

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1517-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.4.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.4.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.7.2** "Linear Data Memory" for more information.

3.4.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.4.4 DEVICE MEMORY MAPS

The memory maps for PIC16(L)F1516/7 and PIC16(L)F1518/9 are as shown in Table 3-3 and Table 3-4, respectively.

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2							
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		LVP	DEBUG	LPBOR	BORV	STVREN	_
		bit 13					bit 8
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1
-	—		VCAPEN ⁽¹⁾	_	-	WRT<	1:0>
bit 7							bit 0
Legend:							
R = Readable bit		P = Programmable	e bit	U = Unimplement	ed bit, read as '1'		
'0' = Bit is cleared	ł	'1' = Bit is set		-n = Value when b	blank or after Bulk I	Erase	
L							
bit 13	LVP: Low-Voltage 1 = Low-voltage p 0 = High-voltage o	e Programming Ena pro <u>gramm</u> ing enable on MCLR must be u	ble bit ed ised for programm	ing			
bit 12	DEBUG : In-Circu 1 = In-Circuit Deb 0 = In-Circuit Deb	it Debugger Mode b bugger disabled, ICS bugger enabled, ICS	it SPCLK and ICSPD PCLK and ICSPD	AT are general pur AT are dedicated to	pose I/O pins the debugger		
bit 11	LPBOR: Low-Pow 1 = Low-Power Bi 0 = Low-Power Bi	wer BOR OR is disabled OR is enabled					
bit 10	BORV: Brown-out 1 = Brown-out Re 0 = Brown-out Re	t Reset Voltage Sele eset voltage (Vbor), eset voltage (Vbor),	ection bit ⁽²⁾ low trip point selec high trip point sele	ted. cted.			
bit 9	STVREN: Stack Overflow/Underflow Reset Enable bit 1 = Stack Overflow or Underflow will cause a Reset 0 = Stack Overflow or Underflow will not cause a Reset						
bit 8-5	Unimplemented: Read as '1'						
bit 4	VCAPEN: Voltage Regulator Capacitor Enable bits ⁽¹⁾ If PIC16LF1516/7/8/9 (regulator disabled): These bits are ignored. All VCAP pin functions are disabled. If PIC16F1516/7/8/9 (regulator enabled): 0 = VCAP functionality is enabled on RA5 1 = All VCAP pin functions are disabled						
bit 3-2	Unimplemented:	Read as '1'					
bit 1-0	bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits 8 kW Flash memory (PIC16(L)F1516/7 only): 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by PMCON control 01 = 000h to FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control 01 = 000h to 1FFh write-protected, no addresses may be modified by PMCON control 16 kW Flash memory (PIC16(L)F1518/9 only): 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by PMCON control 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by PMCON control 01 = 000h to 1FFFh write-protected, 200h to 3FFFh may be modified by PMCON control 01 = 000h to 3FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control 00 = 000h to 3FFFh write-protected, no addresses may be modified by PMCON control						
Note 1: PIC 2: Sec	Iote 1: PIC16F1516/7/8/9 only. 2: See Vbor parameter for specific trip point voltages.						

$\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx register)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

9.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F1516/7/8/9 has an internal Low Dropout Regulator (LDO) which provides operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The PIC16LF1516/7/8/9 operates at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The $\overline{\text{VCAPEN}}$ bit of Configuration Words enables or disables the VCAP pin. Refer to Table 9-1.

TABLE 9-1: VCAPEN SELECT BIT

VCAPEN	Pin
0	RA5

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in **Section 25.0 "Electrical Specifications"**.

TABLE 9-2: SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			LVP	DEBUG	LPBOR	BORV	STVREN	—	40
CONFIG2	7:0	_	_	_	VCAPEN	_	_	WRT	<1:0>	43

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: PIC16F1516/7/8/9 only.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1516		
PIC16(L)F1517	20	20
PIC16(L)F1518	52	52
PIC16(L)F1519		

11.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program				
	memory read are required to be NOPS.				
	This prevents the user from executing a				
	2-cycle instruction on the next instruction				
	after the RD bit is set.				

FIGURE 11-1:

FLASH PROGRAM MEMORY READ FLOWCHART

EXAMPLE 11-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ - $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVWF MOVF BCF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation</pre>
	BSF	PMCON1,WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVWF BSF NOP NOP	55h pmcon2 0Aah pmcon2 pmcon1,wr	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-15: PORTD: PORTD REGISTER

bit 7-0 **RD<7:0>**: PORTD General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is the return of actual I/O pin values.

REGISTER 12-16: TRISD: PORTD TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD5 | TRISD5 | TRISD5 | TRISD4 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISD<7:0>: PORTD Tri-State Control bits
 - 1 = PORTD pin configured as an input (tri-stated)

0 = PORTD pin configured as an output

REGISTER 12-17: LATD: PORTD DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is the return of actual I/O pin values.

16.3 Register Definitions: ADC Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	oit	U = Unimpleme	ented bit, read a	s '0'	
u = Bit is u	inchanged	x = Bit is unkn	own	-n/n = Value at	POR and BOR/	Value at all other	Resets
'1' = Bit is	set	'0' = Bit is clea	red				
bit 7	Unimpleme	nted: Read as '0'					
bit 6-2	CHS<4:0>:	Analog Channel Se	elect bits				
	11111 = F\	/R (Fixed Voltage	Reference) Buff	er 1 Output ⁽¹⁾			
	11110 = Te	emperature Indicate	or ⁽²⁾				
	11101 = R	eserved. No chann	el connected.				
	11100 = R	eserved. No chanr	el connected.				
	11011 = AI	N27(3)					
	•						
	•						
	10100 = A	N20 ⁽³⁾					
	10011 = Al	N19					
	10010 = A	N18					
	10001 = A	N17					
	10000 = A	N16					
	01111 = A	N15					
	01110 = A	N14					
	01101 = Al	N13					
	01100 = A	N12					
	01011 = AI	N11					
	01010 = AI	N10 N0					
	01001 = AI	N9 N8					
	01000 = AI	NO N7(3)					
	00110 = A	N6(3)					
	00101 = A	N5 ⁽³⁾					
	00100 = A	N4					
	00011 = A	N3					
	00010 = A	N2					
	00001 = A	N1					
	00000 = A	N0					
bit 1	GO/DONE:	ADC Conversion S	tatus bit				
	1 = ADC cor	nversion cycle in p	ogress. Setting	this bit starts an A	ADC conversion	cycle.	
	This bit i	s automatically cle	ared by hardwa	re when the ADC	conversion has	completed.	
	0 = ADC cor	nversion completed	I/not in progress	6			
bit 0	ADON: ADO	Enable bit					
	1 = ADC is e	enabled					
	0 = ADC is c	disabled and consu	imes no operati	ng current			
Note 1:	See Section 14.0	"Fixed Voltage R	eference (FVR)" for more inform	ation.		
2:	See Section 15.0	"Temperature In	dicator Module	" for more inform	ation.		
3:	AN<7:5> and AN	<27:20> are PIC16	(L)F1517/9 only	Ι.			

REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0

18.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 18-1 displays the Timer1 enable selections.

TABLE 18-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

18.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 18-2 displays the clock source selections.

18.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous source may be used:

 Asynchronous event on the T1G pin to Timer1 gate

18.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. This external clock source can be synchronized to the microcontroller system clock and run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the secondary oscillator circuit.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON =0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 10-2: CLOCK SOURCE SELECTIONS	TABLE 18-2:	CLOCK SOURCE SELECTIONS
-------------------------------------	-------------	-------------------------

TMR1CS1	TMR1CS0	T1OSCEN	Clock Source
1	1	х	LFINTOSC
1	0	1	Secondary Oscillator Circuit on SOSCI/SOSCO Pins
1	0	0	External Clocking on T1CKI Pin
0	1	х	System Clock (FOSC)
0	0	х	Instruction Clock (Fosc/4)

19.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 19.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- · Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

19.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

19.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP1 module, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 21.0 "Master Synchronous Serial Port (MSSP) Module"

19.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

19.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—		T2OUTF	PS<3:0>		TMR2ON	T2CKP	S<1:0>
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o					other Resets		
'1' = Bit is se	t	'0' = Bit is clea	ared				
			- 1				
bit /	Unimpleme	nted: Read as	0' .				
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	tput Postscale	er Select bits			
	1111 = 1:16	Postscaler					
	1110 = 1.15	Postscaler					
	1101 - 1.14 1100 = 1.13	Postscaler					
	1011 = 1:12	Postscaler					
	1010 = 1:11	Postscaler					
	1001 = 1:10	Postscaler					
	1000 = 1:9 	Postscaler					
	0111 = 1:8	Postscaler					
	0110 = 1:7	Postscaler					
	0101 = 1.6						
	0100 = 1.51						
	0011 = 1.41	Postscaler					
	0001 = 1:2	Postscaler					
	0000 = 1:1	Postscaler					
bit 2	TMR2ON: T	imer2 On bit					
	1 = Timer2	is ON					
	0 = Timer2	is OFF					
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits			
	11 = Presca	ler is 64					
	10 = Presca	ler is 16					
	01 = Presca	ler is 4					
	00 = Presca	ler is 1					

REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER

21.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

21.5.6.1 Normal Clock Stretching

Following an \overline{ACK} if the R/ \overline{W} bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL.
 - Previous versions of the module did not stretch the clock for a transmission if SSP-BUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

21.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

21.5.6.3 Byte NACKing

When AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data.

Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

21.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 21-23).

FIGURE 21-23: CLOCK SYNCHRONIZATION TIMING

21.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPCON<u>2</u> register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with

the R/\overline{W} bit clear, an interrupt is generated and slave software can read SSPBUF and respond. Figure 21-24 shows a General Call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 21-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

21.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 21-7) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

21.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 21-26), the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPSTAT register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C Specification states that a bus collision cannot occur on a Start.

FIGURE 21-26: FIRST START BIT TIMING

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$
Operation:	$(f < 7 >) \rightarrow C$ $(f < 6:0 >) \rightarrow dest < 7:1 >$ $0 \rightarrow dest < 0 >$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ← 0

LSRF	Logical Right Shift				
Syntax:	[<i>label</i>]LSRF f{,d}				
Operands:	$0 \le f \le 127$				
	d ∈ [0 1]				

$d \in [0,1]$
$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
C, Z
The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

0→	register f	-	С

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f) \rightarrow (dest)$			
Status Affected:	Z			
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected			
Words:	1			
Cycles:	1			
Example:	MOVF FSR, 0			
	After Instruction W = value in FSR register Z = 1			

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Unit s	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SSx}\downarrow$ to SCKx \downarrow or SCKx \uparrow input		2.25 TCY	—	—	ns	
SP71*	TscH	SCKx input high time (Slave mode)		Tcy + 20	—	—	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20	_	-	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100	—	—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDIx data input to S	Hold time of SDIx data input to SCKx edge		—	_	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDOx data output fall time		—	10	25	ns	
SP77*	TssH2doZ	$\overline{\mathrm{SSx}}$ to SDOx output high-impedance		10	—	50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	—	10	25	ns	
		(Master mode)	1.8-5.5V	—	25	50	ns	
SP79*	TscF	SCKx output fall time (Master m	ode)	—	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	—		50	ns	
	TscL2doV	SCKx edge	1.8-5.5V	—		145	ns	
SP81*	TDOV2scH	SDOx data output setup to SCK	x edge	Тсу	_	-	ns	
	, TDOV2scL							
SP82*	TssL2DoV	SDOx data output valid after SS	↓ edge	—		50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40	—	—	ns	

TABLE 25-12: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 26-12: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1516/7/8/9 ONLY

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.50	0.55	0.70
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2