

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1516t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

TABLE 1-2: PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description	
RA0/AN0/SS(2)	RA0	TTL	CMOS	General purpose I/O.	
	AN0	AN	_	ADC Channel 0 input.	
	SS	ST	—	Slave Select input.	
RA1/AN1	RA1	TTL	CMOS	General purpose I/O.	
	AN1	AN	—	ADC Channel 1 input.	
RA2/AN2	RA2	TTL	CMOS	General purpose I/O.	
	AN2	AN	_	ADC Channel 2 input.	
RA3/AN3/VREF+	RA3	TTL	CMOS	General purpose I/O.	
	AN3	AN		ADC Channel 3 input.	
	VREF+	AN		ADC Positive Voltage Reference input.	
RA4/T0CKI	RA4	TTL	CMOS	General purpose I/O.	
	TOCKI	ST	_	Timer0 clock input.	
RA5/AN4/SS ⁽¹⁾ /VCAP	RA5	TTL	CMOS	General purpose I/O.	
	AN4	AN	_	ADC Channel 4 input.	
	SS	ST	ST — Slave Select input. wwer Power Filter capacitor for Voltage Regulator (PIC16F1516/7/8		
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1516/7/8/9 only).	
RA6/OSC2/CLKOUT	RA6	TTL	CMOS	General purpose I/O.	
	OSC2		XTAL	Crystal/Resonator (LP, XT, HS modes).	
	CLKOUT		CMOS	Fosc/4 output.	
RA7/OSC1/CLKIN	RA7	TTL	CMOS	General purpose I/O.	
	OSC1	XTAL	_	Crystal/Resonator (LP, XT, HS modes).	
	CLKIN	ST	_	External clock input (EC mode).	
RB0/AN12/INT	RB0	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN12	AN	_	ADC Channel 12 input.	
	INT	ST	_	External interrupt.	
RB1/AN10	RB1	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN10	AN	_	ADC Channel 10 input.	
RB2/AN8	RB2	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN8	AN	—	ADC Channel 8 input.	
RB3/AN9/CCP2 ⁽²⁾	RB3	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN9	AN		ADC Channel 9 input.	
	CCP2	ST	CMOS	Capture/Compare/PWM 2.	
RB4/AN11	RB4	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN11	AN		ADC Channel 11 input.	
RB5/AN13/T1G	RB5	TTL	CMOS	General purpose I/O with IOC and WPU.	
	AN13	AN		ADC Channel 13 input.	
	T1G	ST		Timer1 Gate input.	
RB6/ICSPCLK	RB6	TTL	CMOS	General purpose I/O with IOC and WPU.	
	ICSPCLK	ST	CMOS	In-Circuit Data I/O.	
RB7/ICSPDAT	RB7	TTL	CMOS	General purpose I/O with IOC and WPU.	
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.	
legend AN = Analog input or	output CMC	S = CM()S compa	tible input or output OD = Open-Drain	

AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

levels

Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.

XTAL = Crystal

2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.

3: PORTD and RE<2:0> available on PIC16(L)F1517/9 only.

HV = High Voltage

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

5.2.2.3 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The outputs of the 16 MHz HFINTOSC postscaler and the LFINTOSC connects to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)
 - Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.4 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables of **Section 25.0** "**Electrical Specifications**".

11.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table .

When read access is initiated on an address outside the parameters listed in Table , the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 11-1:USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 11-4: CONFIGURATION WORD AND DEVICE ID ACCESS

This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO MOVLW PROG_ADDR_LO ; Select correct Bank MOVWF PMADR MOVWF PMADRL ; Store LSB of address CLRF PMADRH ; Clear MSB of address ; Select Configuration Space PMCON1,CFGS BSF INTCON,GIE BCF ; Disable interrupts PMCON1,RD BSF ; Initiate read NOP ; Executed (See Figure 11-2) NOP ; Ignored (See Figure 11-2) INTCON,GIE BSF ; Restore interrupts MOVF PMDATL,W ; Get LSB of word MOVWF PROG_DATA_LO ; Store in user location MOVF PMDATH,W ; Get MSB of word PROG_DATA_HI ; Store in user location MOVWF

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾ bit 7-4

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is the return of actual I/O pin values.

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5	 ANSA5: Analog Select between Analog or Digital Function on pins RA5, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 4	Unimplemented: Read as '0'
hit 2 0	ANSA 2:05 · Appled Select between Appled or Digital Eurotian on ping BA-2:05, reaped

- ANSA<3:0>: Analog Select between Analog or Digital Function on pins RA<3:0>, respectively bit 3-0 0 = Digital I/O. Pin is assigned to port or digital special function.
 - 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				
			aieu				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is the return of actual I/O pin values.

REGISTER 12-12: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 12-13: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is the return of actual I/O pin values.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o			other Resets			
$(1)^{2} = \text{Bit is set}$ $(0)^{2} = \text{Bit is cleared}$							

REGISTER 12-18: ANSELD: PORTD ANALOG SELECT REGISTER

bit 7-0 ANSD<7:0>: Analog Select between Analog or Digital Function on pins RD<7:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.
 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

	(4)
TABLE 12-9:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD ⁽¹⁾

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	118
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	117
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	117
TRISD	TRISD7	TRISD6	TRISB5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	117

x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Legend: PORTD.

Note 1: PIC16F1517/1519 only.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μs after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μs between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR<1:0>		128

Legend: Shaded cells are unused by the temperature indicator module.

21.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the 9th bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 21.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the 9th SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the 9th clock pulse.

21.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

21.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 21-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPIF bit.
- 4. Slave hardware generates an ACK and sets SSPIF.
- 5. SSPIF bit is cleared by user.
- 6. Software reads the received address from SSP-BUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - 2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

FIGURE 21-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

21.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	
SMP	CKE	D/A	P	S	R/W	UA	BF	
bit 7	0.12	2				•	bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0	,		
u = Bit is unchang	jed	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/Valu	ue at all other Res	ets	
'1' = Bit is set		'0' = Bit is cleare	ed					
bit 7	SMP: SPI Data I <u>SPI Master mod</u> 1 = Input data sa 0 = Input data sa <u>SPI Slave mode</u> <u>SMP must be cle</u> <u>In I²C Master or</u> 1 = Slew rate co 0 = Slew rate co	Input Sample bit <u>e:</u> ampled at end of o ampled at middle <u>:</u> eared when SPI is <u>Slave mode:</u> ontrol disabled for ontrol enabled for	data output time of data output tir s used in Slave r standard speed high speed mod	ne node I mode (100 kHz a Ie (400 kHz)	and 1 MHz)			
bit 6	CKE: SPI Clock In SPI Master or 1 = Transmit occ 0 = Transmit occ In I ² C mode only 1 = Enable input 0 = Disable SME	Edge Select bit (Slave mode: Surs on transition curs on transition C logic so that thre Bus specific inputs	SPI mode only) from active to Idl from Idle to activ sholds are comp	le clock state re clock state bliant with SMBus	specification			
bit 5	D/A: Data/Addre 1 = Indicates tha 0 = Indicates tha	ess bit (I ² C mode) at the last byte rec at the last byte rec	only) eived or transmi eived or transmi	itted was data itted was address	i			
bit 4	P: Stop bit (l ² C mode only. 1 = Indicates that 0 = Stop bit was	This bit is cleared at a Stop bit has b not detected last	when the MSSF een detected las	P module is disab at (this bit is '0' on	led, SSPEN is clea ı Reset)	red.)		
bit 3	S: Start bit (l^2C mode only. 1 = Indicates that 0 = Start bit was	This bit is cleared at a Start bit has b not detected last	when the MSSF een detected las	P module is disab st (this bit is '0' on	led, SSPEN is clea n Reset)	red.)		
bit 2	 Start bit was not detected last R.W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit. <u>In I²C Slave mode:</u> Read Write <u>In I²C Master mode:</u> Transmit is not in progress Transmit is not in progress Transmit bit hit with SEN REEN REEN RCEN or ACKEN will indicate if the MSSP is in Idle mode. 							
bit 1	UA: Update Add 1 = Indicates tha 0 = Address doe	Iress bit (10-bit I ² at the user needs as not need to be	C mode only) to update the ad updated	dress in the SSP	ADD register			
bit 0	BF: Buffer Full S <u>Receive (SPI an</u> 1 = Receive com 0 = Receive not <u>Transmit (I²C mo</u> 1 = Data transm 0 = Data transm	Status bit d <u>I²C modes):</u> nplete, SSPBUF is complete, SSPBL <u>ode only):</u> it in progress (doe it complete (does	s full JF is empty es not include th <u>a</u> not include the <i>i</i>	e ACK and Stop t ACK and Stop bit	bits), SSPBUF is ful s), SSPBUF is emp	l ty		

REGISTER 21-3: SSPSTAT: SSP STATUS REGISTER

Mnemonic,		Description	Cycles		14-Bit	Opcode)	Status	Netes
Oper	rands	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f. d	Inclusive OR W with f	1	00	0100	dfff	ffff	z	2
MOVF	f. d	Move f	1	00	1000	dfff	ffff	z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f. d	Rotate Left f through Carry	1	0.0	1101	dfff	ffff	С	2
RRF	f. d	Rotate Right f through Carry	1	00	1100	dfff	ffff	Ċ	2
SUBWF	f. d	Subtract W from f	1	0.0	0010	dfff	ffff	C. DC. Z	2
SUBWEB	fd	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C DC Z	2
SWAPF	f d	Swap nibbles in f	1	00	1110	dfff	ffff	0,20,2	2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
	-	BYTE-ORIENTED SKIP O	OPERATIO	ONS					
DECESZ	f. d	Decrement f. Skip if 0	1(2)	00	1011	dfff	ffff		1.2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	IS				
BCE	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
DIECO	fb	Dit Toot f. Skip if Cloor		0.1	1.01-1	1-660	6660		4.2
BTESS	i, D f h	Bit Test f. Skip if Set	1 (2)	01	11bb	DIII bfff	IIII ffff		1, 2
			1 (2)	01	1100	DIII	LLLL		1, 2
			1	1 1	1110	1-1-1-1-	1-1-1-1-		
	ĸ		1	11	1001	KKKK	KKKK	C, DC, Z	
	r. k	Inclusive OP literal with W	1	11	1001	KKKK	KKKK	2 7	
	K.	Move literal to PSP	1	11	1000	KKKK	КККК 1-1-1-1-	2	
	r. k	Move literal to DCL ATH	1	11	0000	1 1-1-1-	KKKK		
MOVLP	r. L		1	11	0001	1-1-1-1-	KKKK		
	r. L	Subtract W/ from literal	1	11	1100	KKKK	KKKK		
YORIW/	r. k	Evolusive OR literal with W	1	⊥⊥ 11	1010	KKKK lelelele	KKKK lelelele	0, D0, Z	
AUKLW	ĸ		1	ΤT	TOTO	кккк	кккк	۷	

TABLE 24-3: INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C \le TA \le +85°C for industrial} \\ \mbox{-40°C \le TA \le +125°C for extended} \end{array}$				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	Voн	Output High Voltage ⁽⁴⁾				•	
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins				
D101*	COSC2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins	—	_	50	pF	
		VCAP Capacitor Charging					
D102*		Charging current	—	_	200	μA	
D102A*		Source/Sink capability when charging complete	—	_	0.0	mA	

25.6 DC Characteristics: I/O Ports (Continued)

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

25.7 Memory Programming Requirements

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2)	
D111	IDDP	Supply Current during Programming	—	_	10	mA		
D112	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	—	1.0	—	mA		
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA		
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)	
D122	VPRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V		
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms		
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D125	EHEFC	High-Endurance Flash Cell	100K	_	—	E/W	0°C to +60°C lower byte, last 128 addresses	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES				
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		.100 BSC			
Top to Seating Plane	А	-	-	.200		
Molded Package Thickness	A2	.120	.135	.150		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.335		
Molded Package Width	E1	.240	.285	.295		
Overall Length	D	1.345	1.365	1.400		
Tip to Seating Plane	L	.110	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.050	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	-	.430		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B