
E·XFL

Sanyo - LC87F5R96BVU-QIP-E Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	PWM, WDT
Number of I/O	46
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 11x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QIPE (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/sanyo-denki-sanups-products/lc87f5r96bvu-qip-e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Timers

- Timer 0: 16-bit timer/counter with a capture register
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) ×2 channels
 - Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)
 - + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

- (toggle outputs also possible from the lower-order 8-bits)
- Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts programmable in 5 different time schemes.

■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 24MHz (at a main clock of 12MHz).
- 2) Can generate output real-time.

■SIO

- SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
 - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)
- ■UART: 2 channels
 - Full duplex
 - 7/8/9 bit data bits selectable
 - 1 stop bit (2 bit in continuous data transmission)
 - Built-in baudrate generator (with baudrates of 16/3 to 8192/3 tCYC)
- **AD** Converter: 8 bits \times 11 channels
- ■PWM: Multifrequency 12-bit PWM × 2 channels

Remote Control Receiver Circuit (sharing pins with P73, INT3, and T0IN)

- 1) Noise filtering function (noise filter time constant selectable from 1 tCYC, 32 tCYC, and 128 tCYC)
- 2) The noise filtering function is available for the INT3, T0IN, or T0HCP signal at P73. When P73 is read with an instruction, the signal level at that pin is read regardless of the availability of the noise filtering function.
- ■Watchdog Timer
 - External RC watchdog timer
 - Interrupt and reset signals selectable

Clock Output Function

- 1) Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
- 2) Able to output oscillation clock of sub clock.

■Interrupts

- 27 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTO
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/INT5/base timer0/base timer1
5	00023H	H or L	T0H/INT6
6	0002BH	H or L	T1L/T1H/INT7
7	00033H	H or L	SIO0/UART1 receive/UART2 receive
8	0003BH	H or L	SIO/UART1 transmit/UART2 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, PWM3

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.

■Subroutine Stack Levels: 2048 levels (the stack is allocated in RAM)

■High-speed Multiplication/Division Instructions

- 16-bits \times 8-bits (5 tCYC execution time)
- 24-bits \times 16-bits (12 tCYC execution time)
- 16-bits ÷ 8-bits (8 tCYC execution time)
- 24-bits ÷ 16-bits (12 tCYC execution time)

■Oscillation Circuits

• CF oscillation circuit

- RC oscillation circuit (internal)
- : For system clock
- : For system clock, with internal Rf
- Crystal oscillation circuit
- : For low-speed system clock • Multifrequency RC oscillation circuit (internal) : For system clock

System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 250ns, 500ns, 1.0µs, 2.0µs, 4.0µs, 8.0µs, 16.0µs, 32.0µs, and 64.0µs (at a main clock rate of 12MHz).

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are three ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are four ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INTO, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit
- ■On-chip Debugger Function

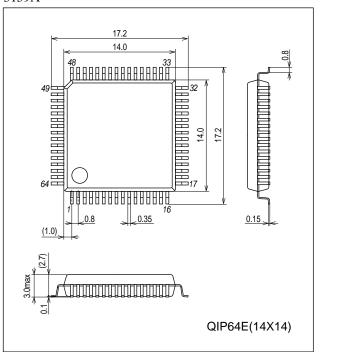
• Permits software debugging with the test device installed on the target board.

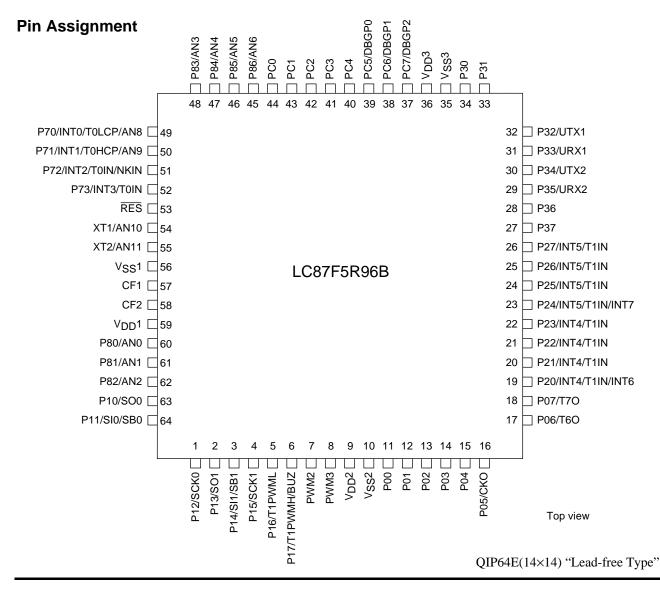
- ■Package Form
 - QIP64E (14 × 14) : "Lead-free type"
- Development Tools
 - Evaluation (EVA) chip : LC87EV690

• Emulator : EVA62S + ECB876600D + SUB875M00 + POD64QFP ICE-B877300 + SUB875M00 + POD64QFP

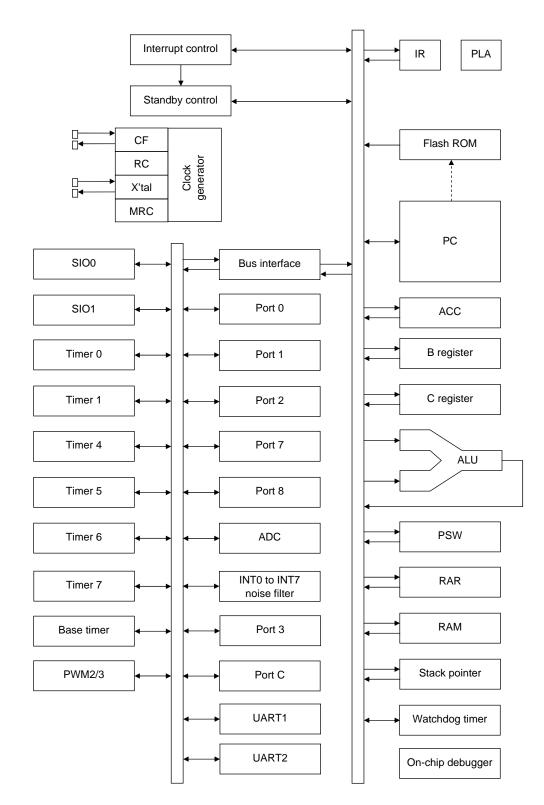
• On-chip-debugger : TCB87-TypeB + LC87F5R96B

■Programming Boards


Package	Programming boards
QIP64E(14 × 14)	W87F50256Q


■Flash ROM Programmer

Maker	Model	Support version(Note)	Device
Flash Support Group, Inc.(Single)	AF9708/09/09B (including product of Ando Electric Co.,Ltd)	Revision : After Rev.02.73	LC87F76C8A
Flash Support	AF9723(Main body) (including product of Ando Electric Co.,Ltd)	Revision : After Rev.02.29	
Group, Inc.(Gang)	AF9833(Unit) (including product of Ando Electric Co.,Ltd)	Revision : After Rev.01.88	LC87F5NC8A
Our company	SKK/SKK Type-B/SKK DBG Type-B (SANYO FWS)	Application Version: After 1.04 Chip Data Version: After2.11	LC87F5R96B


Package Dimensions

unit : mm (typ) 3159A

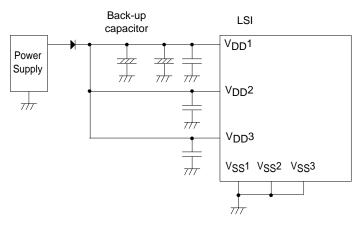
System Block Diagram

Pin Description

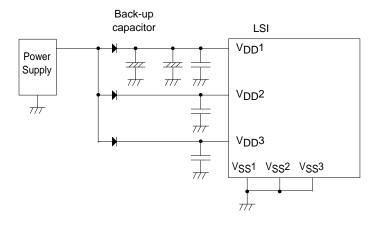
Pin Name	I/O			Des	scription			Option				
V _{SS} 1, V _{SS} 2 V _{SS} 3	-	- Power supply p	in					No				
V _{DD} 1, V _{DD} 2 V _{DD} 3	-	+ Power supply	pin					No				
Port 0	I/O	• 8-bit I/O port						Yes				
P00 to P07		• I/O specifiable	in 4-bit units									
		Pull-up resistor	can be turned	on and off in 4-bi	it units							
		HOLD release	input									
		Port 0 interrupt	input									
		 Shared Pins 										
		P05: Clock out	out (system clo	ck/can selected f	rom sub clock)							
		P06: Timer 6 to	ggle output									
		P07: Timer 7 to	ggle output									
Port 1	I/O	8-bit I/O port										
P10 to P17	1	• I/O specifiable	in 1-bit units									
		 Pull-up resistor 	can be turned	on and off in 1-bi	it units							
		 Pin functions 										
		P10: SIO0 data	a output									
		P11: SIO0 data	a input/bus I/O									
		P12: SIO0 cloc	k I/O									
		P13: SIO1 data	output									
		P14: SIO1 data	a input/bus I/O									
		P15: SIO1 cloc										
		P16: Timer 1 P	-									
		P17: Timer 1 P	WMH output/be	eper output								
Port 2	I/O	 8-bit I/O port 						Yes				
P20 to P27		I/O specifiable										
		Pull-up resistor		on and off in 1-bi	it units							
		Other functions										
		-		put/timer 1 even								
			• •	IT6 input/timer 0I								
			capture input	reset input/timer	i event input/tin	ner oc capture ir	ipul					
				put/timer 1 even	t input/timor OL	conturo input/						
		-		T7 input/timer 0	-							
				reset input/timer			oput/					
			capture input				iput					
		Interrupt ackno	• •									
			0 71		Rising/							
			Rising	Falling	Falling	H level	L level					
		INT4	enable	enable	enable	disable	disable					
		INT5	enable	enable	enable	disable	disable					
	1	11		1								
		INT6	enable	enable	enable	disable	disable					

Continued on next page.

Pin Name	I/O			Des	cription			Option
Port 7	I/O	4-bit I/O port						No
P70 to P73		• I/O specifiable i	n 1-bit units					
		Pull-up resistor	can be turned o	on and off in 1-bit	units			
		 Shared Pins 						
		P70: INT0 input/HOLD reset input/timer 0L capture input/watchdog timer output						
		P71: INT1 input	HOLD reset in	put/timer 0H cap	ture input			
		P72: INT2 input	HOLD reset in	put/timer 0 event	input/timer 0L c	apture input/		
		high speed	d clock counter	input				
		P73: INT3 input	(with noise filte	er)/timer 0 event i	nput/timer 0H ca	apture input		
		AD converter in	put port: AN8 (I	P70), AN9 (P71)				
		 Interrupt acknow 	wledge type					
			Rising	Falling	Rising/ Falling	H level	L level	
		INT0	enable	enable	disable	enable	enable	
		INT1	enable	enable	disable	enable	enable	
		INT2	enable	enable	enable	disable	disable	
		INT3	enable	enable	enable	disable	disable	
Port 8	I/O	• 7-bit I/O port						No
P80 to P86		• I/O specifiable i	n 1-bit units					
		 Shared Pins 						
		AD converter in	put port : AN0 ((P80) to AN6 (P8	6)			
PWM2	I/O	• PWM2 and PW	M3 output ports	6				No
PWM3		General-purpos	e I/O available					
Port 3	I/O	8-bit I/O port						Yes
P30 to P37		 I/O specifiable i 	n 1-bit units					
		Pull-up resistor can be turned on and off in 1-bit units						
		 Pin functions 						
		P32: UART1 transmit						
		P33: UART1 re	ceive					
		P34: UART2 tra	Insmit					
	P35: UART2 receive							
Port C	I/O	 8-bit I/O port 						Yes
PC0 to PC7		 I/O specifiable i 						
		Pull-up resistor	can be turned of	on and off in 1-bit	units			
		Pin functions						
<u></u>	<u> </u>		P2(PC5 to PC7	'): On-chip Debu	gger			
RES	Input	Reset pin						No
XT1	Input	• 32.768kHz crys	tal oscillator inp	out pin				No
		 Shared pins 						
		General-purpos						
		AD converter in						
	<u> </u>	Must be connec						
XT2	I/O	• 32.768kHz crys	tal oscillator inp	out pin				No
		Shared pins						
		General-purpos	-					
		AD converter in						
	+ .			kept open if not t	o be used.			
CF1	Input	Ceramic resonate	or input pin					No
CF2	Output	Ceramic resonate	or output pin					No


Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.


Port	Options Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P27	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P30 to P37	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
P80 to P86	-	No	Nch-open drain	No
PWM2, PWM3	-	No	CMOS	No
PC0 to PC7	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
XT1	-	No	Input for 32.768kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No

Note 1: Programmable pull-up resistors for port 0 are controlled in 4-bit units (P00 to 03, P04 to 07).

⁽Example 1) When backup is active in the HOLD mode, the high level of the port outputs is supplied by the backup capacitors.

(Example 2) The high-level output at the ports is unstable when the HOLD mode backup is in effect.

^{*1:} Make the following connection to minimize the noise input to the V_{DD}1 pin and prolong the backup time. Be sure to electrically short the V_{SS}1, V_{SS}2, and V_{SS}3 pins.

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

	Parameter	Symbol	Pins/Remarks	Conditions	·	ļ,	Spec	ification	
		Gyrnbol	1 monteniairo	Conditions	V _{DD} [V]	min	typ	max	uni
	ximum supply tage	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3		-0.3		+6.5	
Input voltage		V _I (1)	XT1, CF1			-0.3		V _{DD} +0.3	
np	ut/Output voltage	V _{IO} (1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C PWM0, PWM1, XT2			-0.3		V _{DD} +0.3	V
	Peak output current	IOPH(1)	Ports 0, 1, 2 Ports 3, C	CMOS output select Per 1 application pin		-10			
		IOPH(2)	PWM2, PWM3	Per 1 application pin.		-20			
		IOPH(3)	P71 to P73	Per 1 application pin.		-5			
	Mean output current	IOMH(1)	Ports 0, 1, 2 Ports 3, C	CMOS output select Per 1 application pin		-7.5			
High level output current	(Note1-1)	IOMH(2)	PWM2, PWM3	Per 1 application pin		-10			
	. ,	IOMH(3)	P71 to P73	Per 1 application pin		-3			
utbr	Total output	ΣIOAH(1)	P71 to P73	Total of all applicable pins		-10			
n level c	current	ΣIOAH(2)	Port 1 PWM2, PWM3	Total of all applicable pins		-25			
High		ΣIOAH(3)	Ports 0, 2	Total of all applicable pins		-25			
		ΣIOAH(4)	Ports 0, 1, 2 PWM2, PWM3	Total of all applicable pins		-45			
		ΣIOAH(5)	Port 3	Total of all applicable pins		-25			
		ΣIOAH(6)	Port C	Total of all applicable pins		-25			
		ΣIOAH(7)	Ports 3, C	Total of all applicable pins		-45			
	Peak output	IOPL(1)	P02 to P07	Per 1 application pin.					
	current		Ports 1, 2 Ports 3, C PWM2, PWM3					20	m
		IOPL(2)	P00, P01	Per 1 application pin.				30	
		IOPL(3)	Ports 7, 8, XT2	Per 1 application pin.				10	
nt	Mean output current (Note1-1)	IOML(1)	P02 to P07 Ports 1, 2 Ports 3, C PWM2, PWM3	Per 1 application pin.				15	
urrent		IOML(2)	P00, P01	Per 1 application pin.				20	
out c		IOML(3)	Ports 7, 8, XT2	Per 1 application pin.				7.5	
Low level output cui	Total output current	ΣIOAL(1)	Port 7 P83 to P86, XT2	Total of all applicable pins				15	
ow le		ΣIOAL(2)	P80 to P82	Total of all applicable pins				15	
Ľ		ΣIOAL(3)	Ports 7, 8, XT2	Total of all applicable pins				20	
		ΣIOAL(4)	Port 1 PWM2, PWM3	Total of all applicable pins				45	
		ΣIOAL(5)	Ports 0, 2	Total of all applicable pins				45	
		ΣIOAL(6)	Ports 0, 1, 2 PWM2, PWM3	Total of all applicable pins				80	
		ΣIOAL(7)	Port 3	Total of all applicable pins				45	
		ΣIOAL(8)	Port C	Total of all applicable pins				45	
		ΣIOAL(9)	Ports 3, C	Total of all applicable pins				80	
Po	wer dissipation	Pd max	QIP64E(14×14)	Ta=-40 to +85°C				300	m
	erating ambient	Topr				-40		+85	°(
	orage ambient nperature	Tstg				-55		+125	-(

Note 1-1: The mean output current is a mean value measured over 100ms.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Deremeter	Cumbal	Dine/Demorke	Conditions			Specif	ication	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245µs≤ tCYC≤200µs		2.8		5.5	
supply voltage			0.367µs≤ tCYC≤200µs		2.5		5.5	
(Note2-1)			1.47μs≤ tCYC≤200μs		2.2		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode		2.0		5.5	
High level input voltage	V _{IH} (1)	Ports 1, 2 P71 to P73 P70 port input/ interrupt side		2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Ports 0, 8, 3, C PWM2, PWM3		2.2 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port P70 watchdog timer side		2.2 to 5.5	0.9V _{DD}		V _{DD}	V
	V _{IH} (4)	XT1, XT2, CF1, RES		2.2 to 5.5	0.75V _{DD}		V _{DD}	
Low level input voltage	V _{IL} (1)	Ports 1, 2 P71 to P73		4.0 to 5.5	VSS		0.1V _{DD} +0.4	
		P70 port input/ Interrupt side		2.2 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0, 8, 3, C PWM2, PWM3		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				2.2 to 5.5	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		2.2 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	XT1, XT2, CF1, RES		2.2 to 5.5	VSS		0.25V _{DD}	
Instruction cycle	tCYC			2.8 to 5.5	0.245		200	
time				2.5 to 5.5	0.367		200	μs
(Note2-2)				2.2 to 5.5	1.47		200	
External system	FEXCF(1)	CF1	CF2 pin open	2.8 to 5.5	0.1		12	
clock frequency			 System clock frequency 	2.5 to 5.5	0.1		8	
			 division rate=1/1 External system clock duty=50±5% 	2.2 to 5.5	0.1		2	MHz
			CF2 pin open	2.8 to 5.5	0.2		24.4	
			 System clock frequency 	2.5 to 5.5	0.1		16	
			division rate=1/2	2.2 to 5.5	0.1		4	
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.8 to 5.5		12		
range (Note2-3)	FmCF(2)	CF1, CF2	8MHz ceramic oscillation See Fig. 1.	2.5 to 5.5		8		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation See Fig. 1.	2.2 to 5.5		4		MHz
	FmRC		Internal RC oscillation	2.2 to 5.5	0.3	1.0	2.0	
	FmMRC		Frequency variable RC oscillation	2.5 to 5.5		16		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 2.	2.2 to 5.5		32.768		kHz

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 2-1: V_{DD} must be held greater than or equal to 2.7V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Deremeter	Symbol	Pins/Remarks	Conditions		Specification			
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	uni
High level input current	I _{IH} (1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C RES PWM2, PWM3	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current))	2.2 to 5.5			1	
	I _{IH} (2)	XT1, XT2	For input port specification VIN=VDD	2.2 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.2 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2 Ports 7, 8 Ports 3, C RES PWM2, PWM3	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current))	2.2 to 5.5	-1			μA
	I _{IL} (2)	XT1, XT2	For input port specification VIN=VSS	2.2 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.2 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	Ports 3, C	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	Ports 71 to 73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (5)		I _{OH} =-0.2mA	2.2 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	PWM2, PWM3	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (7)		I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			v
	V _{OH} (8)		I _{OH} =-1mA	2.2 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
voltage	V _{OL} (2)	Ports 3, C	I _{OL} =1.6mA	3.0 to 5.5			0.4	1
	V _{OL} (3)	PWM2, PWM3,	I _{OL} =1mA	2.2 to 5.5			0.4	1
	V _{OL} (4)	Ports 7, 8	I _{OL} =1.6mA	3.0 to 5.5			0.4	1
	V _{OL} (5)	XT2	I _{OL} =1mA	2.2 to 5.5			0.4	
	V _{OL} (6)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	1
	V _{OL} (7)		I _{OL} =5mA	3.0 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =2.5mA	2.2 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 7	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	Ports 3, C		2.2 to 5.5	18	35	150	kΩ
Hysteresis voltage	VHYS	RES Ports 1, 2, 7		2.2to 5.5		0.1V _{DD}		v
Pin capacitance	СР	All pins	 For pins other than that under test: V_{IN}=V_{SS} f=1MHz Ta=25°C 	2.2 to 5.5		10		pF

Electrical Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$ 1. SIO0 Serial I/O Characteristics (Note 4-1-1)

		Quere had	Pins	O an dition a			Specification		
P	arameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	Frequency	tSCK(1)	SCK0(P12)	• See Fig. 6.		2			
×	Low level pulse width	tSCKL(1)				1			
put cloo	High level pulse width	tSCKH(1)			2.2 to 5.5	1			101/0
l	E	tSCKHA(1)		Continuous data transmission/reception mode See Fig. 6. (Note 4-1-2)		4			tCYC
	Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4/3			
ock	Low level pulse width	tSCKL(2)					1/2		10.01/
utput clo	High level pulse width	tSCKH(2)			2.2 to 5.5		1/2		tSCK
Õ		tSCKHA(2)		 Continuous data transmission/reception mode CMOS output selected See Fig. 6. 		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	tCYC
Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	 Must be specified with respect to rising edge of SIOCLK See fig. 6. 	2.2 to 5.5	0.03			
Da	ta hold time	thDI(1)			2.2 to 5.5	0.03			
clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11),	Continuous data transmission/reception mode (Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.05	
Input		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.2 to 5.5			1tCYC +0.05	μs
Serial output Output clock Ir		tdD0(3)		• (Note 4-1-3)	2.2 to 5.5			(1/3)tCYC +0.15	
	Input clock B Output clock Input clock	Yoo Low level pulse width High level pulse width Frequency Low level pulse width High level pulse width Output delay time	Frequency tSCK(1) Low level pulse width tSCKL(1) High level pulse width tSCKH(1) High level pulse width tSCKH(1) Frequency tSCKH(1) Low level pulse width tSCKL(2) Low level pulse width tSCKL(2) High level pulse width tSCKH(2) High level pulse width tSCKH(2) Data setup time tSDI(1) Data hold time thDI(1) yoo point delay time tdD0(1) tdD0(2) tdD0(3)	Parameter Symbol /Remarks Frequency tSCK(1) SCK0(P12) Low level pulse width tSCKL(1) pulse width SCK0(P12) High level pulse width tSCKH(1) SCK0(P12) Low level pulse width tSCKL(2) SCK0(P12) Low level pulse width tSCKL(2) SCK0(P12) Low level pulse width tSCKL(2) SCK0(P12) Data setup time tSCKHA(2) SB0(P11), SI0(P11) Data hold time thDI(1) SO0(P10), SB0(P11), SB0(P11), yo protocol protocol pulse tdD0(2) SO0(P10), SB0(P11),	Parameter Symbol /Remarks Conditions Frequency tSCK(1) SCK0(P12) • See Fig. 6. Low level pulse width tSCKL(1) • Continuous data transmission/reception mode • See Fig. 6. • Continuous data transmission/reception mode • See Fig. 6. Frequency tSCK4(2) SCK0(P12) • Continuous data transmission/reception mode • See Fig. 6. Low level pulse width tSCKL(2) SCK0(P12) • CMOS output selected • See Fig. 6. Low level pulse width tSCKH2) • Continuous data transmission/reception mode • See Fig. 6. Data setup time tSCKHA(2) SB0(P11), SI0(P11) • Must be specified with respect to rising edge of SIOCLK • See Fig. 6. Data setup time tbDl(1) SB0(P11), SB0(P11), tdD0(2) • Continuous data transmission/reception mode • (Note 4-1-3) vorp Data fdD0(2) tdD0(3) • Continuous data transmission/reception mode • (Note 4-1-3)	Parameter Symbol /Remarks Conditions VDD[V] Frequency tSCK(1) SCK0(P12) * See Fig. 6. 2.2 to 5.5 Low level pulse width tSCKH(1) * See Fig. 6. 2.2 to 5.5 * Continuous data transmission/reception mode · See Fig. 6. * Continuous data transmission/reception mode · See Fig. 6. * Continuous data transmission/reception mode · See Fig. 6. Low level pulse width tSCKL(2) SCK0(P12) * CMOS output selected · See Fig. 6. * Continuous data transmission/reception mode · See Fig. 6. Low level pulse width tSCKH(2) SCK0(P12) * CMOS output selected · See Fig. 6. * 2.2 to 5.5 Data setup time tsDl(1) SB0(P11), SI0(P11) * Must be specified with respect to rising edge of SIOCLK · See Fig. 6. 2.2 to 5.5 Data hold time tdD0(1) SO0(P10), SB0(P11), * Continuous data transmission/reception mode · (Note 4-1-3) 2.2 to 5.5 Voppinel tdD0(2) * tdD0(3) * Continuous data transmission/reception mode · (Note 4-1-3) 2.2 to 5.5	Parameter Symbol /Remarks Conditions Vpp[V] min Image: pulse width iSCK(1) SCK0(P12) • See Fig. 6. 2.2 to 5.5 1 Image: pulse width iSCKH(1) iSCKH(1) • Continuous data transmission/reception mode • See Fig. 6. 2.2 to 5.5 1 Image: pulse width iSCK1(2) • Continuous data transmission/reception mode • See Fig. 6. • Continuous data transmission/reception mode • See Fig. 6. • Continuous data transmission/reception mode • See Fig. 6. 4/3 Vop 0 0 iSCK1(2) SCK0(P12) • Continuous data transmission/reception mode • See Fig. 6. 2.2 to 5.5 4/3 Vop 0 0 iSCKH(2) iSCK1(2) • Continuous data transmission/reception mode • CMOS output selected • See Fig. 6. iSCKH(2) + 2iCYC iSCKH(2) + 2iCYC Data setup time tbD1(1) SB0(P11), SI0(P11) • Must be specified with respect to rising edge of SIOCLK • See fig. 6. 2.2 to 5.5 0.03 Data hold time tbD1(1) SB0(P10), SB0(P11), • Continuous data transmission/reception mode • (Note 4-1-3) 2.2 to 5.5 0.03 vop 010 00 tdD0(3) idD0(3) • (Note 4-1-3) 2.2 to 5.5	Parameter Symbol Remarks Conditions Vpp(I) min typ Frequency tSCK(1) SCK0(P12) See Fig. 6. 2.2 to 5.5 1 1 Low level pulse width tSCKH(1) *Continuous data transmission/reception mode ·See Fig. 6. *Continuous data transmission/reception mode ·See Fig. 6. 2.2 to 5.5 1 1 Vpp 000 tSCK(2) SCK0(P12) *Continuous data transmission/reception mode ·See Fig. 6. *CMOS output selected ·See Fig. 6. 4/3 1/2 Low level pulse width tSCKL(2) SCK0(P12) *CMOS output selected ·See Fig. 6. *CMOS output selected ·See Fig. 6. 2.2 to 5.5 1/2 Data setup time tSCKH(2) tSCKH(2) *Must be specified with respect to rising edge of SIOCLK ·See Fig. 6. 2.2 to 5.5 0.03 * Data setup time thDl(1) SO0(P10), SIO(P11) *Continuous data transmission/reception mode ·(Note 4-1-3) 2.2 to 5.5 0.03 * model up time tdD0(1) SO0(P10), tdD0(2) *Continuous data transmission/reception mode ·(Note 4-1-3) 2.2 to 5.5 0.03 *	Parameter Symbol /Remarks Conditions Vpp[V] min typ max Frequency tSCK(1) SCK0(P12) • See Fig. 6. 1

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

			Symbol	Pins/	Conditions			Spec	ification	
	Р	arameter	Remarks		V _{DD} [V]	min	typ	max	unit	
	¥	Frequency	tSCK(3)	SCK1(P15)	• See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.2 to 5.5	1			
clock	In	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	çk	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected. See Fig. 6.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.2 to 5.5	1/2		10.01/	
		High level pulse width	tSCKH(4)					1/2		tSCK
input	Data setup time		tsDI(2)	SB1(P14) SI1(P14),	 Must be specified with respect to rising edge of SIOCLK See fig. 6. 		0.03			
Serial input	Da	Data hold time thDI(2.2 to 5.5	0.03			
Serial output	Output delay time		tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6. 	2.2 to 5.5			(1/3)tCYC +0.05	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Demonster	Querra ha a l	Din a /D a m a dua	Que d'élère e		Specification				
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
High/low level	tPIH(1)	INT0(P70),	 Interrupt source flag can be set. 						
pulse width	tPIL(1)	INT1(P71),	 Event inputs for timer 0 or 1 are 						
		INT2(P72)), 2.2 to						
		INT4(P20 to P23),			1				
		INT5(P24 to P27),							
		INT6(P20)							
		INT7(P24)						tCYC	
	tPIH(2)	INT3(P73) when noise filter	 Interrupt source flag can be set. 	2.2 to 5.5	2				
	tPIL(2)	time constant is 1/1.	• Event inputs for timer 0 are enabled.	2.2 10 5.5	Z				
	tPIH(3)	INT3(P73) when noise filter	 Interrupt source flag can be set. 	2.2 to 5.5	64				
	tPIL(3)	time constant is 1/32	• Event inputs for timer 0 are enabled.	2.2 10 5.5	64				
	tPIH(4)	INT3(P73) when noise filter	 Interrupt source flag can be set. 	2.2 to 5.5	256				
	tPIL(4)	time constant is 1/128	• Event inputs for timer 0 are enabled.	2.2 to 5.5	256				
	tPIL(5)	RES	Resetting is enabled.	2.2 to 5.5	200			μs	

AD Converter Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

5	0.1.1					Specifi	cation	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P80) to		3.0 to 5.5		8		bit
Absolute accuracy	ET	AN6(P86), AN8(P70),	(Note 6-1)	3.0 to 5.5			±1.5	LSB
Conversion time	TCAD	AN9(P71), AN10(XT1), AN11(XT2),	AD conversion time=32×tCYC (when ADCR2=0) (Note 6-2)	4.5 to 5.5	11.74 (tCYC= 0.367μs)		97.92 (tCYC= 3.06μs)	
			3.0 to 5.5	23.53 (tCYC= 0.735μs)		97.92 (tCYC= 3.06μs)		
	AD conversion time=64×tCYC (when ADCR2=1) (Note 6-2)	4.5 to 5.5	15.68 (tCYC= 0.245μs)		97.92 (tCYC= 1.53μs)	μs		
				3.0 to 5.5	23.49 (tCYC= 0.376μs)		97.92 (tCYC= 1.53μs)	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH]	VAIN=V _{DD}	3.0 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μA

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy value.

Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued till the time the complete digital value corresponding to the analog input value is loaded in the required register.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pins/Remarks	Conditions		Specification				
raiameter	Symbol	rins/reinarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode Constant clock cost to 10MHz side	4.5 to 5.5		9.1	18.5		
(Note 7-1)			 System clock set to 12MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.8 to 4.5		5.3	13.5		
	IDDOP(2)		FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode	4.5 to 5.5		6.7	14		
	IDDOP(3)		 System clock set to 8MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.5 to 4.5		3.8	10		
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode Syndam clock cet to 4MUz side	4.5 to 5.5		2.7	6	mA	
	IDDOP(5)		 System clock set to 4MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.2 to 4.5		1.45	3.8		
	IDDOP(6)		 FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode 	4.5 to 5.5		0.95	4.3		
	IDDOP(7)		 System clock set to internal RC oscillation frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		0.53	3.0		
	IDDOP(8)		 FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode. 	4.5 to 5.5		1.25	5.2		
	IDDOP(9)		 System clock set to 1MHz with frequency variable RC oscillation Internal RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		0.67	4.2		
	IDDOP(10)		FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode.	4.5 to 5.5		38	112		
	IDDOP(11)		 System clock set to 32.768kHz side. Internal RC oscillation stopped frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		19	72	μA	
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 HALT mode FmCF=12MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode 	4.5 to 5.5		3.2	7.5		
(System clock set to 12MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.8 to 5.5		1.8	4		
	IDDHALT(2)		HALT mode FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode	4.5 to 5.5		2.4	5.3	mA	
	IDDHALT(3)		 System clock set to 8MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.5 to 4.5		12.5	2.8		

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

Continued on next page.

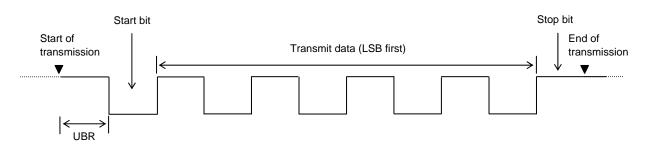
Danaa	Our last	Dire (D	One all the second			Specifi	cation	
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode consumption current (Note 7-1)	IDDHALT(4)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 HALT mode FmCF=4MHz ceramic oscillation mode FmX'tal=32.768kHz by crystal oscillation mode 	4.5 to 5.5		1	2.3	
	IDDHALT(5)		 System clock set to 4MHz side Internal RC oscillation stopped frequency variable RC oscillation stopped 1/1 frequency division ratio. 	2.2 to 4.5		0.5	1.3	
IDDHALT(HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode 	4.5 to 5.5		0.33	0.9	mA
	IDDHALT(7)		 System clock set to internal RC oscillation frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		0.17	0.7	
	IDDHALT(8)		 HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode. 	4.5 to 5.5		1	3.8	
	IDDHALT(9)		 System clock set to 1MHz with frequency variable RC oscillation Internal RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		0.5	2.7	
	IDDHALT(10)		 HALT mode FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz by crystal oscillation mode. 	4.5 to 5.5		18	73	
	IDDHALT(11)		 System clock set to 32.768kHz side. Internal RC oscillation stopped frequency variable RC oscillation stopped 1/2 frequency division ratio. 	2.2 to 4.5		5	65	μА
HOLD mode	IDDHOLD(1)	IDDHOLD(1) VDD1 • HOLD mode IDDHOLD(2) • CF1=VDD or open (External clock mode)		4.5 to 5.5		0.035	20	
consumption current	IDDHOLD(2)			2.2 to 4.5		0.015	16	
Timer HOLD mode	IDDHOLD(3)		Timer HOLD mode CF1=V _{DD} or open (External clock mode)	4.5 to 5.5		16	65	
consumption	onsumption IDDHOLD(4) urrent		 FmX'tal=32.768kHz by crystal oscillation mode 	2.2 to 4.5		3.5	52	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors

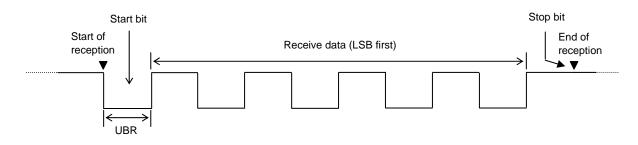
OM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $VSS1 = VSS2 = VSS3 = 0V$
--

Parameter	Symbol	Dine (Demonto	Conditions		Specification				
	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW(1)	V _{DD} 1	Without CPU current	2.70 to 5.5		5	10	mA	
Programming	tFW(1)		• Erasing	2.7 to 5.5		20	30	ms	
time	tFW(2)		programming	2.7 to 5.5		40	60	μs	

UART	(Full Dup	olex) O	perating	Conditions	at Ta = -4	10° C to $+85$	5°C, VSS1	$= V_{SS2} =$	$V_{SS}3 = 0V$
------	-----------	---------	----------	------------	------------	-------------------------	-----------	---------------	----------------

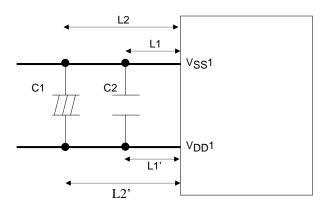

Devenuetor	Querra ha a l	Dia a (Dava a alva	Quanditiana		Specification				
Parameter	Symbol	Pins/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Transfer rate	UBR	P32 (UTX1),							
		P33 (URX1),		2.5 to 5.5	16/3		8192/3	tCYC	
		P34 (UTX2),		2.5 10 5.5	16/3				
		P35 (URX2)							

Data length : 7/8/9 bits (LSB first)


Stop bits : 1-bit (2-bit in continuous data transmission)

Parity bits : None

Example of Continuous 8-bit Data Transmission Mode Processing (First Transmit Data = 55H)


Example of Continuous 8-bit Data Reception Mode Processing (First Receive Data = 55H)

VDD1, VSS1 Terminal Condition

It is necessary to place capacitors between $V_{DD}1$ and $V_{SS}1$ as describe below.

- Place capacitors as close to VDD1 and VSS1 as possible.
- Place capacitors so that the length of each terminal to the each leg of the capacitor be equal (L1 = L1', L2 = L2').
- Place high capacitance capacitor C1 and low capacitance capacitor C2 in parallel.
- \bullet Capacitance of C2 must be more than 0.1 $\mu F.$
- Use thicker pattern for VDD1 and VSS1.

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Nominal Vendor			Circuit Constant				Oscillation Stabilization Time		Demeria			
Frequency	Name	Oscillator Name	C1	C2	Rf1	Rd1	Range	typ	max	Remarks		
			[pF]	[pF]	[Ω]	[Ω]	[V]	[ms]	[ms]			
12MHz		CSTCE12M0G52-R0	(10)	(10)	Open	470	2.6 to 5.5	0.03	0.5	Internal C1,C2		
10MHz				CSTCE10M0G52-R0	(10)	(10)	Open	470	2.4 to 5.5	0.03	0.5	Internal C1,C2
					CSTLS10M0G53-B0	(15)	(15)	Open	680	2.6 to 5.5	0.03	0.5
01411-	MURATA	CSTCE8M00G52-R0	(10)	(10)	Open	680	2.3 to 5.5	0.03	0.5	Internal C1,C2		
8MHz		CSTLS8M00G53-B0	(15)	(15)	Open	1k	2.5 to 5.5	0.03	0.5	Internal C1,C2		
4MHz	CSTCR4M00G53-R0	(15)	(15)	Open	1.5k	2.2 to 5.5	0.03	0.5	Internal C1,C2			
	CSTLS4M00G53-B0	(15)	(15)	Open	1.5k	2.2 to 5.5	0.03	0.5	Internal C1,C2			

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Fig. 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

	usie 2 characteristics of a bample Subsystem clock osemator chean while crystal osemator											
Nominal Vendor	Vendor	On sillaton Nama	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Demorius		
Frequency	Name	Oscillator Name	C3	C4	Rf2	Rd2	Range [V]	typ	max	Remarks		
			[pF]	[pF]	[Ω]	[Ω]	[v]	[s]	[s]			
32.768kHz	SEIKO TOYOCOM	MC-306	18	18	Open	560k	2.2 to 5.5	1.2	3.0	Applicable CL value=12.5pF		

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure. 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

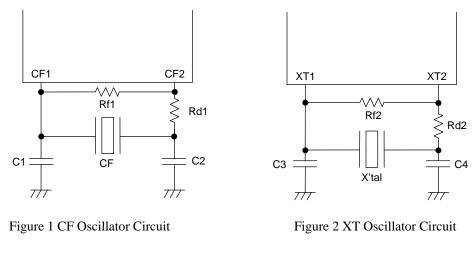
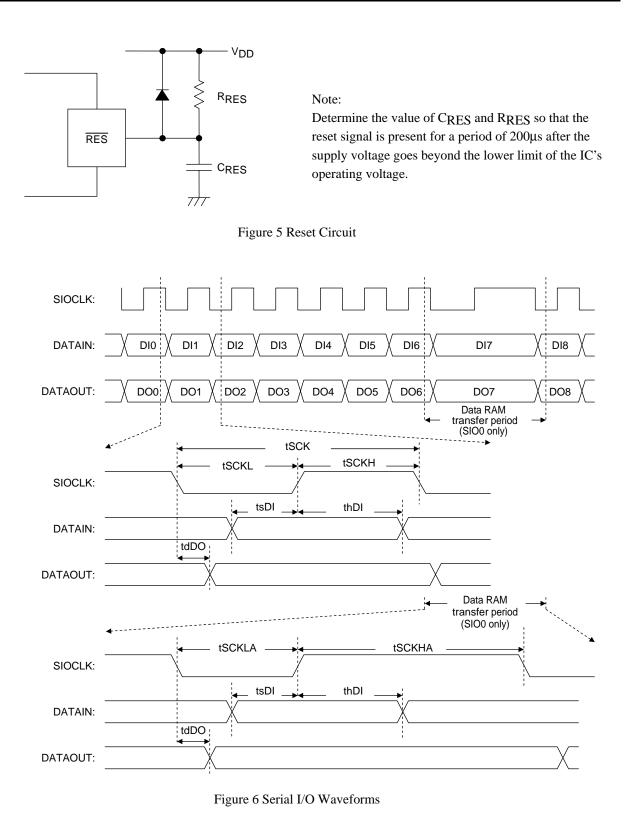



Figure 3 AC Timing Measurement Point

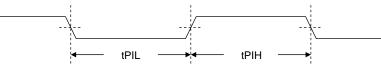


Figure 7 Pulse Input Timing Signal Waveform

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affimative Action Employeer. This literature is subject to all applicable copyright aws and is not for resale in any manner.