

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1516-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1516/7/8/9

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on Valu												
Bark 2 10Ch LATA PORTA Data Latch xxxx xxxx xxxxx xxxx xxxxx xxxxxx <t< th=""><th>Addr</th><th>Name</th><th>Bit 7</th><th>Bit 6</th><th>Bit 5</th><th>Bit 4</th><th>Bit 3</th><th>Bit 2</th><th>Bit 1</th><th>Bit 0</th><th>Value on POR, BOR</th><th>Value on all other Resets</th></t<>	Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
10Ch LATA PORTA Data Latch xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Ban	k 2										
100h LATE PORTB Data Latch xxxx xxxx uuuu uuu 106h LATC PORTD Data Latch xxxx xxxx uuuu uuu 107h LATE ⁽²⁾ - - - - - xxxx xxxx uuuu uuu 101h LATE ⁽²⁾ - -	10Ch	LATA	PORTA Dat	ta Latch							xxxx xxxx	uuuu uuuu
10EnLATCPORTC Data LatchXXXXXXYXXXYXXXYXXXYXXXXYXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10Dh	LATB	PORTB Da	ta Latch							xxxx xxxx	uuuu uuuu
10Fn LATP(P) PORTD D=L Latch XXXX NUMU NUMU 1100 LATE(P) - - - LATE 2 LATE 1 LATE 0	10Eh	LATC	PORTC Da	ta Latch							xxxx xxxx	uuuu uuuu
1100 LATE(?) - - - LATE2 LATE1 LATE0	10Fh	LATD ⁽²⁾	PORTD Da	ta Latch							xxxx xxxx	uuuu uuuu
111n 116h 116h Unimplemente IIII	110h	LATE ⁽²⁾	—	—	—	—	_	LATE2	LATE1	LATE0	xxx	uuu
116h BORCON SBOREN BORFS — — — — — BORRDY 10 - 0q quarq 117h FVRCON FVREN FVRENY TSEN TSEN TSEN G — ADFVR-1:0> 0q00 - 0.0 0q00 -	111h to 115h	_	Unimpleme	nted							_	_
1110h FVRCON FVRRDY FVRRDY TSRNG — — ADFVR-1:D 0g00 -000 <	116h	BORCON	SBOREN	BORFS	—	—	_	—	—	BORRDY	10q	uuu
118h b b b b - Unimplemented - 1111	117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFVI	R<1:0>	0q0000	0q0000
11Dh APFCON — — — — SSEL CCP3EL 00 00 11Fh — Unimplementet Unimplementet — …	118h to 11Ch	_	Unimplemented							_		
11Eh — Unimplemented — …	11Dh	APFCON	—	—	—	—	_	—	SSSEL	CCP2SEL	00	00
11Fh	11Eh	_	Unimpleme	nted		_	—					
Bank J 18Ch ANSELA — — ANSA3 ANSA2 ANSA1 ANSA0 1 1111 1 1111 18Dh ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 1 1111 1 1111 18Eh ANSELD ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANS22 — — 1111	11Fh	_	Unimpleme	nted							—	—
18ch ANSELA — ANSA5 — ANSA3 ANSA2 ANSA1 ANSA0 1 1111 1 1111 18bh ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 1 1111 1 1111 -1 1111 -1 1111 1	Ban	k 3										
18Dh ANSELB — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 11 1111 11 1111 18Eh ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 — — 11111 11111 11111 11111<	18Ch	ANSELA	-	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111	1- 1111
18Eh ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 — — 1111 11 1111 11 1111 11 1111 11 1111 11 1111 11 1111 11 1111	18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Fh ANSELD ⁽²⁾ ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 1111	18Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	1111 11	1111 11
190h ANSELE ⁽²⁾ — — — — ANSE2 ANSE1 ANSE0 -111 -111 191h PMADRL Program M=mory Address Register Low Byte 0000 0	18Fh	ANSELD ⁽²⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
191h PMADRL Program Memory Address Register Low Byte 0000 0000 0000 0000 192h PMADRH (3) Program Memory Address Register High Byte 1000 0000 1000 0000 193h PMDATL Program Memory Data Register Low Byte xxxx xxxx uuuu uuu 194h PMOATH — Program Memory Data Register High Byte xx xxxx uu uuu 195h PMCON1 (3) CFGS LWLO FREE WRERR WREN WR D 1000 0000 1000 0000 0000 0000 196h PMCON2 Program Memory control register 2 0000 0000 0000 0	190h	ANSELE ⁽²⁾	—	—	—	—	—	ANSE2	ANSE1	ANSE0	111	111
192h PMADRH (3) Program Memory Address Register High Byte 1000 0000 1000 0000 1000 0000 1000 0000 0000 1000 0000	191h	PMADRL	Program M	emory Addre	ess Register	Low Byte					0000 0000	0000 0000
193h PMDATL Program Memory Data Register Low Byte xxxx xxxx uuuu uuuu 194h PMDATH — — Program Memory Data Register High Byte xx xxxx uu uuuu 195h PMCON1 —(3) CFGS LWLO FREE WRER WREN WR RD 1000 x000 1000 q000 196h PMCON2 Program Memory contracterister 2 0000 0000	192h	PMADRH	_(3)	Program M	emory Addre	ess Register H	High Byte				1000 0000	1000 0000
194h PMDATH — Program Memory Data Register High Byte	193h	PMDATL	Program M	emory Data	Register Lov	v Byte					xxxx xxxx	uuuu uuuu
195h PMCON1 —(3) CFGS LWLO FREE WRERR WREN WR RD 1000 x000 1000 q000 196h PMCON2 Program M====================================	194h	PMDATH	—	_	Program M	emory Data F	Register High	Byte			xx xxxx	uu uuuu
196h PMCON2 Program Memory control register 2 0000 0000 0000 0000 0000 0000 197h VREGCON ⁽¹⁾ — — — — VREGPM Reserved 01 00 198h — Unimplemented — … <td>195h</td> <td>PMCON1</td> <td>_(3)</td> <td>CFGS</td> <td>LWLO</td> <td>FREE</td> <td>WRERR</td> <td>WREN</td> <td>WR</td> <td>RD</td> <td>1000 x000</td> <td>1000 q000</td>	195h	PMCON1	_(3)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
197h VREGCON ⁽¹⁾ — — — — VREGPM Reserved 01 01 198h — Unimplemented	196h	PMCON2	Program M	emory contro	ol register 2						0000 0000	0000 0000
198h — Unimplemented — …	197h	VREGCON ⁽¹⁾	_	_	_	_	—	-	VREGPM	Reserved	01	01
199h RCREG USART Receive Data Register 0000 0000 0000 0000 0000 0000 0000 0000 19Ah TXREG USART Transmit Data Register 0000 0000 0	198h	—	Unimpleme	nted							_	_
19Ah TXREG USART Transmit Data Register 0000	199h	RCREG	USART Re	ceive Data F	Register						0000 0000	0000 0000
19Bh SPBRG BRG 0000 0000 0000 0000 0000 19Ch SPBRGH BRG BRG BRG 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 <td>19Ah</td> <td>TXREG</td> <td>USART Tra</td> <td>insmit Data I</td> <td>Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000 0000</td> <td>0000 0000</td>	19Ah	TXREG	USART Tra	insmit Data I	Register						0000 0000	0000 0000
19Ch SPBRGH BRG<15:8> 0000	19Bh	SPBRG				BRG<	<7:0>				0000 0000	0000 0000
19Dh RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x 19Eh TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010	19Ch	SPBRGH		-	-	BRG<	15:8>	_			0000 0000	0000 0000
19Eh TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 0000 0010 19Fh BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 01-0 0-00 01-0 0-00 01-0 0-00	19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Fh BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 01-0 0-00 01-0 0-00	19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
	19Fh	BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend: Note

PIC16F1516/7/8/9 only. 1:

PIC16(L)F1517/9 only. Unimplemented, read as '1'. 2: 3:

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx register)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

10.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- · Multiple operating modes
 - WDT is always ON
 - WDT is OFF when in Sleep
 - WDT is controlled by software
 - WDT is always OFF
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- Operation during Sleep

11.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 11-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 11.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 11.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
 - **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 11-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u					
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	ared									

REGISTER 12-6: PORTB: PORTB REGISTER

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the return of actual I/O pin values.

REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the return of actual I/O pin values.

17.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 17-1 is a block diagram of the Timer0 module.

17.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

17.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 17-1: BLOCK DIAGRAM OF THE TIMER0

17.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode, using the T0CKI pin, is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

DALLAL	DAA! A!	Data	DAA! A!	DAMA: C A		DAA/ A/	D AAA AA		
R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	6<1:0>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are			
bit 7 TMR1GE: Timer1 Gate Enable bit If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function									
bit 6	T1GPOI : Tim	ner1 Gate Pola	ritv bit						
	1 = Timer1 g 0 = Timer1 g	ate is active-high	gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)				
bit 5	T1GTM: Time	er1 Gate Toggle	e Mode bit						
	1 = Timer1 G 0 = Timer1 G Timer1 gate f	Gate Toggle mo Gate Toggle mo lip-flop toggles	de is enabled de is disabled on every risin	and toggle flip- g edge.	flop is cleared				
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit					
	1 = Timer1 G 0 = Timer1 G	Bate Single-Pul Bate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate			
bit 3	T1GGO/DON	IE: Timer1 Gate	e Single-Pulse	Acquisition Sta	itus bit				
	1 = Timer1 g 0 = Timer1 g	ate single-puls ate single-puls	e acquisition is e acquisition h	s ready, waiting as completed c	for an edge or has not been	started			
bit 2	T1GVAL: Tim Indicates the Unaffected by	ner1 Gate Curre current state o y Timer1 Gate I	ent State bit f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L			
bit 1-0	Unaffected by Timer1 Gate Enable (TMR1GE). T1GSS<1:0>: Timer1 Gate Source Select bits 11 = Reserved 10 = Timer2 Match PR2 01 = Timer0 overflow output 00 = Timer1 gate pin								

REGISTER 18-2: T1GCON: TIMER1 GATE CONTROL REGISTER

19.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 19.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- · Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

19.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

19.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP1 module, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 21.0 "Master Synchronous Serial Port (MSSP) Module"

19.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

19.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
—		T2OUTF	PS<3:0>		TMR2ON	T2CKP	S<1:0>					
bit 7							bit (
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets					
'1' = Bit is se	t	'0' = Bit is clea	ared									
			- 1									
bit /	Unimpleme											
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	tput Postscale	er Select bits								
	1111 = 1:16	Postscaler										
	1110 = 1.15	Postscaler										
	1101 - 1.14 1100 = 1.13	Postscaler										
	1011 = 1:12	Postscaler										
	1010 = 1:11	Postscaler										
	1001 = 1:10	Postscaler										
	1000 = 1:9 	Postscaler										
	0111 = 1:8	Postscaler										
	0110 = 1:7	Postscaler										
	0101 = 1.6											
	0100 = 1.51											
	0011 = 1.41	Postscaler										
	0001 = 1:2	Postscaler										
	0000 = 1:1	Postscaler										
bit 2	TMR2ON: T	imer2 On bit										
	1 = Timer2	is ON										
	0 = Timer2	is OFF										
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits								
	11 = Presca	ler is 64										
	10 = Presca	ler is 16										
	01 = Presca	ler is 4										
	00 = Presca	ler is 1										

REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER

20.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

20.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

20.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

20.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function**" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON	—	—	—			—	SSSEL	CCP2SEL	105	
CCP1CON	—	—	DC1B	<1:0>	CCP1M<3:0>				168	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75	
PIE2	OSFIE	—	—	_	BCLIE	—	—	CCP2IE	76	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77	
PIR2	OSFIF	—	—	-	BCLIF	—	—	CCP2IF	78	
PR2	Timer2 Perio	od Register							158*	
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	'S<1:0>	160	
TMR2	Timer2 Mod	ule Register	le Register							
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	107	

TABLE 20-5: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM. * Page provides register information.

21.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	108
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	115
APFCON	—		_	—	—	—	SSSEL	CCP2SEL	105
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77
SSPBUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				172*
SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		216
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	218
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	215
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	107
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	114

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

* Page provides register information.

21.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the 8th bit is shifted out (the falling edge of the 8th clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the 9th bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the 9th clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the 9th clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 21-28).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the 8th clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the 9th clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the 9th clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

21.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

21.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

21.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge (ACK = 0) and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

21.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSPIF is set by hardware on completion of the Start.
- 3. SSPIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all 8 bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the 9th clock cycle by setting the SSPIF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
			MSK	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:	Mask bits							
	1 = The rec	eived address b	it n is compar	ed to SSPADD	<n> to detect I²</n>	C address mat	tch		
0 = The received address bit n is not used to detect I ² C address match									

REGISTER 21-7: SSPMSK: SSP MASK REGISTER

	 1 = The received address bit n is compared to SSPADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored

REGISTER 21-8: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

						•	,
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits				
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc				

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u> 10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

23.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC16(L)F151X/152X Memory Programming Specification*", (DS41442).

23.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

23.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

23.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 23-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 23-2.

For additional interface recommendations, refer to the specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 23-3 for more information.

25.6 DC Characteristics: I/O Ports

	DC C	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \leq TA \leq +85°C for industrial} \\ -40°C \leq TA \leq +125°C for extended \\ \end{array}$						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D030		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D030A			_		0.15 Vdd	V	$1.8V \leq V \text{DD} \leq 4.5V$		
D031		with Schmitt Trigger buffer	_		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	_	_	0.3 Vdd	V			
		with SMBus levels	_	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	_	_	0.2 VDD	V	(Note 1)		
D033		OSC1 (HS mode)	_	_	0.3 VDD	V			
	VIH	Input High Voltage							
		I/O ports:		_	_				
D040		with TTL buffer	2.0	-	—	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD + 0.8	—	-	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	0.7 Vdd	_	_	V			
		with SMBus levels	2.1	_	_	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D042		MCLR	0.8 VDD	_	—	V			
D043A		OSC1 (HS mode)	0.7 Vdd		—	V			
D043B		OSC1 (RC mode)	0.9 Vdd	-	—	V	VDD > 2.0V (Note 1)		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O ports		± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance at 85°C		
				± 5	± 1000	nA	125°C		
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \leq V \text{PIN} \leq V \text{DD} \text{ at } 85^\circ C$		
	IPUR	Weak Pull-up Current			1	1			
D070*			25 25	100 140	200 300	μ Α μ Α	VDD = 3.3V, VPIN = VSS VDD = 5.0V, VPIN = VSS		
	VOL	Output Low Voltage ⁽⁴⁾							
D080		I/O ports	_	_	0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 25-9: LOW DROPOUT (LDO) REGULATOR CHARACTERISTICS

Standa Operatir	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Param No. Sym. Characteristic Min. Typ† Max. Units Conditions							
LDO01		LDO Regulation Voltage		3.0	_	V		
LDO02		LDO External Capacitor	0.1	—	1	μF		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 25-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns			
		Clock high to data-out valid	1.8-5.5V	—	100	ns			
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns			
		(Master mode)	1.8-5.5V	—	50	ns			
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns			
			1.8-5.5V	—	50	ns			

PIC16(L)F1516/7/8/9

PIC16(L)F1516/7/8/9

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	0.40 BSC				
Optional Center Pad Width	W2	2.35			
Optional Center Pad Length				2.35	
Contact Pad Spacing			4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads		0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0681-5