

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 20MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 36                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 512 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 28x10b                                                                  |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 40-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 40-UQFN (5x5)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1517t-i-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong







## TABLE 3-5: PIC16(L)F1518/9 MEMORY MAP (CONTINUED)

|              | BANK 8                                     |              | BANK 9                                     |              | BANK 10                                    |              | BANK 11                                    |                              | BANK 12                                                                 |              | BANK 13                               |              | BANK 14                               |              | BANK 15                               |
|--------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|------------------------------|-------------------------------------------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|--------------|---------------------------------------|
| 400h         | Core Registers<br>(Table 3-2)              | 480h         | Core Registers<br>(Table 3-2)              | 500h         | Core Registers<br>(Table 3-2)              | 580h         | Core Registers<br>(Table 3-2)              | 600h                         | Core Registers<br>(Table 3-2)                                           | 680h         | Core Registers<br>(Table 3-2)         | 700h         | Core Registers<br>(Table 3-2)         | 780h         | Core Registers<br>(Table 3-2)         |
| 40Bh         | · · · · ·                                  | 48Bh         | ,                                          | 50Bh         | , , , , , , , , , , , , , , , , , , ,      | 58Bh         | · · · ·                                    | 60Bh                         | , , , , , , , , , , , , , , , , , , ,                                   | 68Bh         | · · · ·                               | 70Bh         | · · · ·                               | 78Bh         | , , , , , , , , , , , , , , , , , , , |
| 40Ch         | Unimplemented<br>Read as '0'               | 48Ch         | Unimplemented<br>Read as '0'               | 50Ch         | Unimplemented<br>Read as '0'               | 58Ch         | Unimplemented<br>Read as '0'               | 60Ch                         | Unimplemented<br>Read as '0'                                            | 68Ch         | Unimplemented<br>Read as '0'          | 70Ch         | Unimplemented<br>Read as '0'          | 78Ch         | Unimplemented<br>Read as '0'          |
| 41Fh         |                                            | 49Fh         |                                            | 51Fh         |                                            | 59Fh         |                                            | 61Fh                         |                                                                         | 69Fh         |                                       | 71Fh         |                                       | 79Fh         |                                       |
| 420h<br>46Fh | General<br>Purpose<br>Register<br>80 Bytes | 4A0h<br>4EFh | General<br>Purpose<br>Register<br>80 Bytes | 520h<br>56Fh | General<br>Purpose<br>Register<br>80 Bytes | 5A0h<br>5EFh | General<br>Purpose<br>Register<br>80 Bytes | 620h<br>64Fh<br>650h<br>66Fh | General Purpose<br>Register<br>48 Bytes<br>Unimplemented<br>Read as '0' | 6A0h<br>6EFh | Unimplemented<br>Read as '0'          | 720h<br>76Fh | Unimplemented<br>Read as '0'          | 7A0h<br>7EFh | Unimplemented<br>Read as '0'          |
| 470h<br>47Fh | Common RAM<br>(Accesses<br>70h – 7Fh)      | 4F0h<br>4FFh | Common RAM<br>(Accesses<br>70h – 7Fh)      | 570h<br>57Fh | Common RAM<br>(Accesses<br>70h – 7Fh)      | 5F0h<br>5FFh | Common RAM<br>(Accesses<br>70h – 7Fh)      | 670h<br>67Fh                 | Common RAM<br>(Accesses<br>70h – 7Fh)                                   | 6F0h<br>6FFh | Common RAM<br>(Accesses<br>70h – 7Fh) | 770h<br>77Fh | Common RAM<br>(Accesses<br>70h – 7Fh) | 7F0h<br>7FFh | Common RAM<br>(Accesses<br>70h – 7Fh) |

|      | BANK 16                               |      | BANK 17                               |      | BANK 18                               |      | BANK 19                               |      | BANK 20                               |      | BANK 21                               |      | BANK 22                               |      | BANK 23                               |
|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|------|---------------------------------------|
| 800h | Core Registers<br>(Table 3-2)         | 880h | Core Registers<br>(Table 3-2)         | 900h | Core Registers<br>(Table 3-2)         | 980h | Core Registers<br>(Table 3-2)         | A00h | Core Registers<br>(Table 3-2)         | A80h | Core Registers<br>(Table 3-2)         | B00h | Core Registers<br>(Table 3-2)         | B80h | Core Registers<br>(Table 3-2)         |
| 80Bh |                                       | 88Bh |                                       | 90Bh |                                       | 98Bh |                                       | A0Bh |                                       | A8Bh |                                       | B0Bh |                                       | B8Bh |                                       |
| 80Ch |                                       | 88Ch |                                       | 90Ch |                                       | 98Ch |                                       | A0Ch |                                       | A8Ch |                                       | B0Ch |                                       | B8Ch |                                       |
|      | Unimplemented<br>Read as '0'          |
| 86Fh |                                       | 8EFh |                                       | 96Fh |                                       | 9EFh |                                       | A6Fh |                                       | AEFh |                                       | B6Fh |                                       | BEFh |                                       |
| 870h | Common RAM<br>(Accesses<br>70h – 7Fh) | 8F0h | Common RAM<br>(Accesses<br>70h – 7Fh) | 970h | Common RAM<br>(Accesses<br>70h – 7Fh) | 9F0h | Common RAM<br>(Accesses<br>70h – 7Fh) | A70h | Common RAM<br>(Accesses<br>70h – 7Fh) | AF0h | Common RAM<br>(Accesses<br>70h – 7Fh) | B70h | Common RAM<br>(Accesses<br>70h – 7Fh) | BF0h | Common RAM<br>(Accesses<br>70h – 7Fh) |
| 87FN |                                       | 8FFN |                                       | 97Fn |                                       | 9FFN |                                       | A/Fn |                                       | AFFN |                                       | B/FN |                                       | BFFU |                                       |

| Addr         Name         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Value on Valu |                    |                        |           |               |               |                |               |       |        |          |                      |                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-----------|---------------|---------------|----------------|---------------|-------|--------|----------|----------------------|---------------------------------|
| Bark 2           10Ch         LATA         PORTA Data Latch         xxxx xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxx         xxxxx         xxxx         xxxxx         xxxxxx <t< th=""><th>Addr</th><th>Name</th><th>Bit 7</th><th>Bit 6</th><th>Bit 5</th><th>Bit 4</th><th>Bit 3</th><th>Bit 2</th><th>Bit 1</th><th>Bit 0</th><th>Value on<br/>POR, BOR</th><th>Value on<br/>all other<br/>Resets</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Addr               | Name                   | Bit 7     | Bit 6         | Bit 5         | Bit 4          | Bit 3         | Bit 2 | Bit 1  | Bit 0    | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
| 10Ch       LATA       PORTA Data Latch       xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ban                | k 2                    |           |               |               |                |               |       |        |          |                      |                                 |
| 100h       LATE       PORTB Data Latch       xxxx xxxx       uuuu uuu         106h       LATC       PORTD Data Latch       xxxx xxxx       uuuu uuu         107h       LATE <sup>(2)</sup> -       -       -       -       -       xxxx xxxx       uuuu uuu         101h       LATE <sup>(2)</sup> -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10Ch               | LATA                   | PORTA Dat | ta Latch      |               |                |               |       |        |          | xxxx xxxx            | uuuu uuuu                       |
| 10EnLATCPORTC Data LatchXXXXXXYXXXYXXXYXXXYXXXXYXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10Dh               | LATB                   | PORTB Da  | ta Latch      |               |                |               |       |        |          | xxxx xxxx            | uuuu uuuu                       |
| 10Fn       LATP(P)       PORTD D=L Latch       XXXX       NUMU NUMU         1100       LATE(P)       -       -       -       LATE 2       LATE 1       LATE 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10Eh               | LATC                   | PORTC Da  | ta Latch      |               |                |               |       |        |          | xxxx xxxx            | uuuu uuuu                       |
| 1100         LATE(?)         -         -         -         LATE2         LATE1         LATE0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10Fh               | LATD <sup>(2)</sup>    | PORTD Da  | ta Latch      |               |                |               |       |        |          | xxxx xxxx            | uuuu uuuu                       |
| 111n<br>116h<br>116h          Unimplemente         IIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110h               | LATE <sup>(2)</sup>    | —         | —             | —             | —              | _             | LATE2 | LATE1  | LATE0    | xxx                  | uuu                             |
| 116h       BORCON       SBOREN       BORFS       —       —       —       —       —       BORRDY       10 - 0q       quarq         117h       FVRCON       FVREN       FVRENY       TSEN       TSEN       TSEN       G       —       ADFVR-1:0>       0q00 - 0.0       0q00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111h<br>to<br>115h | _                      | Unimpleme | nted          |               |                |               |       |        |          | _                    | _                               |
| 1110h       FVRCON       FVRRDY       FVRRDY       TSRNG       —       —       ADFVR-1:D       0g00 -000       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116h               | BORCON                 | SBOREN    | BORFS         | —             | —              | _             | —     | —      | BORRDY   | 10q                  | uuu                             |
| 118h<br>b<br>b<br>b<br>b       -       Unimplemented       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117h               | FVRCON                 | FVREN     | FVRRDY        | TSEN          | TSRNG          | _             | —     | ADFVI  | R<1:0>   | 0q0000               | 0q0000                          |
| 11Dh       APFCON       —       —       —       —       SSEL       CCP3EL      00      00         11Fh       —       Unimplementet       Unimplementet       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118h<br>to<br>11Ch | _                      | Unimpleme | nted          |               |                |               |       |        |          | _                    |                                 |
| 11Eh       —       Unimplemented       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11Dh               | APFCON                 | —         | —             | —             | —              | _             | —     | SSSEL  | CCP2SEL  | 00                   | 00                              |
| 11Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11Eh               | _                      | Unimpleme | nted          |               |                |               |       |        |          | _                    | —                               |
| Bank J         18Ch       ANSELA       —       —       ANSA3       ANSA2       ANSA1       ANSA0      1       1111      1       1111         18Dh       ANSELB       —       —       ANSB5       ANSB4       ANSB3       ANSB2       ANSB1       ANSB0      1       1111      1       1111         18Eh       ANSELD       ANSC7       ANSC6       ANSC5       ANSC4       ANSC3       ANS22       —       —       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11Fh               | _                      | Unimpleme | nted          |               |                |               |       |        |          | —                    | —                               |
| 18ch       ANSELA       —       ANSA5       —       ANSA3       ANSA2       ANSA1       ANSA0      1       1111      1       1111         18bh       ANSELB       —       —       ANSB5       ANSB4       ANSB3       ANSB2       ANSB1       ANSB0      1       1111      1       1111       -1       1111       -1       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ban                | k 3                    |           |               |               |                |               |       |        |          |                      |                                 |
| 18Dh       ANSELB       —       ANSB5       ANSB4       ANSB3       ANSB2       ANSB1       ANSB0      11       1111      11       1111         18Eh       ANSELC       ANSC7       ANSC6       ANSC5       ANSC4       ANSC3       ANSC2       —       —       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       11111       11111       11111       11111<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18Ch               | ANSELA                 | -         | —             | ANSA5         | —              | ANSA3         | ANSA2 | ANSA1  | ANSA0    | 1- 1111              | 1- 1111                         |
| 18Eh       ANSELC       ANSC7       ANSC6       ANSC5       ANSC4       ANSC3       ANSC2       —       —       1111       11       1111       11       1111       11       1111       11       1111       11       1111       11       1111       11       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18Dh               | ANSELB                 | _         | _             | ANSB5         | ANSB4          | ANSB3         | ANSB2 | ANSB1  | ANSB0    | 11 1111              | 11 1111                         |
| 18Fh       ANSELD <sup>(2)</sup> ANSD7       ANSD6       ANSD5       ANSD4       ANSD3       ANSD2       ANSD1       ANSD0       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18Eh               | ANSELC                 | ANSC7     | ANSC6         | ANSC5         | ANSC4          | ANSC3         | ANSC2 | —      | —        | 1111 11              | 1111 11                         |
| 190h       ANSELE <sup>(2)</sup> —       —       —       —       ANSE2       ANSE1       ANSE0        -111         -111         191h       PMADRL       Program M=mory Address Register Low Byte       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18Fh               | ANSELD <sup>(2)</sup>  | ANSD7     | ANSD6         | ANSD5         | ANSD4          | ANSD3         | ANSD2 | ANSD1  | ANSD0    | 1111 1111            | 1111 1111                       |
| 191h       PMADRL       Program Memory Address Register Low Byte       0000 0000       0000 0000         192h       PMADRH      (3)       Program Memory Address Register High Byte       1000 0000       1000 0000         193h       PMDATL       Program Memory Data Register Low Byte       xxxx xxxx       uuuu uuu         194h       PMOATH       —       Program Memory Data Register High Byte      xx xxxx      uu uuu         195h       PMCON1      (3)       CFGS       LWLO       FREE       WRERR       WREN       WR       D       1000 0000       1000 0000       0000 0000         196h       PMCON2       Program Memory control register 2       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190h               | ANSELE <sup>(2)</sup>  | —         | —             | —             | —              | —             | ANSE2 | ANSE1  | ANSE0    | 111                  | 111                             |
| 192h       PMADRH      (3)       Program Memory Address Register High Byte       1000       0000       1000       0000       1000       0000       1000       0000       0000       1000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 191h               | PMADRL                 | Program M | emory Addre   | ess Register  | Low Byte       |               |       |        |          | 0000 0000            | 0000 0000                       |
| 193h       PMDATL       Program Memory Data Register Low Byte       xxxx xxxx       uuuu uuuu         194h       PMDATH       —       —       Program Memory Data Register High Byte      xx xxxx      uu uuuu         195h       PMCON1       —(3)       CFGS       LWLO       FREE       WRER       WREN       WR       RD       1000 x000       1000 q000         196h       PMCON2       Program Memory contracterister 2       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 192h               | PMADRH                 | _(3)      | Program M     | emory Addre   | ess Register H | High Byte     |       |        |          | 1000 0000            | 1000 0000                       |
| 194h       PMDATH       —       Program Memory Data Register High Byte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 193h               | PMDATL                 | Program M | emory Data    | Register Lov  | v Byte         |               |       |        |          | xxxx xxxx            | uuuu uuuu                       |
| 195h       PMCON1       —(3)       CFGS       LWLO       FREE       WRERR       WREN       WR       RD       1000 x000       1000 q000         196h       PMCON2       Program M====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194h               | PMDATH                 | —         | _             | Program M     | emory Data F   | Register High | Byte  |        |          | xx xxxx              | uu uuuu                         |
| 196h       PMCON2       Program Memory control register 2       0000 0000       0000 0000       0000 0000         197h       VREGCON <sup>(1)</sup> —       —       —       —       VREGPM       Reserved      01      00         198h       —       Unimplemented       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       … <td>195h</td> <td>PMCON1</td> <td>_(3)</td> <td>CFGS</td> <td>LWLO</td> <td>FREE</td> <td>WRERR</td> <td>WREN</td> <td>WR</td> <td>RD</td> <td>1000 x000</td> <td>1000 q000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195h               | PMCON1                 | _(3)      | CFGS          | LWLO          | FREE           | WRERR         | WREN  | WR     | RD       | 1000 x000            | 1000 q000                       |
| 197h       VREGCON <sup>(1)</sup> —       —       —       —       VREGPM       Reserved      01      01         198h       —       Unimplemented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196h               | PMCON2                 | Program M | emory contro  | ol register 2 |                |               |       |        |          | 0000 0000            | 0000 0000                       |
| 198h       —       Unimplemented       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …       …                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 197h               | VREGCON <sup>(1)</sup> | _         | _             | _             | _              | —             | -     | VREGPM | Reserved | 01                   | 01                              |
| 199h       RCREG       USART Receive Data Register       0000 0000       0000 0000       0000 0000       0000 0000         19Ah       TXREG       USART Transmit Data Register       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 198h               | —                      | Unimpleme | nted          |               |                |               |       |        |          | _                    | _                               |
| 19Ah       TXREG       USART Transmit Data Register       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199h               | RCREG                  | USART Re  | ceive Data F  | Register      |                |               |       |        |          | 0000 0000            | 0000 0000                       |
| 19Bh       SPBRG       BRG       0000 0000 0000 0000 0000         19Ch       SPBRGH       BRG       BRG       BRG       0000 0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       0000 0000       00000       0000 0000       0000 0000 <td>19Ah</td> <td>TXREG</td> <td>USART Tra</td> <td>insmit Data I</td> <td>Register</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000 0000</td> <td>0000 0000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19Ah               | TXREG                  | USART Tra | insmit Data I | Register      |                |               |       |        |          | 0000 0000            | 0000 0000                       |
| 19Ch         SPBRGH         BRG<15:8>         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19Bh               | SPBRG                  |           |               |               | BRG<           | <7:0>         |       |        |          | 0000 0000            | 0000 0000                       |
| 19Dh         RCSTA         SPEN         RX9         SREN         CREN         ADDEN         FERR         OERR         RX9D         0000 000x         0000 000x           19Eh         TXSTA         CSRC         TX9         TXEN         SYNC         SENDB         BRGH         TRMT         TX9D         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010         0000 0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19Ch               | SPBRGH                 |           | -             | -             | BRG<           | 15:8>         | _     |        |          | 0000 0000            | 0000 0000                       |
| 19Eh         TXSTA         CSRC         TX9         TXEN         SYNC         SENDB         BRGH         TRMT         TX9D         0000 0010         0000 0010           19Fh         BAUDCON         ABDOVF         RCIDL         —         SCKP         BRG16         —         WUE         ABDEN         01-0 0-00         01-0 0-00         01-0 0-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19Dh               | RCSTA                  | SPEN      | RX9           | SREN          | CREN           | ADDEN         | FERR  | OERR   | RX9D     | 0000 000x            | 0000 000x                       |
| 19Fh BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 01-0 0-00 01-0 0-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19Eh               | TXSTA                  | CSRC      | TX9           | TXEN          | SYNC           | SENDB         | BRGH  | TRMT   | TX9D     | 0000 0010            | 0000 0010                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19Fh               | BAUDCON                | ABDOVF    | RCIDL         | —             | SCKP           | BRG16         | —     | WUE    | ABDEN    | 01-0 0-00            | 01-0 0-00                       |

TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend: Note

PIC16F1516/7/8/9 only. 1:

PIC16(L)F1517/9 only. Unimplemented, read as '1'. 2: 3:

### 8.3 Register Definitions: Voltage Regulator Control

| U-0              | U-0   | U-0               | U-0  | U-0            | U-0              | R/W-0/0          | R/W-1/1     |
|------------------|-------|-------------------|------|----------------|------------------|------------------|-------------|
| —                | —     | —                 | -    | —              | —                | VREGPM           | Reserved    |
| bit 7            |       |                   |      |                |                  |                  | bit 0       |
|                  |       |                   |      |                |                  |                  |             |
| Legend:          |       |                   |      |                |                  |                  |             |
| R = Readable b   | bit   | W = Writable I    | bit  | U = Unimpler   | mented bit, read | as '0'           |             |
| u = Bit is uncha | anged | x = Bit is unkn   | own  | -n/n = Value a | at POR and BOF   | R/Value at all o | ther Resets |
| '1' = Bit is set |       | '0' = Bit is clea | ared |                |                  |                  |             |

## **REGISTER 8-1:** VREGCON: VOLTAGE REGULATOR CONTROL REGISTER<sup>(1)</sup>

| bit 1 | VREGPM: Voltage Regulator Power Mode Selection bit       |
|-------|----------------------------------------------------------|
|       | 1 = Low-Power Sleep mode enabled in Sleep <sup>(2)</sup> |
|       |                                                          |

- Draws lowest current in Sleep, slower wake-up
   0 = Normal-Power mode enabled in Sleep<sup>(2)</sup>
   Draws higher current in Sleep, faster wake-up
- bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC16F1516/7/8/9 only.

2: See Section 25.0 "Electrical Specifications".

|                        |         |        |        |        | <i>"</i> <b>_</b> <i>"</i> |        |        |          |                     |
|------------------------|---------|--------|--------|--------|----------------------------|--------|--------|----------|---------------------|
| Name                   | Bit 7   | Bit 6  | Bit 5  | Bit 4  | Bit 3                      | Bit 2  | Bit 1  | Bit 0    | Register<br>on Page |
| INTCON                 | GIE     | PEIE   | TMR0IE | INTE   | IOCIE                      | TMR0IF | INTF   | IOCIF    | 74                  |
| IOCBF                  | IOCBF7  | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3                     | IOCBF2 | IOCBF1 | IOCBF0   | 125                 |
| IOCBN                  | IOCBN7  | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3                     | IOCBN2 | IOCBN1 | IOCBN0   | 125                 |
| IOCBP                  | IOCBP7  | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3                     | IOCBP2 | IOCBP1 | IOCBP0   | 125                 |
| PIE1                   | TMR1GIE | ADIE   | RCIE   | TXIE   | SSPIE                      | CCP1IE | TMR2IE | TMR1IE   | 75                  |
| PIE2                   | OSFIE   | -      | —      | —      | BCLIE                      | -      | —      | CCP2IE   | 76                  |
| PIR1                   | TMR1GIF | ADIF   | RCIF   | TXIF   | SSPIF                      | CCP1IF | TMR2IF | TMR1IF   | 77                  |
| PIR2                   | OSFIF   | _      | —      | —      | BCLIF                      | _      | —      | CCP2IF   | 78                  |
| STATUS                 | _       | -      | —      | TO     | PD                         | Z      | DC     | С        | 21                  |
| VREGCON <sup>(1)</sup> | —       | —      | —      | —      | —                          | —      | VREGPM | Reserved | 82                  |
| WDTCON                 | _       | _      |        | N N    | WDTPS<4:0                  | >      |        | SWDTEN   | 86                  |

### TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in Power-Down mode.

**Note 1:** PIC16F1516/7/8/9 only.

### 10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 25.0 "Electrical Specifications"** for the LFINTOSC tolerances.

### **10.2 WDT Operating Modes**

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table .

#### 10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always ON.

WDT protection is active during Sleep.

#### 10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is ON, except in Sleep.

WDT protection is not active during Sleep.

### 10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table for more details.

| TABLE 10-1: | WDT OPERATING MODES |
|-------------|---------------------|
|-------------|---------------------|

| WDTE<1:0> | SWDTE<br>N | Device<br>Mode | WDT<br>Mode |
|-----------|------------|----------------|-------------|
| 11        | Х          | Х              | Active      |
| 1.0       | v          | Awake          | Active      |
| ΤŪ        | X          | Sleep          | Disabled    |
| 01        | 1          | v              | Active      |
| UI        | 0          | ^              | Disabled    |
| 00        | Х          | Х              | Disabled    |

### 10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

### 10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 10-2 for more information.

### 10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See **Section 3.0** "**Memory Organization**" and The STATUS register (Register 3-1) for more information.

#### TABLE 10-2: WDT CLEARING CONDITIONS

| Conditions                                              | WDT                          |  |  |
|---------------------------------------------------------|------------------------------|--|--|
| WDTE<1:0> = 00                                          |                              |  |  |
| WDTE<1:0> = 01 and SWDTEN = 0                           |                              |  |  |
| WDTE<1:0> = 10 and enter Sleep                          | Cleared                      |  |  |
| CLRWDT Command                                          | Cleared                      |  |  |
| Oscillator Fail Detected                                |                              |  |  |
| Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK |                              |  |  |
| Exit Sleep + System Clock = XT, HS, LP                  | Cleared until the end of OST |  |  |
| Change INTOSC divider (IRCF bits)                       | Unaffected                   |  |  |

© 2010-2016 Microchip Technology Inc.



### FIGURE 11-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

### EXAMPLE 11-1: FLASH PROGRAM MEMORY READ

\* This code block will read 1 word of program

- \* memory at the memory address:
- PROG\_ADDR\_HI : PROG\_ADDR\_LO
- \* data will be returned in the variables;
- \* PROG\_DATA\_HI, PROG\_DATA\_LO

| BANKSEL                  | PMADRL                   | ; Select Bank for PMCON registers                                                                            |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| MOVLW                    | PROG_ADDR_LO             | ;                                                                                                            |
| MOVWF                    | PMADRL                   | ; Store LSB of address                                                                                       |
| MOVLW                    | PROG_ADDR_HI             | ;                                                                                                            |
| MOVWL                    | PMADRH                   | ; Store MSB of address                                                                                       |
| BCF<br>BSF<br>NOP<br>NOP | PMCON1,CFGS<br>PMCON1,RD | ; Do not select Configuration Space<br>; Initiate read<br>; Ignored (Figure 11-2)<br>; Ignored (Figure 11-2) |
| MOVF                     | PMDATL,W                 | ; Get LSB of word                                                                                            |
| MOVWF                    | PROG_DATA_LO             | ; Store in user location                                                                                     |
| MOVF                     | PMDATH,W                 | ; Get MSB of word                                                                                            |
| MOVWF                    | PROG_DATA_HI             | ; Store in user location                                                                                     |



### FIGURE 18-4: TIMER1 GATE TOGGLE MODE



| DALLAL                                                               | DAA: AI                                                                                                                                                                                                  | D and al                                                                                 | DAA! A!                                      | DAMA: C A                       |                | D 44/ 6/         | D AAA AA    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------|------------------|-------------|
| R/W-0/u                                                              | R/W-0/u                                                                                                                                                                                                  | R/W-0/u                                                                                  | R/W-0/u                                      | R/W/HC-0/u                      | R-x/x          | R/W-0/u          | R/W-0/u     |
| TMR1GE                                                               | T1GPOL                                                                                                                                                                                                   | T1GTM                                                                                    | T1GSPM                                       | T1GGO/<br>DONE                  | T1GVAL         | T1GSS            | 6<1:0>      |
| bit 7                                                                |                                                                                                                                                                                                          |                                                                                          |                                              |                                 |                |                  | bit 0       |
|                                                                      |                                                                                                                                                                                                          |                                                                                          |                                              |                                 |                |                  |             |
| Legend:                                                              |                                                                                                                                                                                                          |                                                                                          |                                              |                                 |                |                  |             |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                                                                                                                                                                                                          |                                                                                          |                                              |                                 |                |                  |             |
| u = Bit is unch                                                      | anged                                                                                                                                                                                                    | x = Bit is unkr                                                                          | nown                                         | -n/n = Value a                  | at POR and BO  | R/Value at all c | ther Resets |
| '1' = Bit is set                                                     |                                                                                                                                                                                                          | '0' = Bit is clea                                                                        | ared                                         | HC = Bit is cle                 | eared by hardw | /are             |             |
| bit 7                                                                | TMR1GE: Tir<br>If TMR1ON =<br>This bit is ign<br>If TMR1ON =<br>1 = Timer1 c<br>0 = Timer1 c                                                                                                             | ner1 Gate Ena<br><u>0</u> :<br>ored<br><u>1</u> :<br>ounting is conti<br>ounts regardles | ble bit<br>rolled by the T<br>ss of Timer1 g | ïmer1 gate func<br>ate function | tion           |                  |             |
| bit 6                                                                | T1GPOL: Tin                                                                                                                                                                                              | ner1 Gate Pola                                                                           | ritv bit                                     |                                 |                |                  |             |
|                                                                      | <ul> <li>1 = Timer1 gate is active-high (Timer1 counts when gate is high)</li> <li>0 = Timer1 gate is active-low (Timer1 counts when gate is low)</li> </ul>                                             |                                                                                          |                                              |                                 |                |                  |             |
| bit 5                                                                | T1GTM: Time                                                                                                                                                                                              | T1GTM: Timer1 Gate Toggle Mode bit                                                       |                                              |                                 |                |                  |             |
|                                                                      | <ul> <li>1 = Timer1 Gate Toggle mode is enabled</li> <li>0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared</li> <li>Timer1 gate flip-flop toggles on every rising edge.</li> </ul> |                                                                                          |                                              |                                 |                |                  |             |
| bit 4                                                                | T1GSPM: Timer1 Gate Single-Pulse Mode bit                                                                                                                                                                |                                                                                          |                                              |                                 |                |                  |             |
|                                                                      | <ul> <li>1 = Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate</li> <li>0 = Timer1 Gate Single-Pulse mode is disabled</li> </ul>                                                   |                                                                                          |                                              |                                 |                |                  |             |
| bit 3                                                                | T1GGO/DON                                                                                                                                                                                                | E: Timer1 Gate                                                                           | e Single-Pulse                               | Acquisition Sta                 | atus bit       |                  |             |
|                                                                      | <ul> <li>1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge</li> <li>0 = Timer1 gate single-pulse acquisition has completed or has not been started</li> </ul>                       |                                                                                          |                                              |                                 |                |                  |             |
| bit 2                                                                | <b>T1GVAL:</b> Timer1 Gate Current State bit<br>Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.<br>Unaffected by Timer1 Gate Enable (TMR1GE).                      |                                                                                          |                                              |                                 |                |                  |             |
| bit 1-0                                                              | T1GSS<1:0>: Timer1 Gate Source Select bits<br>11 = Reserved<br>10 = Timer2 Match PR2<br>01 = Timer0 overflow output<br>00 = Timer1 gate pin                                                              |                                                                                          |                                              |                                 |                |                  |             |

### REGISTER 18-2: T1GCON: TIMER1 GATE CONTROL REGISTER

## 19.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2, respectively
- Optional use as the shift clock for the MSSP modules

See Figure 19-1 for a block diagram of Timer2.









### 21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- · Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 21-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected. Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

## 21.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus<sup>™</sup> that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for  $I^2C$  communication. Figure 21-16 displays a module using both address and data holding. Figure 21-17 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPIF is set and CKP cleared after the 8th falling edge of SCL.
- 3. Slave clears the SSPIF.
- Slave can look at the ACKTIM bit of the SSP-CON3 register to <u>determine</u> if the SSPIF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPIF is set after an  $\overline{ACK}$ , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPIF.

Note: SSPIF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPIF not set

- 11. SSPIF set and CKP cleared after 8th falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

### 21.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the 9th bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 21.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the 9th SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the 9th clock pulse.

### 21.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

### 21.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 21-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPIF bit.
- 4. Slave hardware generates an ACK and sets SSPIF.
- 5. SSPIF bit is cleared by user.
- 6. Software reads the received address from SSP-BUF, clearing BF.
- 7.  $R/\overline{W}$  is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
  - Note 1: If the master ACKs the clock will be stretched.
    - 2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.



### 21.6.5 I<sup>2</sup>C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 21-27) occurs when the RSEN bit of the SSPCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP-CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
  - 2: A bus collision during the Repeated Start condition occurs if:
    - SDA is sampled low when SCL goes from low-to-high.
    - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

## FIGURE 21-27: REPEAT START CONDITION WAVEFORM



| RETFIE           | Return from Interrupt                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] RETFIE                                                                                                                                                                                                  |
| Operands:        | None                                                                                                                                                                                                            |
| Operation:       | $\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$                                                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                                            |
| Description:     | Return from Interrupt. Stack is POPed<br>and Top-of-Stack (TOS) is loaded in<br>the PC. Interrupts are enabled by<br>setting Global Interrupt Enable bit,<br>GIE (INTCON<7>). This is a 2-cycle<br>instruction. |
| Words:           | 1                                                                                                                                                                                                               |
| Cycles:          | 2                                                                                                                                                                                                               |
| Example:         | RETFIE                                                                                                                                                                                                          |
|                  | After Interrupt<br>PC = TOS<br>GIE = 1                                                                                                                                                                          |

| RETURN           | Return from Subroutine                                                                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] RETURN                                                                                                                                        |
| Operands:        | None                                                                                                                                                  |
| Operation:       | $TOS\toPC$                                                                                                                                            |
| Status Affected: | None                                                                                                                                                  |
| Description:     | Return from subroutine. The stack is<br>POPed and the top of the stack (TOS)<br>is loaded into the program counter.<br>This is a 2-cycle instruction. |

| RETLW            | Return with literal in W                                                                                                               |                  | Detate Loft f through Corry                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] RETLW k                                                                                                               |                  | Rotate Left I through Carry                                                                                                                                                       |
| Operands:        | $0 \le k \le 255$                                                                                                                      | Syntax:          | [ <i>label</i> ] RLF f,d                                                                                                                                                          |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow PC$                                                                                           | Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                |
| Status Affected: | None                                                                                                                                   | Operation:       | See description below                                                                                                                                                             |
| Description:     | The W register is leaded with the eight                                                                                                | Status Affected: | С                                                                                                                                                                                 |
| Description.     | bit literal 'k'. The program counter is<br>loaded from the top of the stack (the<br>return address). This is a 2-cycle<br>instruction. | Description:     | The contents of register 'f' are rotated<br>one bit to the left through the Carry<br>flag. If 'd' is '0', the result is placed in<br>the W register. If 'd' is '1', the result is |
| Words:           | 1                                                                                                                                      |                  | stored back in register T.                                                                                                                                                        |
| Cycles:          | 2                                                                                                                                      |                  |                                                                                                                                                                                   |
| Example:         | CALL TABLE;W contains table                                                                                                            | Words:           | 1                                                                                                                                                                                 |
|                  | <pre>;offset value , iW now has table value</pre>                                                                                      | Cycles:          | 1                                                                                                                                                                                 |
| TABLE            | •                                                                                                                                      | Example:         | RLF REG1,0                                                                                                                                                                        |
|                  |                                                                                                                                        |                  | Before Instruction                                                                                                                                                                |
|                  | ADDWF PC ;W = OIISet<br>RETLW k1 ;Begin table                                                                                          |                  | REG1 = 1110 0110                                                                                                                                                                  |
|                  | RETLW k2 ;                                                                                                                             |                  | C = 0<br>After Instruction                                                                                                                                                        |
|                  | •                                                                                                                                      |                  | REG1 = 1110 0110                                                                                                                                                                  |
|                  | •                                                                                                                                      |                  | W = 1100 1100                                                                                                                                                                     |
|                  | •<br>RETLW kn ; End of table                                                                                                           |                  | C = 1                                                                                                                                                                             |
|                  | Before Instruction<br>W = 0x07<br>After Instruction<br>W = value of k8                                                                 |                  |                                                                                                                                                                                   |

## TABLE 25-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER<br/>AND BROWN-OUT RESET PARAMETERS

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature -40°C $\leq$ TA $\leq$ +125°C |        |                                                          |                      |                      |                      |             |                                                                         |
|----------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------|----------------------|----------------------|----------------------|-------------|-------------------------------------------------------------------------|
| Param<br>No.                                                                                                   | Sym.   | Characteristic                                           | Min.                 | Тур†                 | Max.                 | Units       | Conditions                                                              |
| 30                                                                                                             | TMCL   | MCLR Pulse Width (low)                                   | 2                    |                      |                      | μS          |                                                                         |
| 31                                                                                                             | TWDTLP | Low-Power Watchdog Timer<br>Time-out Period              | 10                   | 16                   | 27                   | ms          | VDD = 3.3V-5V,<br>1:512 Prescaler used                                  |
| 32                                                                                                             | Tost   | Oscillator Start-up Timer Period <sup>(1)</sup>          | _                    | 1024                 | —                    | Tosc        |                                                                         |
| 33*                                                                                                            | TPWRT  | Power-up Timer Period, PWRTE = 0                         | 40                   | 65                   | 140                  | ms          |                                                                         |
| 34*                                                                                                            | Tioz   | I/O high-impedance from MCLR Low or Watchdog Timer Reset |                      | —                    | 2.0                  | μS          |                                                                         |
| 35                                                                                                             | VBOR   | Brown-out Reset Voltage <sup>(2)</sup>                   | 2.55<br>2.35<br>1.80 | 2.70<br>2.45<br>1.90 | 2.85<br>2.58<br>2.00 | V<br>V<br>V | BORV = 0<br>BORV = 1 (PIC16F1516/7/8/9)<br>BORV = 1 (PIC16LF1516/7/8/9) |
| 36*                                                                                                            | VHYST  | Brown-out Reset Hysteresis                               | 0                    | 25                   | 60                   | mV          | -40°C to +85°C                                                          |
| 37*                                                                                                            | TBORDC | Brown-out Reset DC Response<br>Time                      | 1                    | 3                    | 35                   | μS          | $VDD \leq VBOR$                                                         |
| 38                                                                                                             | VLPBOR | Low-Power Brown-out Reset<br>Voltage                     | 1.8                  | 2.1                  | 2.5                  | V           | LPBOR = 0                                                               |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

### FIGURE 25-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS







|--|

| Param<br>No. | Symbol  | Characteristic  |              | Min. | Тур | Max. | Unit<br>s | Conditions                   |
|--------------|---------|-----------------|--------------|------|-----|------|-----------|------------------------------|
| SP90*        | TSU:STA | Start condition | 100 kHz mode | 4700 | —   |      | ns        | Only relevant for Repeated   |
|              |         | Setup time      | 400 kHz mode | 600  | —   |      |           | Start condition              |
| SP91*        | THD:STA | Start condition | 100 kHz mode | 4000 | _   | -    | ns        | After this period, the first |
|              |         | Hold time       | 400 kHz mode | 600  | —   | _    |           | clock pulse is generated     |
| SP92*        | Tsu:sto | Stop condition  | 100 kHz mode | 4700 |     | _    | ns        |                              |
|              |         | Setup time      | 400 kHz mode | 600  | _   | -    |           |                              |
| SP93         | THD:STO | Stop condition  | 100 kHz mode | 4000 | —   | _    | ns        |                              |
|              |         | Hold time       | 400 kHz mode | 600  | _   |      |           |                              |

\* These parameters are characterized but not tested.

FIGURE 26-7: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz, PIC16LF1516/7/8/9 ONLY



FIGURE 26-8: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz, PIC16F1516/7/8/9 ONLY



28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS |      |          |      |  |  |
|----------------------------|-------------|------|----------|------|--|--|
| Dimension                  | MIN         | NOM  | MAX      |      |  |  |
| Contact Pitch E            |             |      | 0.40 BSC |      |  |  |
| Optional Center Pad Width  | W2          |      |          | 2.35 |  |  |
| Optional Center Pad Length | T2          |      |          | 2.35 |  |  |
| Contact Pad Spacing        | C1          |      | 4.00     |      |  |  |
| Contact Pad Spacing        | C2          |      | 4.00     |      |  |  |
| Contact Pad Width (X28)    | X1          |      |          | 0.20 |  |  |
| Contact Pad Length (X28)   | Y1          |      |          | 0.80 |  |  |
| Distance Between Pads      | G           | 0.20 |          |      |  |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

### 28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                         | Units  | M        | LLIMETERS |      |  |  |
|-------------------------|--------|----------|-----------|------|--|--|
| Dimension               | Limits | MIN      | NOM       | MAX  |  |  |
| Number of Pins          | N      |          | 28        |      |  |  |
| Pitch                   | е      |          | 0.65 BSC  |      |  |  |
| Overall Height          | A      | 0.80     | 0.90      | 1.00 |  |  |
| Standoff                | A1     | 0.00     | 0.02      | 0.05 |  |  |
| Terminal Thickness      | A3     |          | 0.20 REF  |      |  |  |
| Overall Width           | E      |          | 6.00 BSC  |      |  |  |
| Exposed Pad Width       | E2     | 3.65     | 3.70      | 4.20 |  |  |
| Overall Length          | D      | 6.00 BSC |           |      |  |  |
| Exposed Pad Length      | D2     | 3.65     | 3.70      | 4.20 |  |  |
| Terminal Width          | b      | 0.23     | 0.30      | 0.35 |  |  |
| Terminal Length         | L      | 0.50     | 0.55      | 0.70 |  |  |
| Terminal-to-Exposed Pad | K      | 0.20     | -         | -    |  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2