

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1516-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1516/7/8/9

TABLE 1: 28/40/44-PIN ALLOCATION TABLE

							<u>.</u>			-	_		
OI	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN, UQFN	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	ADC	Timers	ССР	EUSART	ASSM	Interrupt	Pull-up	Basic
RA0	2	27	2	17	19	AN0	—	_		SS ⁽²⁾		_	_
RA1	3	28	3	18	20	AN1	_	_		_	_	_	_
RA2	4	1	4	19	21	AN2	—	_	_	_	_	—	_
RA3	5	2	5	20	22	AN3/VREF+	—	-		_		_	—
RA4	6	3	6	21	23		TOCKI	_		_	_	_	_
RA5	7	4	7	22	24	AN4	—			SS ⁽¹⁾		_	VCAP
RA6	10	7	14	29	31			-	—	—		_	OSC2/CLKOUT
RA7	9	6	13	28	30		_		—	_		_	OSC1/CLKIN
RB0	21	18	33	8	8	AN12		-	—	—	INT/IOC	Y	
RB1	22	19	34	9	9	AN10		-	—	_	IOC	Y	_
RB2	23	20	35	10	10	AN8	—	_		_	IOC	Y	_
RB3	24	21	36	11	11	AN9	_	CCP2 ⁽²⁾		_	IOC	Y	_
RB4	25	22	37	12	14	AN11	_	_		_	IOC	Y	_
RB5	26	23	38	13	15	AN13	T1G	-	—	_	IOC	Y	_
RB6	27	24	39	14	16		_	_	—	_	IOC	Y	ICSPCLK/ICDCLK
RB7	28	25	40	15	17			-	—	_	IOC	Y	ICSPDAT/ICDDAT
RC0	11	8	15	30	32		SOSCO/T1CKI	_		_	_	—	
RC1	12	9	16	31	35		SOSCI	CCP2 ⁽¹⁾	—	_		_	_
RC2	13	10	17	32	36	AN14		CCP1	—	—		_	
RC3	14	11	18	33	37	AN15	_			SCK/SCL		_	—
RC4	15	12	23	38	42	AN16		-	—	SDI/SDA		_	
RC5	16	13	24	39	43	AN17	_			SDO		—	_
RC6	17	14	25	40	44	AN18	_	_	TX/CK	_	_	—	_
RC7	18	15	26	1	1	AN19	_		RX/DT	_		—	—
RD0 ⁽³⁾	—	—	19	34	38	AN20		-	—	—		_	
RD1 ⁽³⁾	_	—	20	35	39	AN21	—			_		_	—
RD2 ⁽³⁾	—	—	21	36	40	AN22	_	-		_	-	_	—
RD3 ⁽³⁾	—	—	22	37	41	AN23	_			_		—	_
RD4 ⁽³⁾	_	—	27	2	2	AN24	—	_	_	_	_	_	—
RD5 ⁽³⁾		—	28	3	3	AN25	—	_		_	_	—	—
RD6 ⁽³⁾	_	—	29	4	4	AN26	—	—		—	_	—	—
RD7 ⁽³⁾	—		30	5	5	AN27	—	_	_	-	-	Ι	—
RE0 ⁽³⁾	-		8	23	25	AN5	—		_	-			—
RE1 ⁽³⁾	I		9	24	26	AN6	—	I	_	_	1		—
RE2 ⁽³⁾	—	-	10	25	27	AN7	—	-		_		-	-
RE3	1	26	1	16	18	_		_		_	_	Y	MCLR/VPP
Vdd	20	17	11, 32	7, 26	7, 28	—	—	-	—	—	-	_	-
Vss	8, 19	5, 16	12, 31	6, 27	6, 29	_	_	—	-	-	—	—	-
NC		_	_	-	12, 13, 33, 34	—	—	_	_	—	—	—	-

Note 1: Peripheral pin location selected using APFCON register. Default location.

2: Peripheral pin location selected using APFCON register. Alternate location.

3: PIC16(L)F1517/9 only.

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See **Section 3.6 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.7 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 24.0 "Instruction Set Summary"** for more details.

PIC16(L)F1516/7/8/9

FIGURE 3-9: INDIRECT ADDRESSING

3.7.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP

3.7.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

5.6 Register Definitions: Oscillator Control

U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
_		IRCF	<3:0>			SCS	<1:0>
bit 7						·	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	IRCF<3:0>:	nternal Oscillat	or Frequency	Select bits			
	1111 = 16 M	Hz					
	1110 = 0 MF 1101 = 4 MF	12 17					
	1100 = 2 MH	7					
	1011 = 1 MH	lz					
	1010 = 500 H	(Hz ⁽¹⁾					
	1001 = 250	(Hz ⁽¹⁾					
	1000 = 125	(Hz ⁽¹⁾					
	0111 = 500	KHZ (default up	on Reset)				
	0110 = 250						
	0101 = 1201 0100 = 62.5	kHz					
	001x = 31.2	5 kHz					
	000x = 31 kł	Hz LF					
bit 2	Unimplemen	ted: Read as '	0'				
bit 1-0	SCS<1:0>: S	system Clock S	elect bits				
	1x = Internal	oscillator block					
	01 = Second	ary oscillator					
	00 = Clock d	etermined by F	OSC<2:0> in	Configuration W	/ords.		
Note 1: D	uplicate frequen	cy derived from	HFINTOSC.				

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

6.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

6.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note *AN607, Power-up Trouble Shooting* (DS00607).

6.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always ON
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always OFF

Refer to Table for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information.

BOREN<1:0> SBOREN		Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep		
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)		
1.0	v	Awake	Active	White for POP ready (POPPDY = 1)		
IU	A	Sleep	Disabled	Waits for BOR featy (BORRD $f = 1$)		
0.1	1	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)		
ÛI	0	Х	Disabled	Poging immediately (POPPDV =)		
00	Х	Х	Disabled	Degins inifiediately (BORRDT = x)		

TABLE 6-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

6.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always ON. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

6.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

6.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device startup is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

11.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 11.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 11.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
 - **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 11-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

11.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table .

When read access is initiated on an address outside the parameters listed in Table , the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 11-1:USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

Address	Function	Read Access	Write Access	
8000h-8003h	User IDs	Yes	Yes	
8006h	Device ID/Revision ID	Yes	No	
8007h-8008h	Configuration Words 1 and 2	Yes	No	

EXAMPLE 11-4: CONFIGURATION WORD AND DEVICE ID ACCESS

This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO MOVLW PROG_ADDR_LO ; Select correct Bank MOVWF PMADR MOVWF PMADRL ; Store LSB of address CLRF PMADRH ; Clear MSB of address ; Select Configuration Space PMCON1,CFGS BSF INTCON,GIE BCF ; Disable interrupts PMCON1,RD BSF ; Initiate read NOP ; Executed (See Figure 11-2) NOP ; Ignored (See Figure 11-2) INTCON,GIE BSF ; Restore interrupts MOVF PMDATL,W ; Get LSB of word MOVWF PROG_DATA_LO ; Store in user location MOVF PMDATH,W ; Get MSB of word PROG_DATA_HI ; Store in user location MOVWF

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7						·	bit C
Legend:							
R = Read	able bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s '0'	
S = Bit ca	n only be set	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other I	Resets
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is clea	ared by hardware	9	
hit 7	Unimplemen	tad. Pead as '1'					
bit 6	CECS. Confi	nuration Soloot bit					
DILO	1 = Access	Configuration Use	er ID and Device	ID Registers			
	0 = Access	Flash program me	mory	12 Registere			
bit 5	LWLO: Load	Write Latches Onl	y bit ⁽³⁾				
	1 = Only the	addressed progra	am memory write	e latch is loaded/	updated on the r	next WR comman	d
	0 = The add	ressed program m	emory write latcl	h is loaded/updat	ed and a write of	all program mem	ory write latche
	will be in	nitiated on the next	t WR command				
bit 4	FREE: Progra	am Flash Erase Ei	nable bit				
	1 = Perform 0 = Perform	s an erase operati s an write operatic	on on the next v on on the next W	VR command (ha /R command	ardware cleared	upon completion)	
bit 3	WRERR: Pro	gram/Frase Error	Flag bit				
2.1.0	1 = Conditio	n indicates an imp	proper program	or erase sequen	ce attempt or te	rmination (bit is s	et automatically
	on any s	et attempt (write	1') of the WR bit	:).	·	,	-
	0 = The prog	gram or erase ope	ration complete	d normally.			
bit 2	WREN: Prog	ram/Erase Enable	bit				
	1 = Allows p	orogram/erase cycl	es				
L:1 4		orogramming/eras	ing of program r	-18511			
DIC		a program Elash r	rogram/oraso o	poration			
	The ope	ration is self-timed	and the bit is c	leared by hardwa	are once operatio	on is complete.	
	The WR	bit can only be se	et (not cleared) in	n software.		F	
	0 = Program	n/erase operation t	to the Flash is co	omplete and inac	tive.		
bit 0	RD: Read Co	ontrol bit					
	1 = Initiates (not clea	a program Flash r ared) in software.	ead. Read takes	s one cycle. RD i	s cleared in hard	lware. The RD bit	can only be set
	0 = Does no	ot initiate a program	n Flash read.				
Note 1:	Unimplemented bit	, read as '1'.					
2:	The WRERR bit is	automatically set b	y hardware whe	en a program me	mory write or era	se operation is st	arted (WR = 1)

REGISTER 11-6: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

12.2 **PORTA Registers**

12.2.1 DATA REGISTER

PORTA is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

12.2.2 DIRECTION CONTROL

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.2.3 ANALOG CONTROL

The ANSELA register (Register 12-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The ANSELA bits default to the Analog Note: mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

EXAMPLE 12-1: **INITIALIZING PORTA**

;	This code example illustrates
;	initializing the PORTA register. The
;	other ports are initialized in the s
;	manner.

same

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

12.2.4 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in the priority list.

TABLE 12-2:	PORTA OUTPU	T PRIORITY
-------------	-------------	------------

Pin Name	Function Priority ⁽¹⁾
RA0	RA0
RA1	RA1
RA2	RA2
RA3	RA3
RA4	RA4
RA5	VCAP (PIC16F1516/7/8/9 only) RA5
RA6	CLKOUT OSC2 RA6
RA7	RA7

Note 1: Priority listed from highest to lowest.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 12-6: PORTB: PORTB REGISTER

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the return of actual I/O pin values.

REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the return of actual I/O pin values.

13.6 Register Definitions: Interrupt-on-change Control

R/W-0/0	R/W-0/U	R/W-0/0	R/W-0/U	R/W-0/U	R/W-0/0	R/W-0/U	R/W-0/U		
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplem	ented bit, read a	as '0'			
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

bit 7-0

1' = Bit is set

IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

'0' = Bit is cleared

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF7:0>: Interrupt-on-Change PORTB Flag bits

1 = An enabled change was detected on the associated pin.

- Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 **ADRES<9:2>:** ADC Result Register bits Upper eight bits of 10-bit conversion result

'1' = Bit is set

REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

'0' = Bit is cleared

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

Lower two bits of 10-bit conversion

bit 5-0 Reserved: Do not use.

17.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 17-1 is a block diagram of the Timer0 module.

17.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

17.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 17-1: BLOCK DIAGRAM OF THE TIMER0

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode, using the T0CKI pin, is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	—	-	DC1B	i<1:0>		CCP1	V<3:0>		168
CCP2CON	—	—	DC2B	3<1:0>		CCP2M<3:0>			168
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77
PR2	Timer2 Mo	dule Period	Register						158*
T2CON	—	T2OUTPS<3:0> TMR2ON T2CKPS<1:0>							160
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					158*

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

22.1.2.8 Asynchronous Reception Setup:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the 9th data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

22.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the 9th bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The 9th data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / bit 7/8 / Stop bit / 5 / bit 7/8 / Stop bit
Rcv Shift Reg Rcv Buffer Reg. RCIDL	Word 1 Word 1 KCREG KCREG Word 2 KCREG KCREG
Read Rcv Buffer Reg. RCREG	
RCIF (Interrupt Flag)	
OERR bit	
CREN	
Note: This cau	s timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 22-5:

25.5 DC Characteristics: Power-Down Currents (IPD)

PIC16LF1516/7/8/9			$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
PIC16F1516/7/8/9										
Param	Device Characteristics		Tynt	Max.	Max.	Units	Conditions			
No.	Borrioo onalaotoriolioo		.141	+85°C	+125°C	••	Vdd	Note		
Power-down Currents (IPD) ^(2, 4)										
D022	Base IPD	_	0.02	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC		
		—	0.03	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D022	Base IPD	_	0.20	3.0	10	μA	2.3	WDT, BOR, FVR, and SOSC		
		_	0.30	4.0	12	μA	3.0	disabled, all Peripherals Inactive,		
		_	0.47	6.0	15	μA	5.0			
D023		—	0.50	6.0	14	μA	1.8	LPWDT Current (Note 1)		
		_	0.80	7.0	17	μA	3.0			
D023		—	0.50	6.0	15	μA	2.3	LPWDT Current (Note 1)		
		_	0.77	7.0	20	μA	3.0	4		
		_	0.85	8.0	22	μA	5.0			
D023A		_	8.5	23	25	μA	1.8	FVR current (Note 1)		
		_	8.5	24	27	μA	3.0			
D023A			18	26	30	μA	2.3	FVR current (Note 1)		
			19	27	37	μΑ	3.0	-		
		_	20	29	45	μΑ	5.0			
D024		_	8.0	1/	20	μΑ	3.0	BOR Current (Note 1)		
D024		—	8.0	17	30	μΑ	3.0	BOR Current (Note 1)		
D 0044		_	9.0	20	40	μΑ	5.0			
D024A		_	0.30	4.0	8.0	μA	3.0			
D024A		_	0.30	4.0	14	μΑ	3.0	LPBOR Current (Note 1)		
D025			0.45	0.0 5.0	17	μΑ	5.0 1.9	SOSC Current (Note 1)		
D025			0.5	0.0 0.5	9.0	μΑ	1.0			
D025			0.5	6.0	12	μΑ	2.0	SOSC Current (Note 1)		
D025			1.1	8.5	20	μΑ	2.5			
			1.0	10	20	μΑ	5.0	-		
D026		_	0.10	10	9.0	μΑ	1.8	ADC Current (Note 1 3)		
2020			0.10	2.0	10	μΑ	3.0	no conversion in progress		
D026			0.16	3.0	10	μА	2.3	ADC Current (Note 1.3)		
0020		_	0.40	4.0	11	μA	3.0	no conversion in progress		
		_	0.50	6.0	16	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: ADC clock source is FRC.

4: VREGPM = 1, PIC16F1516/7/8/9 only.

PIC16(L)F1516/7/8/9

27.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

27.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	<u>). [X]⁽¹⁾ T Tape and Reel</u>	- <u>X</u> Temperatur	/XX	XXX	Exai	mp Pl(les: 21651516T - I/MV 301
Device: Tape and Reel Option:	PIC16F1516, PIC16F1517, PIC16F1518, PIC16F1519, Blank = Star T = Tap	PIC16LF1516 PIC16LF1517 PIC16LF1517 PIC16LF1518 PIC16LF1519 ndard packaging e and Reel ⁽¹⁾	(tube or tray)	T attern	b) c)	Taj Inc QT PIC Inc PIC Ex SS	pe and Reel, Justrial temperature, JFN package, TP pattern #301 C16F1519 - I/P Justrial temperature JIP package C16F1518 - E/SS tended temperature, GOP package
Temperature Range:	I = -4(E = -4()°C to +85°C)°C to +125°C	(Industrial) (Extended)				
Package: ⁽²⁾ Pattern:	ML = Thi MV = Ult P = Pla PT = TQ SO = SC SP = Ski SS = SS QTP. SQTP. C	n Quad Flat, no ra Thin Quad Fla stic DIP (PDIP) FP IC nny Plastic DIP OP Code or Special F	lead (QFN) tt, no lead (UQFN) (SPDIP) Requirements)	Note	2:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.
Pattern:	QTP, SQTP, C (blank otherwi	code or Special F se)	Requirements				