

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1516-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/SS(2)	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	ADC Channel 0 input.
	SS	ST	—	Slave Select input.
RA1/AN1	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	ADC Channel 1 input.
RA2/AN2	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN	_	ADC Channel 2 input.
RA3/AN3/VREF+	RA3	TTL	CMOS	General purpose I/O.
	AN3	AN	_	ADC Channel 3 input.
	VREF+	AN		ADC Positive Voltage Reference input.
RA4/T0CKI	RA4	TTL	CMOS	General purpose I/O.
	TOCKI	ST	_	Timer0 clock input.
RA5/AN4/SS ⁽¹⁾ /VCAP	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	_	ADC Channel 4 input.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1516/7/8/9 only).
RA6/OSC2/CLKOUT	RA6	TTL	CMOS	General purpose I/O.
	OSC2		XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT		CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	_	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	ST	_	External clock input (EC mode).
RB0/AN12/INT	RB0	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN12	AN	_	ADC Channel 12 input.
	INT	ST	_	External interrupt.
RB1/AN10	RB1	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN10	AN	_	ADC Channel 10 input.
RB2/AN8	RB2	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN8	AN	_	ADC Channel 8 input.
RB3/AN9/CCP2 ⁽²⁾	RB3	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN9	AN	_	ADC Channel 9 input.
	CCP2	ST	CMOS	Capture/Compare/PWM 2.
RB4/AN11	RB4	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN11	AN		ADC Channel 11 input.
RB5/AN13/T1G	RB5	TTL	CMOS	General purpose I/O with IOC and WPU.
	AN13	AN		ADC Channel 13 input.
	T1G	ST		Timer1 Gate input.
RB6/ICSPCLK	RB6	TTL	CMOS	General purpose I/O with IOC and WPU.
	ICSPCLK	ST	CMOS	In-Circuit Data I/O.
RB7/ICSPDAT	RB7	TTL	CMOS	General purpose I/O with IOC and WPU.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
legend AN = Analog input or	output CMC	S = CM()S compa	tible input or output OD = Open-Drain

AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

levels

Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.

XTAL = Crystal

2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.

3: PORTD and RE<2:0> available on PIC16(L)F1517/9 only.

HV = High Voltage

3.4.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-7 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0	Addressing (not a phys	this location ical register)		xxxx xxxx	uuuu uuuu					
x01h or x81h	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)									uuuu uuuu
x02h or x82h	PCL	Program Counter (PC) Least Significant Byte								0000 0000	0000 0000
x03h or x83h	STATUS	—	_		TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer								0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Data Memory Address 0 High Pointer								0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Data Memory Address 1 Low Pointer								0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter								-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-7: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, RC and secondary oscillator).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 5-9). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	Status bits in the OSCSTAT register to
	verify the oscillator start-up and that the
	system clock switchover has successfully
	completed.

R/W-0/0	U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0			
OSFIF		—	_	BCLIF	—		CCP2IF			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is se	et	'0' = Bit is clea	ared							
bit 7	OSFIF: Oscill	ator Fail Interru	upt Flag bit							
	1 = Interrupt i	s pending								
	0 = Interrupt i	0 = Interrupt is not pending								
bit 6-4	Unimplemen	ted: Read as '	0'							
bit 3	BCLIF: MSSF	P Bus Collision	Interrupt Flag	g bit						
	1 = Interrupt i	s pending								
	0 = Interrupt i	s not pending								
bit 2-1	Unimplemen	ted: Read as '	0'							
bit 0	CCP2IF: CCF	2 Interrupt Fla	g bit							
	1 = Interrupt is	s pending								
	0 = Interrupt is	s not pending								
Note: In	nterrupt flag bits a	re set when an	interrupt							
с	condition occurs, re	egardless of the	e state of							
it	s corresponding e	enable bit or th	e Global							
E E	nable bit, GIE, o	f the INTCON	register.							
	sonware	snouia ensu	ire une							

REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

appropriate interrupt flag bits are clear prior

to enabling an interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			146
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75
PIE2	OSFIE	_	—		BCLIE	—	_	CCP2IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77
PIR2	OSFIF	—	—	—	BCLIF	—	—	CCP2IF	78

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC16(L)F1516			
PIC16(L)F1517	20	20	
PIC16(L)F1518	52	52	
PIC16(L)F1519			

11.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program							
	memory read are required to be NOPS.							
	This prevents the user from executing a							
	2-cycle instruction on the next instruction							
	after the RD bit is set.							

FIGURE 11-1:

FLASH PROGRAM MEMORY READ FLOWCHART

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7						·	bit C
Legend:							
R = Read	able bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s '0'	
S = Bit ca	n only be set	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other I	Resets
'1' = Bit is	set	'0' = Bit is clear	red	HC = Bit is clea	ared by hardware	9	
hit 7	Unimplemen	tad. Pead as '1'					
bit 6	CECS. Confi	nuration Soloot bit					
DILO	1 = Access	Configuration Use	er ID and Device	ID Registers			
	0 = Access	Flash program me	mory	12 Registere			
bit 5	LWLO: Load	Write Latches Onl	y bit ⁽³⁾				
	1 = Only the	addressed progra	am memory write	e latch is loaded/	updated on the r	next WR comman	d
	0 = The add	ressed program m	emory write latcl	h is loaded/updat	ed and a write of	all program mem	ory write latche
	will be in	nitiated on the next	t WR command				
bit 4	FREE: Progra	am Flash Erase Ei	nable bit				
	1 = Perform 0 = Perform	s an erase operati s an write operatic	on on the next v on on the next W	VR command (ha /R command	ardware cleared	upon completion)	
bit 3	WRERR: Pro	gram/Frase Error	Flag bit				
2.1.0	1 = Conditio	n indicates an imp	proper program	or erase sequen	ce attempt or te	rmination (bit is s	et automatically
	on any s	et attempt (write	1') of the WR bit	:).	·	,	-
	0 = The prog	gram or erase ope	ration complete	d normally.			
bit 2	WREN: Prog	ram/Erase Enable	bit				
	1 = Allows p	orogram/erase cycl	es				
L:1 4		orogramming/eras	ing of program r	-18511			
DIC		a program Elash r	rogram/oraso o	poration			
	The ope	ration is self-timed	and the bit is c	leared by hardwa	are once operatio	on is complete.	
	The WR	bit can only be se	et (not cleared) in	n software.		F	
	0 = Program	n/erase operation t	to the Flash is co	omplete and inac	tive.		
bit 0	RD: Read Co	ontrol bit					
	1 = Initiates (not clea	a program Flash r ared) in software.	ead. Read takes	s one cycle. RD i	s cleared in hard	lware. The RD bit	can only be set
	0 = Does no	ot initiate a program	n Flash read.				
Note 1:	Unimplemented bit	, read as '1'.					
2:	The WRERR bit is	automatically set b	y hardware whe	en a program me	mory write or era	se operation is st	arted (WR = 1)

REGISTER 11-6: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

U-0	U-0	U-0	U-0	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
	—	—	—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable bit W		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-4	Unimplemen	ted: Read as '	D'						
bit 3-0 RE<3:0>: PORTE I/O Pin bits ⁽¹⁾			ts ⁽¹⁾						
	1 = Port pin is	s > Vih							
	0 = Port pin is	s < Vil							

Note 1: RE<2:0> are not implemented on the PIC16(L)F1516/8. Read as '0'. Writes to RE<2:0> are actually written to corresponding LATE register. Reads from PORTE register is the return of actual I/O pin values.

REGISTER 12-20: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽²⁾	R/W-1	R/W-1	R/W-1
_	_	—	—	—	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented:	Read as	'0'
	e i i i pre i i e i i e u i	riouu uo	0

bit 3 Unimplemented: Read as '1'

bit 2-0 TRISE<2:0>: RE<2:0> Tri-State Control bits⁽¹⁾

- 1 = PORTE pin configured as an input (tri-stated)
 - 0 = PORTE pin configured as an output

Note 1: TRISE<2:0> are not implemented on the PIC16(L)F1517/9. Read as '0'.

2: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB			ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	112
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
IOCBF	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	125
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	125
IOCBP	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	125
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	111

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupt-on-Change.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	ССР
PIC16(L)F1516	
PIC16(L)F1517	CCD2
PIC16(L)F1518	CCF2
PIC16(L)F1519	

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to **Section 20.0** "Capture/Compare/PWM **Modules**" for more information.

FIGURE 21-9:	SPI N	IODE W	AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
											, yaaana Le
	· · · ·										: : : : :
	• • • • • •			· ·	, ,		* * *		, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3
- Constant Constant Sector Sciences Network	· · · ·		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s s s s	< 	: : : :	2 2 2 2 2 2 2	< < : : :	< < s s s	: : : :	
- SEX)		V 732.7		X 88.8 , ,	X 333 4	(198.3) 111111	X 332.2.	X 222		. 82 0 	
- 358.33 - 1.5.5. A	4. 	- 1995, 7 - 1995, 7 	,	aad <i>aalaa</i> ; ; ; ;			, , , , , ,			(/////////////////////////////////////	:
 Særepis	· · · ·		· //; ·	. // 	, 49 	. 14p 	e 192 5 5. 6.	; <i>4</i> 2- ;	5 4 3 2 2	().	
BSPR Internups Plag	· ; ; ;		5 5 6	5 5 2			5 5 9	5 5	< < & \$	· · · · · · · · · · · · · · · · · · ·	
\$\$89\$8 80 \$\$\$7607	, , , ,		, , , ,	, ; ,	• \$ •		* 2 * *	, , , ,	• ; • ; •	, //p.	
Write Collision detection active											

FIGURE 21-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

21.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-36. If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 21-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 21-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

22.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

22.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the 9th, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 22.1.2.7** "Address **Detection**" for more information on the address mode.

22.1.1.7 Asynchronous Transmission Setup:

- 1. Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set 9th data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the 9th bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 22-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

FIGURE 22-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	
RCIF bit (Interrupt) Read RCREG	
Note: Timing diag	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 22-6:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	232
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77
RCREG			EUS	ART Receiv	e Data Reg	gister			225*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	231
SPBRGL	BRG<7:0>								233*
SPBRGH	BRG<15:8>								233*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	114
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	230

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

4.0

VDD (V)

4.5

5.0

FIGURE 26-22: IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY

3.5

100 L 2.0

2.5

3.0

5.5

6.0

FIGURE 26-52: BROWN-OUT RESET HYSTERESIS, BORV = 1, PIC16F1516/7/8/9 ONLY

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	N		44			
Lead Pitch	е		0.80 BSC			
Overall Height	Α	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	1 10.00 BSC				
Overall Length	D		12.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint L1 1.00 F			1.00 REF	F		
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B