

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1516-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 4	•	•	•	•	•	•	•	•		•
20Ch	_	Unimpleme	ented							_	_
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	_		anted	111 020	111 00 1	111 0 0 0	WI ODE	WI OD I	III OBO		
20Eh		Unimpleme	anted								
210h	WPLIE					WPUE3				1	1
210H		Synchrono	us Sorial Por	t Pocoivo R	uffor/Transmit	t Pogistor				1	1
21111 212h	SSFBOI	Synchrono	mellionous Serial Port (120 mode) Address Desister								
21211	SSFADD	Synchrono		$t(1^{2}C)$ mode) Address Re					1111 1111	1111 1111
2130	SSPINISK	Synchrono					DAV		DE		
214n	SSPSIAI	SMP	CKE		P	5	R/W	UA	BF	0000 0000	0000 0000
215h	SSPCON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		0000 0000	0000 0000
216h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h		Linimpione	ntod								
21Fh	_	Unimpleme	inteu							_	_
Ban	k 5										
28Ch											
to	—	Unimpleme	ented							-	—
290h											
291h	CCPR1L	Capture/Co	mpare/PWN	1 Register 1	(LSB)					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Co	mpare/PWN	1 Register 1	(MSB)	r				XXXX XXXX	uuuu uuuu
293h	CCP1CON		-	DC1	B<1:0>		CCP1N	1<3:0>		00 0000	00 0000
294h to 297h	_	Unimpleme	Unimplemented —								_
298h	CCPR2L	Capture/Co	mpare/PWN	1 Register 2	(LSB)					xxxx xxxx	uuuu uuuu
299h	CCPR2H	Capture/Co	mpare/PWN	1 Register 2	(MSB)					xxxx xxxx	uuuu uuuu
29Ah	CCP2CON	_	_	DC2	B<1:0>		CCP2N	1<3:0>		00 0000	00 0000
29Bh											
to	—	Unimpleme	ented							—	—
29FII											
Bank	6	-									
to	_	Unimpleme	ented							_	_
31Fh											
Bank	x 7										
38Ch											
to 393h	—	Unimpleme	ented							_	_
304h	IOCBN				IOCBP	2<7:0>				0000 0000	0000 0000
395h	IOCBN	<u> </u>			IOCRN	1<7:0>					
306h	IOCBE					<7:0>					
307h	ЮСЫ				юсы	\$7.02				0000 0000	0000 0000
to	_	Unimpleme	ented							_	—
39Fh											
Ban	k 8-30										
x0Ch											
x8Ch											
to	—	Unimpleme	ented							-	—
or											
x9Fh											
Legen	d: x = unknov	vn, u = unch	anged, q = v	alue depend	ds on conditio	n, - = unimpl	emented, rea	ad as '0', r	= reserved.		
Note	Shaded loc 1: PIC16F15	cations are u 16/7/8/9 only	inimplemente	ed, read as '	0′.						

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-8:**

PIC16(L)F1517/9 only.
 PIC16(L)F1517/9 only.
 Unimplemented, read as '1'.

11.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 11-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

11.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) registers are used to steer specific peripheral input and output functions between different pins. The APFCON registers are shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- SS (Slave Select)
- CCP2

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	_	—	_	_	_	SSSEL	CCP2SEL
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writ	able bit	U = Unimplemented bit, read as '0'
u = Bit is unchan	ged x = Bit is	unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit i	s cleared	
bit 7-2	Unimplemented: Read a	s '0'	
bit 1	SSSEL: Pin Selection bit $0 = \frac{SS}{SS}$ function is on R $1 = \frac{SS}{SS}$ function is on R	A5 A0	
bit 0	CCP2SEL: Pin Selection 0 = CCP2 function is of 1 = CCP2 function is of	bit า RC1 า RB3	

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared							

REGISTER 12-2: PORTA: PORTA REGISTER

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISA<7:0>:** PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is the return of actual I/O pin values.

12.4 PORTC Registers

12.4.1 DATA REGISTER

PORTC is a 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 12-12). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 12-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

12.4.2 DIRECTION CONTROL

The TRISC register (Register 12-12) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.4.3 ANALOG CONTROL

The ANSELC register (Register 12-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

12.4.4 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-7.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RC0	SOSCO RC0
RC1	SOSCI CCP2 RC1
RC2	CCP1 RC2
RC3	SCL SCK RC3 ⁽²⁾
RC4	SDA RC4 ⁽²⁾
RC5	SDO RC5
RC6	CK TX RC6
RC7	DT RC7

TABLE 12-7: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: RC3 and RC4 read the I^2C ST input when I^2C mode is enabled.

REGISTER 12-21: LATE: PORTE DATA LATCH REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	_	_	_	_	LATE2	LATE1	LATE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented:	Read	as	'0'
				-

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽¹⁾

- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is the return of actual I/O pin values.
 - 2: PIC16(L)F1517/9 only.

REGISTER 12-22: ANSELE: PORTE ANALOG SELECT REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	_	—	—	_	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: PIC16(L)F1517/9 only.

17.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read a					d as '0'		
u = Bit is uncha	anged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	WPUEN: Wea 1 = All weak p 0 = Weak pul	ak Pull-up Ena pull-ups are dis l-ups are enab	ble bit abled (except led by individu	t MCLR, if it is ual WPUx latch	enabled) i values		
bit 6	INTEDG: Inte 1 = Interrupt o 0 = Interrupt o	errupt Edge Sel on rising edge on falling edge	ect bit of INT pin of INT pin				
bit 5	TMROCS: Tin 1 = Transition 0 = Internal in	ner0 Clock Sou on T0CKI pin Istruction cycle	urce Select bit clock (Fosc/	4)			
bit 4	TMROSE: Tin 1 = Incremen 0 = Incremen	ner0 Source Eo t on high-to-lov t on low-to-higl	dge Select bit v transition on n transition on	n TOCKI pin n TOCKI pin			
bit 3	PSA: Prescal 1 = Prescaler 0 = Prescaler	er Assignment is not assigne is assigned to	bit d to the Timer the Timer0 m	r0 module nodule			
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits				
	Bit	Value Timer0	Rate				
	0 0 0 1 1 1 1	00 1:2 01 1:4 10 1:8 11 1:1 00 1:3 01 1:6 10 1:1	6 2 4 28 56				

REGISTER 17-1: OPTION_REG: OPTION REGISTER

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		146		
	Timer0 Module Register							144*
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	107
	Bit 7 GIE WPUEN TRISA7	Bit 7 Bit 6 GIE PEIE WPUEN INTEDG TRISA7 TRISA6	Bit 7Bit 6Bit 5GIEPEIETMR0IEWPUENINTEDGTMR0CSTRISA7TRISA6TRISA5	Bit 7 Bit 6 Bit 5 Bit 4 GIE PEIE TMROIE INTE WPUEN INTEDG TMROCS TMROSE TRISA7 TRISA6 TRISA5 TRISA4	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 GIE PEIE TMR0IE INTE IOCIE WPUEN INTEDG TMR0CS TMR0SE PSA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2GIEPEIETMROIEINTEIOCIETMROIFWPUENINTEDGTMROCSTMROSEPSATimero Module RegisterTRISA7TRISA6TRISA5TRISA4TRISA3TRISA2	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1GIEPEIETMR0IEINTEIOCIETMR0IFINTFWPUENINTEDGTMR0CSTMR0SEPSAPS<2:0>TIMEOT TIMEOT WOULE RegisterTRISA7TRISA6TRISA5TRISA4TRISA3TRISA2TRISA1	Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0GIEPEIETMR0IEINTEIOCIETMR0IFINTFIOCIFWPUENINTEDGTMR0CSTMR0SEPSAPS<2:0>TIMEO TMR0CSTMR0SEPSAPS<2:0>TIMEO TMR0CSTMR0SEPSATIMEO TMR0CSTMR0SEPSATIMEO TMR0CSTMR0SETIMEO TMR0SEPSATIMEO TMR0SETIMEO TMR0SETIMEO TMR0SETRISA7TRISA6TRISA5TRISA4TRISA3TRISA2TRISA1TRISA6TRISA5TRISA5

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

19.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2, respectively
- Optional use as the shift clock for the MSSP modules

See Figure 19-1 for a block diagram of Timer2.

19.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
—		T2OUTF	PS<3:0>		TMR2ON	T2CKP	S<1:0>				
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared								
			- 1								
bit /	Unimpleme	nted: Read as	0' .								
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	tput Postscale	er Select bits							
	1111 = 1:16	Postscaler									
	1110 = 1.15	1101 = 1.15 Postscaler $1101 = 1.14 Postscaler$									
	1101 - 1.14 1100 = 1.13	1100 = 1:13 Postscaler									
	1011 = 1:12	1011 = 1:12 Postscaler									
	1010 = 1:11	1010 = 1:11 Postscaler									
	1001 = 1:10	Postscaler									
	1000 = 1:9 	Postscaler									
	0111 = 1:8	Postscaler									
	0110 = 1:7	Postscaler									
	0101 = 1.6										
	0100 = 1.51										
	0011 = 1.41	Postscaler									
	0001 = 1:2	Postscaler									
	0000 = 1:1	Postscaler									
bit 2	TMR2ON: T	imer2 On bit									
	1 = Timer2	is ON									
	0 = Timer2	is OFF									
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits							
	11 = Presca	ler is 64									
	10 = Presca	ler is 16									
	01 = Presca	ler is 4									
	00 = Presca	ler is 1									

REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER

21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 21-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected. Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		R/W-0/0		R/W-0/0		R/W-0/0
ACKTIN	1 PCIE	SCIE	BOEN	SDAHT		SBCDE		AHEN	Τ	DHEN
bit 7										bit 0
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimple	emer	nted bit, rea	ad a	s '0'		
u = Bit is unchanged		x = Bit is unkr	-n/n = Value	e at F	POR and B	OR/	Value at all o	othe	r Resets	
'1' = Bit is :	set	'0' = Bit is clea	ared							
bit 7	ACKTIM: Ack 1 = Indicates 0 = Not an Ac	knowledge Time the I ² C bus is i knowledge sec	e Status bit (l ² n an Acknowl quence, cleare	² C mode only edge sequen ed on 9 [™] risir) (3) ce, s ng ec	et on 8 [™] fa	alling cloc	g edge of S(ck	CL c	lock
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit	(I ² C mode on	ly)					
	1 = Enable in 0 = Stop dete	terrupt on deterction interrupts	ction of Stop o are disabled	condition 2)						
bit 5	SCIE: Start C	ondition Interru	pt Enable bit	(I ² C mode on	ly)					
	1 = Enable in 0 = Start dete	terrupt on dete ection interrupts	ction of Start of are disabled	or Restart cor 2)	nditio	ns				
bit 4	BOEN: Buffer	r Overwrite Ena	able bit							
	In SPI Slave mode: ⁽¹⁾ 1 = SSPBUF updates every time tha 0 = If new byte is received with BF SSPCON1 register is set, and th <u>In I²C Master mode and SPI Master mode</u> This bit is ignored. <u>In I²C Slave mode:</u> 1 = SSPBUF is updated and ACK is go of the SSPOV bit only if the BF b					s shifted in \T register ated eived addre	igne alre	oring the BF ady set, SS lata byte, igr	[:] bit PO\ norir	/ bit of the
bit 3	SDAHT: SDA	Hold Time Sel	ection bit (I ² C	mode only)						
	1 = Minimum 0 = Minimum	of 300 ns hold of 100 ns hold	time on SDA time on SDA	after the fallir after the fallir	ng ed ng ed	lge of SCL lge of SCL				
bit 2	SBCDE: Slav	e Mode Bus C	ollision Detect	t Enable bit (I	² C S	lave mode	only	y)		
	If on the rising bit of the PIR:	edge of SCL, \$ 2 register is set	SDA is sample , and bus goe	ed low when thes idle	ne m	odule is out	tputi	ting a high st	tate,	the BCLIF
	1 = Enable sl 0 = Slave bus	ave bus collisic s collision interr	on interrupts upts are disat	bled						
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slav	e mode only)						
	1 = Following CON1 re 0 = Address h	the 8th falling gister will be cl holding is disab	edge of SCL eared and the led	for a matchin SCL will be l	g reo held	ceived addi low.	ress	byte; CKP	bit c	of the SSP-
bit 0	DHEN: Data	Hold Enable bit	: (I ² C Slave m	ode only)						
	1 = Following of the SS 0 = Data hold	the 8th falling PCON1 registe ing is disabled	edge of SCL t er and SCL is	for a received held low.	l data	a byte; slav	e ha	ardware clea	ars t	he CKP bit
Note 1:	For daisy-chained when a new byte is	SPI operation; s received and	allows the use BF = 1, but ha	er to ignore al ardware contin	l but nues	the last rec to write the	eive mo	ed byte. SSF	²OV ∕te to	is still set SSPBUF.

REGISTER 21-6: SSPCON3: SSP CONTROL REGISTER 3

2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
			MSK	<7:0>					
bit 7 bit									
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:	Mask bits							
	1 = The rec	eived address b	it n is compar	ed to SSPADD	<n> to detect I²</n>	C address mat	tch		
0 = The received address bit n is not used to detect I ² C address match									

REGISTER 21-7: SSPMSK: SSP MASK REGISTER

	 1 = The received address bit n is compared to SSPADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored

REGISTER 21-8: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

						•	,
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u> 10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

22.3 Register Definitions: EUSART Control

			••••••				
R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7		•	1		•	•	bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpler	mented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	CSRC: Clock	Source Select	t bit				
	Asynchronou:	<u>s mode</u> :					
	Don't care						
	<u>Synchronous</u>	mode:					
	1 = Master r	node (clock ge	nerated interr	ally from BRG)		
	0 = Slave m	ode (clock fron	n external sou	irce)			
bit 6	TX9: 9-bit Tra	ansmit Enable	bit				
	1 = Selects	9-bit transmiss	ion				
	0 = Selects	8-bit transmiss	1011 1)				
DIT 5	IXEN: Iransi	mit Enable bit	.,				
	1 = Transmit 0 = Transmit	disabled					
bit 4	SYNC: FUSA	ART Mode Sele	ect bit				
	1 = Synchror	nous mode					
	0 = Asynchro	onous mode					
bit 3	SENDB: Sen	d Break Chara	cter bit				
	Asynchronou:	<u>s mode</u> :					
	1 = Send Sy	nc Break on ne	ext transmissio	on (cleared by	hardware upon o	completion)	
	0 = Sync Bre	ak transmissio	on completed				
	Synchronous	mode:					
hit 0	Don't care	Doud Data Cal	oot hit				
DIL Z		bauu Rale Sei s mode:	ect bit				
	1 = High spece	<u>s mode</u> . ed					
	0 = Low spece	ed					
	Synchronous	mode:					
	Unused in this	s mode					
bit 1	TRMT: Transi	mit Shift Regis	ter Status bit				
	1 = TSR emp	oty					
	0 = TSR full						
bit 0	TX9D: Ninth I	bit of Transmit	Data				
	Can be addre	ess/data bit or a	a parity bit.				
Note 1: S	REN/CREN over	rides TXEN in	Sync mode.				

REGISTER 22-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

BRA	Relative Branch	BTFSS
Syntax:	[label] BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands:
Operands:	-256 \leq label - PC + 1 \leq 255	
	$-256 \le k \le 255$	Operation:
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affect
Status Affected:	None	Description:
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W
Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

FIGURE 25-4: POR AND POR REARM WITH SLOW RISING VDD

4.0

VDD (V)

4.5

5.0

FIGURE 26-22: IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY

3.5

100 L 2.0

2.5

3.0

5.5

6.0

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2