDD	VDD	VDD	VDD	VDD	PLL AGND	PLL AVDD	VDD	VDD	VDD	VDD	VDD	VDD	VDD	GND	VDDIO	2006 X2D58 X ₂ 2 ¹⁰ ₁
G	X1D49	X1D50 X ₁ L ²	X1D51 X_L ²⁰	NG	NG	NC	NC	NC	NG				NC	NC	NG	NC	NC	NC	22A X2D67 ×,;;;	22A X2D66 X,p_1^0	22A X2D65 X ₂ L ⁰ ₅
н	X1D53 X ₁ L ²	X1D52 X ₁ L ²	VDD																VDD	22A X2D63 X,L_1^2	22A X2D64 X ₂ L ⁺ ₆
J	22A X1D54 X ₀ 2 ⁺	22A X1D55 X ₀ L ²	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	22A X2D62 X,42	22A X2D61 X ₂ L ²
к	X1D58	X1057 X ₁ 2 ²⁰	X1056		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		X2D56 X_J27	X2D57 X_2 ^{23,}	22A X2D58 X ₂ C ²⁴
L	VDDIO	GND	X1D61 X,L5		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		22A X2D55 X ₂ C	GND	VDDIO
М	X1D64 X(1)	22A X1D63 X ₄ L ²	22A X1D62 X,L ²		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		22A X2D54 X,12	22A X2D53 X42	22A X2D52 X ₄ L ²
N	X1D65 X(1)	X1D66 X ₄ 2 ^{20A}	VDD		GND	GND	GND	GND	GND				GND	GND	GND	GND	GND		VDD	X2D50 X(L ²)	2255 X2D51 X ₂ L ²
Ρ	X1D68	22A X1D67 X ₁ P ₁ ²	VDD																VDD	X3D06 X ₂ p ₁ ⁴⁰	X3D07 X;C;
R	X1D69 X ₁ C ⁰	X1D70 X ₁ C ²⁰	X1D37 X(L)	NG	NG	NC	NC	NC	NG				NC	NC	NG	NC	NC	NC	22A X2D49 X ₂ L ²	ай ХЗДО4 Х(2)	49 ХЗДО5 У.С.
т	X1D38 X(2)	VDDIO	GND	VDD	VDD	VDD	USB VDD	VDD	VDD	VDD	GND	VDD	VDD	VDD	USB_2_ VDD-	VDD	VDD	VDD	GND	VDDIO	4A X3D03 X ₂ C ²
U	X1D17	X1D16 X(C)	X1039 X123	VDD	VDD	GND	VDDIO	NC	VDD		VDDIO		VDD	VDD	VDDIO	GND	VDD	VDD	NC	X2D19	X3D02 X ₂ L ⁰
v	X1D19	X1D18 X121	X0D01 X125	X0D02	X0D08	X0D11	USB_ ID_	X1D14	й X1D25	X0D21	NC	X3D23	x2D05	x2D07	USB_2_ ID	NC	X3D15	x3D21	X2D12	X2D17	X2D18
W	$\overset{10}{\underset{X_0 \mathcal{L}_0^{(0)}}{X_0 \mathcal{L}_0^{(0)}}}$	$\underset{\boldsymbol{X}_{0} \boldsymbol{\mathcal{I}}_{0}^{\text{IG}}}{\boldsymbol{X}_{1} \boldsymbol{\mathcal{I}}_{0}^{\text{IG}}}$	USB_ VDD33	X0D03	X0D09	USB_ RTUNE	GND	X1D15	X0D14	X0D12	X0D23	X2D00	X2D04	X2D06	GND	USB 2 RTUNE	x3D14	X3D20	USB_2_ VDD33	X2D23	X2D16 X;L1
Y	X1D23	X0D00	X0D04	X0D06	X1D12	USB VBUS	X1D24	X1D20	X0D15	X0D13	GND	X2D11	X2D02	X2D08	X3D13	USB 2_ VBUS_	x2D14	X2D20	X3D24	x2D13	X2D22
AA	GND	VDDIO	X0D05	X0D07	xiD13	USB DM	USB_ DP_	X1D21	X0D20	X0D22	VDDIO	X3D12	X2D03	X2D09	USB_2_ DM	USB_2_ DP	x2D15	X2D21	X3D25	VDDIO	GND

-XMOS[°]-

6 Product Overview

The XL232-512-FB374 is a powerful device that consists of four xCORE Tiles, each comprising a flexible logical processing cores with tightly integrated I/O and on-chip memory.

6.1 Logical cores

Each tile has 8 active logical cores, which issue instructions down a shared fivestage pipeline. Instructions from the active cores are issued round-robin. If up to five logical cores are active, each core is allocated a fifth of the processing cycles. If more than five logical cores are active, each core is allocated at least 1/n cycles (for *n* cores). Figure 3 shows the guaranteed core performance depending on the number of cores used.

Figure 3: Logical core performance

ure 3: Speed MIPS Frequency Min							Ainimum MIPS per core (for <i>n</i> cores)							
ll core nance	grade			1	2	3	4	5	6	7	8			
	20	2000 MIPS	500 MHz	100	100	100	100	100	83	71	63			

There is no way that the performance of a logical core can be reduced below these predicted levels (unless *priority threads* are used: in this case the guaranteed minimum performance is computed based on the number of priority threads as defined in the architecture manual). Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than five logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed.

The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event.

6.2 xTIME scheduler

The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel.

Tasks do not need to be prioritised as each of them runs on their own logical xCORE. It is possible to share a set of low priority tasks on a single core using cooperative multitasking.

6.3 Hardware Response Ports

Hardware Response ports connect an xCORE tile to one or more physical pins and as such define the interface between hardware attached to the XL232-512-FB374, and the software running on it. A combination of 1 bit, 4 bit, 8 bit, 16 bit and 32 bit

A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

	X0D06	X0D05	X0D04	Tile 0 boot	Tile 1 boot	Enabled links
	0	0	0	QSPI master	Channel end 0	None
	0	0	1	SPI master	Channel end 0	None
	0	1	0	SPI slave	Channel end 0	None
	0	1	1	SPI slave	SPI slave	None
	1	0	0	Channel end 0	Channel end 0	XL0 (2w)
_	1	0	1	Channel end 0	Channel end 0	XL4-XL7 (5w)
9:	1	1	0	Channel end 0	Channel end 0	XL1, XL2, XL5,
ce						and XL6 (5w)
15	1	1	1	Channel end 0	Channel end 0	XL0-XL3 (5w)

Figure 9: Boot source pins

The boot image has the following format:

- ► A 32-bit program size *s* in words.
- ▶ Program consisting of $s \times 4$ bytes.
- A 32-bit CRC, or the value 0x0D15AB1E to indicate that no CRC check should be performed.

The program size and CRC are stored least significant byte first. The program is loaded into the lowest memory address of RAM, and the program is started from that address. The CRC is calculated over the byte stream represented by the program size and the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC register is initialized with 0xFFFFFFFF and the residue is inverted to produce the CRC.

8.1 Boot from QSPI master

If set to boot from QSPI master, the processor enables the six pins specified in Figure 10, and drives the SPI clock at 50 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

	Pin	Signal	Description
	X0D01	SS	Slave Select
Figure 10:	X0D04X0D07	SPIO	Data
QSPI pins	X0D10	SCLK	Clock

The xCORE Tile expects each byte to be transferred with the *least-significant nibble first*. Programmers who write bytes into an QSPI interface using the most significant nibble first may have to reverse the nibbles in each byte of the image stored in the QSPI device.

The pins used for QSPI boot are hardcoded in the boot ROM and cannot be changed. If required, an QSPI boot program can be burned into OTP that uses different pins.

VCOL	224 1	10 00	774
X \ Z - I	3/A-5	トレノートド	3/4

8.2 Boot from SPI master

If set to boot from SPI master, the processor enables the four pins specified in Figure 11, and drives the SPI clock at 2.5 MHz (assuming a 400 MHz core clock). A READ command is issued with a 24-bit address 0x000000. The clock polarity and phase are 0 / 0.

Figure 11: SPI master pins

Pin	Signal	Description
X0D00	MISO	Master In Slave Out (Data)
X0D01	SS	Slave Select
X0D10	SCLK	Clock
X0D11	MOSI	Master Out Slave In (Data)

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. Programmers who write bytes into an SPI interface using the most significant bit first may have to reverse the bits in each byte of the image stored in the SPI device.

If a large boot image is to be read in, it is faster to first load a small boot-loader that reads the large image using a faster SPI clock, for example 50 MHz or as fast as the flash device supports.

The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins.

8.3 Boot from SPI slave

If set to boot from SPI slave, the processor enables the three pins specified in Figure 12 and expects a boot image to be clocked in. The supported clock polarity and phase are 0/0 and 1/1.

	Pin	Signal	Description
	X0D00	SS	Slave Select
Figure 12:	X0D10	SCLK	Clock
SPI slave pins	X0D11	MOSI	Master Out Slave In (Data)

The xCORE Tile expects each byte to be transferred with the *least-significant bit first*. The pins used for SPI boot are hardcoded in the boot ROM and cannot be changed. If required, an SPI boot program can be burned into OTP that uses different pins.

8.4 Boot from xConnect Link

If set to boot from an xConnect Link, the processor enables its link(s) around 2 us after the boot process starts. Enabling the Link switches off the pull-down resistors on the link, drives all the TX wires low (the initial state for the Link), and monitors the RX pins for boot-traffic; they must be low at this stage. If the internal pull-down is too weak to drain any residual charge, external pull-downs of 10K may be required on those pins.

possible. A bulk decoupling capacitor of at least 10 uF should be placed on each of these supplies.

RST_N is an active-low asynchronous-assertion global reset signal. Following a reset, the PLL re-establishes lock after which the device boots up according to the boot mode (*see* §8). RST_N and must be asserted low during and after power up for 100 ns.

11.1 Land patterns and solder stencils

The package is a 374 ball Fine Ball Grid Array (FBGA) on a 0.8 mm pitch.

The land patterns and solder stencils will depend on the PCB manufacturing process. We recommend you design them with using the IPC specifications *"Generic Requirements for Surface Mount Design and Land Pattern Standards"* IPC-7351B. This standard aims to achieve desired targets of heel, toe and side fillets for solder-joints. The mechanical drawings in Section 13 specify the dimensions and tolerances.

11.2 Ground and Thermal Vias

Vias next to each ground ball into the ground plane of the PCB are recommended for a low inductance ground connection and good thermal performance.

11.3 Moisture Sensitivity

XMOS devices are, like all semiconductor devices, susceptible to moisture absorption. When removed from the sealed packaging, the devices slowly absorb moisture from the surrounding environment. If the level of moisture present in the device is too high during reflow, damage can occur due to the increased internal vapour pressure of moisture. Example damage can include bond wire damage, die lifting, internal or external package cracks and/or delamination.

All XMOS devices are Moisture Sensitivity Level (MSL) 3 - devices have a shelf life of 168 hours between removal from the packaging and reflow, provided they are stored below 30C and 60% RH. If devices have exceeded these values or an included moisture indicator card shows excessive levels of moisture, then the parts should be baked as appropriate before use. This is based on information from *Joint IPC/JEDEC Standard For Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface-Mount Devices* J-STD-020 Revision D.

-XM()S

XS2-L32A-512-FB374

24

12 DC and Switching Characteristics

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT 3v3	I/O supply voltage	3.135	3.30	3.465	V	
VDDIOT 2v5	I/O supply voltage	2.375	2.50	2.625	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
CI	xCORE Tile I/O load capacitance			25	pF	
Ta	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

12.1 Operating Conditions

Figure 17: Operating conditions

12.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	А
V(IL)	Input low voltage	-0.30		0.70	V	А
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 18: DC characteristics

A All pins except power supply pins.

B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

12.3 ESD Stress Voltage

Figure 2 ESD stres voltag

0:	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
55	HBM	Human body model	-2.00		2.00	KV	
je	CDM	Charged Device Model	-500		500	V	

12.4 Reset Timing

	Symbol	Parameters	MIN	ТҮР	MAX	UNITS	Notes	
Reset timing	T(RST)	Reset pulse width	5			μs		
	T(INIT)	Initialization time			150	μs	А	
A Shows the time taken to start beging after BST N has gone high								

A Shows the time taken to start booting after RST_N has gone high.

13.1 Part Marking

14 Ordering Information

Figure 28:	Product Code	Marking	Qualification	Speed Grade
Orderable	XL232-512-FB374-C40	L13290C40	Commercial	2000 MIPS
part numbers	XL232-512-FB374-I40	L13290C40	Industrial	2000 MIPS

B Processor Status Configuration

The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes).

Number	Perm	Description
0x00	RW	RAM base address
0x01	RW	Vector base address
0x02	RW	xCORE Tile control
0x03	RO	xCORE Tile boot status
0x05	RW	Security configuration
0x06	RW	Ring Oscillator Control
0x07	RO	Ring Oscillator Value
0x08	RO	Ring Oscillator Value
0x09	RO	Ring Oscillator Value
0x0A	RO	Ring Oscillator Value
0x0C	RO	RAM size
0x10	DRW	Debug SSR
0x11	DRW	Debug SPC
0x12	DRW	Debug SSP
0x13	DRW	DGETREG operand 1
0x14	DRW	DGETREG operand 2
0x15	DRW	Debug interrupt type
0x16	DRW	Debug interrupt data
0x18	DRW	Debug core control
0x20 0x27	DRW	Debug scratch
0x30 0x33	DRW	Instruction breakpoint address
0x40 0x43	DRW	Instruction breakpoint control
0x50 0x53	DRW	Data watchpoint address 1
0x60 0x63	DRW	Data watchpoint address 2
0x70 0x73	DRW	Data breakpoint control register
0x80 0x83	DRW	Resources breakpoint mask
0x90 0x93	DRW	Resources breakpoint value
0x9C 0x9F	DRW	Resources breakpoint control register

-XMOS

Figure 30:

Summary

XS2-L32A-512-FB374

B.22 Instruction breakpoint control: 0x40 .. 0x43

This register controls which logical cores may take an instruction breakpoint, and under which condition.

Bits	Perm	Init	Description
31:24	RO	-	Reserved
23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
15:2	RO	-	Reserved
1	DRW	0	When 0 break when PC == IBREAK_ADDR. When 1 = break when PC != IBREAK_ADDR.
0	DRW	0	When 1 the instruction breakpoint is enabled.

0x40 .. 0x43: Instruction breakpoint control

B.23 Data watchpoint address 1: 0x50 .. 0x53

This set of registers contains the first address for the four data watchpoints.

0x50 .. 0x53: Data watchpoint address 1

Data point	Bits	Perm	Init	Description		
ess 1	31:0	DRW		Value.		

B.24 Data watchpoint address 2: 0x60 .. 0x63

This set of registers contains the second address for the four data watchpoints.

0x60 .. 0x63: Data watchpoint address 2

Data point Bits ess 2 31:0	Bits	Perm	Init	Description
ress 2	31:0	DRW		Value.

B.25 Data breakpoint control register: 0x70 .. 0x73

This set of registers controls each of the four data watchpoints.

-XMOS

XS2-L32A-512-FB374

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x70 0x73:	15:3	RO	-	Reserved
Data	2	DRW	0	When 1 the breakpoints will be be triggered on loads.
control	1	DRW	0	Determines the break condition: $0 = A AND B$, $1 = A OR B$.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

B.26 Resources breakpoint mask: 0x80 .. 0x83

This set of registers contains the mask for the four resource watchpoints.

0x80 0x83:				
breakpoint	Bits	Perm	Init	Description
mask	31:0	DRW		Value.

B.27 Resources breakpoint value: 0x90 .. 0x93

This set of registers contains the value for the four resource watchpoints.

0x90 0x93:				
breakpoint	Bits	Perm	Init	Description
value	31:0	DRW		Value.

B.28 Resources breakpoint control register: 0x9C .. 0x9F

This set of registers controls each of the four resource watchpoints.

-XMOS

42

	Bits	Perm	Init	Description
	31:24	CRO		Processor ID of this XCore.
0x00:	23:16	CRO		Number of the node in which this XCore is located.
Device	15:8	CRO		XCore revision.
identification	7:0	CRO		XCore version.

C.2 xCORE Tile description 1: 0x01

This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile.

Bits	Perm	Init	Description
31:24	CRO		Number of channel ends.
23:16	CRO		Number of the locks.
15:8	CRO		Number of synchronisers.
7:0	RO	-	Reserved

C.3 xCORE Tile description 2: 0x02

This register describes the number of timers and clock blocks available on this xCORE tile.

0x02: xCORE Tile description 2

0x01: xCORE Tile description 1

	Bits	Perm	Init	Description
02.	31:16	RO	-	Reserved
02: ⊺ile n 2	15:8	CRO		Number of clock blocks.
	7:0	CRO		Number of timers.

C.4 Control PSwitch permissions to debug registers: 0x04

-XMOS-

This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect.

	Bits	Perm	Init	Description
	31	CRO		Disables write permission on this register
	30:15	RO	-	Reserved
	14	CRO		Disable access to XCore's global debug
	13	RO	-	Reserved
	12	CRO		lock all OTP sectors
	11:8	CRO		lock bit for each OTP sector
	7	CRO		Enable OTP reduanacy
	6	RO	-	Reserved
	5	CRO		Override boot mode and read boot image from OTP
	4	CRO		Disable JTAG access to the PLL/BOOT configuration registers
,	3:1	RO	-	Reserved
1	0	CRO		Disable access to XCore's JTAG debug TAP

0x07 Security configuration

C.8 Debug scratch: 0x20 .. 0x27

A set of registers used by the debug ROM to communicate with an external debugger, for example over the switch. This is the same set of registers as the Debug Scratch registers in the processor status.

0x20 .. 0x27: Debug scratch

xz7: bug	Bits	Perm	Init	Description
atch	31:0	CRW		Value.

C.9 PC of logical core 0: 0x40

Value of the PC of logical core 0.

0x40 PC of logical core 0

ical	Bits	Perm	Init	Description		
re 0	31:0	CRO		Value.		

-XMOS

C.10 PC of logical core 1: 0x41

Value of the PC of logical core 1.

Bits

31:0

C.15 PC of logical core 6: 0x46

Value of the PC of logical core 6.

0x46: PC of logical core 6

 Perm
 Init
 Description

 CRO
 Value.

C.16 PC of logical core 7: 0x47

Value of the PC of logical core 7.

0x47 PC of logical core 7

ical	Bits	Perm	Init	Description
re 7	31:0	CRO		Value.

C.17 SR of logical core 0: 0x60

Value of the SR of logical core 0

0x60: SR of logical core 0

x60: gical re 0	Bits	Perm	Init	Description		
	31:0	CRO		Value.		

C.18 SR of logical core 1: 0x61

Value of the SR of logical core 1

0x61 SR of logical core 1

al:	Bits	Perm	Init	Description
e 1	31:0	CRO		Value.

C.19 SR of logical core 2: 0x62

Value of the SR of logical core 2

C.24 SR of logical core 7: 0x67

Value of the SR of logical core 7

0x67				
SR of logical	Bits	Perm	Init	Description
core 7	31:0	CRO		Value.

D Node Configuration

The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	RO	Device identification
0x01	RO	System switch description
0x04	RW	Switch configuration
0x05	RW	Switch node identifier
0x06	RW	PLL settings
0x07	RW	System switch clock divider
0x08	RW	Reference clock
0x09	R	System JTAG device ID register
0x0A	R	System USERCODE register
0x0C	RW	Directions 0-7
0x0D	RW	Directions 8-15
0x10	RW	DEBUG_N configuration, tile 0
0x11	RW	DEBUG_N configuration, tile 1
0x1F	RO	Debug source
0x20 0x28	RW	Link status, direction, and network
0x40 0x47	RO	PLink status and network
0x80 0x88	RW	Link configuration and initialization
0xA0 0xA7	RW	Static link configuration

Figure 32: Summary

D.1 Device identification: 0x00

This register contains version and revision identifiers and the mode-pins as sampled at boot-time.

	Bits	Perm	Init	Description
0x00: Device tification	31:24	RO	-	Reserved
	23:16	RO		Sampled values of BootCtl pins on Power On Reset.
	15:8	RO		SSwitch revision.
	7:0	RO		SSwitch version.

-XMOS[®]

ident

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

	Bits	Perm	Init	Description
	31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
	30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
	29:28	RO	-	Reserved
	27	RO		Rx buffer overflow or illegal token encoding received.
	26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
	25	RO	0	This end of the xlink has credit to allow it to transmit.
	24	WO		Clear this end of the xlink's credit and issue a HELLO token.
	23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
	22	RO	-	Reserved
, (1	21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
1	10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS"

0x80 .. 0x88: Link configuration and initialization TDO to pin 13 of the xSYS header

The RST_N net should be open-drain, active-low, and have a pull-up to VDDIO.

E.3 Full xSYS header

For a full xSYS header you will need to connect the pins as discussed in Section E.2, and then connect a 2-wire xCONNECT Link to the xSYS header. The links can be found in the Signal description table (Section 4): they are labelled XL0, XL1, etc in the function column. The 2-wire link comprises two inputs and outputs, labelled ${}^{1}_{out}$, ${}^{0}_{out}$, ${}^{0}_{in}$, and ${}^{1}_{in}$. For example, if you choose to use XL0 for xSCOPE I/O, you need to connect up XL0 ${}^{1}_{out}$, XL0 ${}^{0}_{out}$, XL0 ${}^{1}_{in}$, XL0 ${}^{1}_{in}$ as follows:

- XL0¹_{out} (X0D43) to pin 6 of the xSYS header with a 33R series resistor close to the device.
- XL0⁰_{out} (X0D42) to pin 10 of the xSYS header with a 33R series resistor close to the device.
- ► XLO⁰_{in} (X0D41) to pin 14 of the xSYS header.
- > XLO_{in}^{1} (X0D40) to pin 18 of the xSYS header.

G PCB Layout Design Check List

✓ This section is a checklist for use by PCB designers using the XS2-L32A-512-FB374. Each of the following sections contains items to check for each design.

G.1 Ground Plane

- Each ground ball has a via to minimize impedance and conduct heat away from the device. (Section 11.2)
- Other than ground vias, there are no (or only a few) vias underneath or closely around the device. This create a good, solid, ground plane.

G.2 Power supply decoupling

- The decoupling capacitors are all placed close to a supply pin (Section 11).
- \Box The decoupling capacitors are spaced around the device (Section 11).
- The ground side of each decoupling capacitor has a direct path back to the center ground of the device.

G.3 PLL_AVDD

The PLL_AVDD filter (especially the capacitor) is placed close to the PLL_AVDD pin (Section 11).