

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1518-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1516/7 MEMORY MAP (CONTINUED)

	Bank 31
F80h	Core Registers (Table 3-2)
F8Bh F8Ch	
	Unimplemented Read as '0'
FE3h	
FE4h	STATUS_SHAD
FE5h	WREG_SHAD
FE6h	BSR_SHAD
FE7h	PCLATH_SHAD
FE8h	FSR0L_SHAD
FE9h	FSR0H_SHAD
FEAh	FSR1L_SHAD
FEBh	FSR1H_SHAD
FECh	—
FEDh	STKPTR
FEEh	TOSL
FEFh	TOSH
FF0h	Common RAM (Accesses 70h – 7Fh)
FFFh	

= Unimplemented data memory locations, read as '0',

REGISTER	4-2: CONF	FIG2: CONFIC	SURATION V	VORD 2					
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1		
		LVP	DEBUG	LPBOR	BORV	STVREN	_		
		bit 13							
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1		
-	—	<u> </u>	VCAPEN ⁽¹⁾	_	-	WRT<	1:0>		
bit 7							bit 0		
Legend:									
R = Readable bit		P = Programmable	e bit	U = Unimplement	ed bit, read as '1'				
'0' = Bit is cleared	ł	'1' = Bit is set		-n = Value when b	blank or after Bulk I	Erase			
L									
bit 13	LVP: Low-Voltage 1 = Low-voltage p 0 = High-voltage o	e Programming Ena pro <u>gramm</u> ing enable on MCLR must be u	ble bit ed ised for programm	ing					
bit 12	DEBUG : In-Circu 1 = In-Circuit Deb 0 = In-Circuit Deb	it Debugger Mode b bugger disabled, ICS bugger enabled, ICS	it SPCLK and ICSPD PCLK and ICSPD	AT are general pur AT are dedicated to	pose I/O pins the debugger				
bit 11	LPBOR: Low-Pow 1 = Low-Power Bi 0 = Low-Power Bi	wer BOR OR is disabled OR is enabled							
bit 10	BORV: Brown-out 1 = Brown-out Re 0 = Brown-out Re	t Reset Voltage Sele eset voltage (Vbor), eset voltage (Vbor),	ection bit ⁽²⁾ low trip point selec high trip point sele	ted. cted.					
bit 9	STVREN: Stack O 1 = Stack Overflor 0 = Stack Overflor	Overflow/Underflow w or Underflow will w or Underflow will	Reset Enable bit cause a Reset not cause a Reset						
bit 8-5	Unimplemented:	Read as '1'							
bit 4	it 4 VCAPEN: Voltage Regulator Capacitor Enable bits ⁽¹⁾ If PIC16LF1516/7/8/9 (regulator disabled): These bits are ignored. All VCAP pin functions are disabled. If PIC16F1516/7/8/9 (regulator enabled): 0 = VCAP functionality is enabled on RA5 1 = All VCAP pin functions are disabled								
bit 3-2	Unimplemented:	Read as '1'							
bit 1-0	bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits 8 kW Flash memory (PIC16(L)F1516/7 only): 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by PMCON control 01 = 000h to FFh write-protected, 1000h to 1FFFh may be modified by PMCON control 00 = 000h to FFFh write-protected, no addresses may be modified by PMCON control 11 = Write protection off 11 = Write protection off 11 = Write protection off 10 = 000h to 1FFFh write-protected, 200h to 3FFFh may be modified by PMCON control 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by PMCON control 01 = 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control 01 = 000h to 3FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control 00 = 000h to 3FFFh write-protected, no addresses may be modified by PMCON control								
Note 1: PIC 2: Sec	Iote1:PIC16F1516/7/8/9 only.2:See Vbor parameter for specific trip point voltages.								

$\ensuremath{\textcircled{}^{\odot}}$ 2010-2016 Microchip Technology Inc.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, RC and secondary oscillator).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 5-9). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up
	times, the Fail-Safe circuit is not active
	during oscillator start-up (i.e., after exiting
	Reset or Sleep). After an appropriate
	amount of time, the user should check the
	Status bits in the OSCSTAT register to
	verify the oscillator start-up and that the
	system clock switchover has successfully
	completed.

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) registers are used to steer specific peripheral input and output functions between different pins. The APFCON registers are shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- SS (Slave Select)
- CCP2

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	_	—	_	_	_	SSSEL	CCP2SEL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writ	able bit	U = Unimplemented bit, read as '0'
u = Bit is unchan	ged x = Bit is	unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit i	s cleared	
bit 7-2	Unimplemented: Read a	s '0'	
bit 1 SSSEL: Pin Selection bit $0 = \frac{SS}{SS}$ function is on RA5 $1 = \frac{SS}{SS}$ function is on RA0			
bit 0 CCP2SEL: Pin Se 0 = CCP2 function 1 = CCP2 function		bit า RC1 า RB3	

14.3 Register Definitions: FVR Control

R/W-0/	′0 R-q/q	R/W-0/0	R/W-0/0	0 U-0 U-0 R/W-0/0 R/W-0						
FVREN	(1) FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	G ⁽³⁾ — — ADFVR<1:0> ⁽¹⁾						
bit 7							bit 0			
Legend:										
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is	set	'0' = Bit is cle	ared	q = Value de	pends on condit	tion				
bit 7	FVREN: Fixe	ed Voltage Refe	rence Enable	bit ⁽¹⁾						
	0 = Fixed Vo	ltage Referenc	e is disabled							
bit 6	EVRRDY. Fix		e is ellableu	(Elag bit(2)						
DIT U	0 = Fixed Vc	ltage Referenc	age Reference output is not ready or not enabled							
	1 = Fixed Vo	ltage Referenc	e output is rea	idy for use						
bit 5	TSEN: Temp	erature Indicato	or Enable bit ⁽³⁾							
	0 = Tempera	ature Indicator is	s disabled							
	1 = Tempera	ature Indicator is	s enabled	(2)						
bit 4	TSRNG: Tem	nperature Indica	tor Range Se	lection bit ⁽³⁾						
	0 = VOUI = V $1 = VOUI = V$	UD - 2VT (LOW) עס - 4Vד (High)	Range)							
bit 3-2	Unimplemen	nted: Read as '	0'							
bit 1-0	ADFVR<1:0	>: ADC FVR Bu	° Iffer Gain Sele	ction bits ⁽¹⁾						
11 = ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR(4)										
10 = ADC FVR Buffer Gain is 2x, with output VADFVR = $2x VFVR^{(4)}$										
01 = ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR										
	00 = ADC FV									
Note 1: To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.							ed off by			
2:	FVRRDY is alway	RRDY is always '1' on PIC16F1516/7/8/9 only.								

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

3: See Section 15.0 "Temperature Indicator Module" for additional information.

4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFV	R<1:0>	128

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

The I²C interface supports the following modes and features:

- · Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Address Hold and Data Hold modes
- Selectable SDA hold times

Figure 21-2 is a block diagram of the I^2C interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 21-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

21.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 21-26), the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPSTAT register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C Specification states that a bus collision cannot occur on a Start.

FIGURE 21-26: FIRST START BIT TIMING

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Foso	; = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215	
1200	1200	-0.01	4166	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303	
2400	2400	0.02	2082	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151	
9600	9597	-0.03	520	9600	0.00	479	9592	-0.08	416	9600	0.00	287	
10417	10417	0.00	479	10425	0.08	441	10417	0.00	383	10433	0.16	264	
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143	
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47	
115.2k	116.3k	0.94	42	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23	

TABLE 22-4: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	—	

22.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

22.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 22.5.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

22.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for synchronous slave transmission (see Section 22.5.2.2 "Synchronous Slave Transmission Setup:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	k → PC<10:0> PCLATH<6:3> → PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W						
Syntax:	[<i>label</i>] IORLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .OR. $k \rightarrow$ (W)						
Status Affected:	Z						
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.						

INCF	Increment f	IORWF	Inclusive OR W with f		
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)		
Status Affected:	Z	Status Affected:	Z		
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		

RETFIE	Return from Interrupt							
Syntax:	[label] RETFIE							
Operands:	None							
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$							
Status Affected:	None							
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction							
Words:	1							
Cycles:	2							
Example:	RETFIE							
	After Interrupt PC = TOS GIE = 1							

RETURN	Return from Subroutine							
Syntax:	[label] RETURN							
Operands:	None							
Operation:	$TOS\toPC$							
Status Affected:	None							
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.							

RETLW	Return with literal in W		Detate Loft f through Corry			
Syntax:	[<i>label</i>] RETLW k		Rotate Left I through Carry			
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d			
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Status Affected:	None	Operation:	See description below			
Description:	The W register is leaded with the eight	Status Affected:	С			
Description.	bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is			
Words:	1		stored back in register T.			
Cycles:	2					
Example:	CALL TABLE;W contains table	Words:	1			
	<pre>;offset value , iW now has table value</pre>	Cycles:	1			
TABLE	•	Example:	RLF REG1,0			
			Before Instruction			
	ADDWF PC ;W = OIISet RETLW k1 ;Begin table		REG1 = 1110 0110			
	RETLW k2 ;		C = 0 After Instruction			
	•		REG1 = 1110 0110			
	•		W = 1100 1100			
	• RETLW kn ; End of table		C = 1			
	Before Instruction W = 0x07 After Instruction W = value of k8					

25.0 ELECTRICAL SPECIFICATIONS

25.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1516/7/8/9	0.3V to +6.5V
Voltage on VDD with respect to Vss, PIC16LF1516/7/8/9	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽²⁾	
Maximum current	
on Vss pin for 28-Pin devices ⁽¹⁾	
-40°C \leq TA \leq +85°C	
on VDD pin for 28-Pin devices ⁽¹⁾	
-40°C \leq Ta \leq +85°C	250 mA 85 mA
on Vss pin for 40/44-Pin devices ⁽¹⁾	
-40°C \leq Ta \leq +85°C	350 mA 120 mA
on VDD pin for 40/44-Pin devices ⁽¹⁾	
-40°C \leq Ta \leq +85°C	350 mA 120 mA
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	50 mA
Maximum output current sourced by any I/O pin	50 mA

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 25-5 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

25.5 DC Characteristics: Power-Down Currents (IPD)

PIC16LF1516/7/8/9										
PIC16F1516/7/8/9				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param	Device Characteristics	Min.	Typt	Max.	Max.	Units	Conditions			
No.			.141	+85°C	+125°C	•	Vdd	Note		
Power-down Currents (IPD) ^(2, 4)										
D022	Base IPD	_	0.02	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC		
		—	0.03	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D022	Base IPD	_	0.20	3.0	10	μA	2.3	WDT, BOR, FVR, and SOSC		
		_	0.30	4.0	12	μA	3.0	disabled, all Peripherals Inactive,		
		_	0.47	6.0	15	μA	5.0			
D023		—	0.50	6.0	14	μA	1.8	LPWDT Current (Note 1)		
		_	0.80	7.0	17	μA	3.0			
D023		—	0.50	6.0	15	μA	2.3	LPWDT Current (Note 1)		
		_	0.77	7.0	20	μA	3.0	4		
-		—	0.85	8.0	22	μA	5.0			
D023A		_	8.5	23	25	μA	1.8	FVR current (Note 1)		
		_	8.5	24	27	μA	3.0			
D023A		_	18	26	30	μA	2.3	FVR current (Note 1)		
		_	19	27	37	μA	3.0	-		
		—	20	29	45	μA	5.0			
D024		_	8.0	1/	20	μΑ	3.0	BOR Current (Note 1)		
D024		—	8.0	17	30	μΑ	3.0	BOR Current (Note 1)		
D 0044		_	9.0	20	40	μΑ	5.0			
D024A		_	0.30	4.0	8.0	μΑ	3.0			
D024A		_	0.30	4.0	14	μΑ	3.0	LPBOR Current (Note 1)		
D025			0.45	0.0 5.0	17	μΑ	5.0 1.9	SOSC Current (Note 1)		
D025			0.5	0.0 0.5	9.0	μΑ	1.0			
D025			0.5	6.0	12	μΑ	2.0	SOSC Current (Note 1)		
0025			1.1	8.5	20	μΑ	2.5			
			1.5	10	20	μΑ	5.0	-		
D026		_	0.10	10	9.0	μΑ	1.8	ADC Current (Note 1 3)		
2020			0.10	2.0	10	μΑ	3.0	no conversion in progress		
D026			0.10	3.0	10	μΑ	2.3	ADC Current (Note 1 3)		
2020		_	0.40	4.0	11	μA	3.0	no conversion in progress		
		_	0.50	6.0	16	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: ADC clock source is FRC.

4: VREGPM = 1, PIC16F1516/7/8/9 only.

4.0

VDD (V)

4.5

5.0

FIGURE 26-2: IDD, LP OSCILLATOR MODE, FOSC = 32 kHz, PIC16F1516/7/8/9 ONLY

2.5

3.0

3.5

5

0 L 2.0

5.5

6.0

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	M	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	N		28					
Pitch	е		0.65 BSC					
Overall Height	A	0.80 0.90 1.00						
Standoff	A1	0.00	0.02	0.05				
Terminal Thickness	A3	0.20 REF						
Overall Width	E	6.00 BSC						
Exposed Pad Width	E2	3.65 3.70 4.20						
Overall Length	D	6.00 BSC						
Exposed Pad Length	D2	3.65	3.70	4.20				
Terminal Width	b	0.23 0.30 0.35						
Terminal Length	L	0.50 0.55 0.70						
Terminal-to-Exposed Pad	K	0.20						

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO	<u>). [X]⁽¹⁾ T Tape and Reel</u>	- <u>X</u> Temperatur	/XX	XXX	Exai	mp Pl(les: 21651516T - I/MV 301
Device: Tape and Reel Option:	PIC16F1516, PIC16F1517, PIC16F1518, PIC16F1519, Blank = Star T = Tap	PIC16LF1516 PIC16LF1517 PIC16LF1517 PIC16LF1518 PIC16LF1519 ndard packaging e and Reel ⁽¹⁾	(tube or tray)	T attern	b) c)	Taj Inc QT PIC Inc PIC Ex SS	pe and Reel, Justrial temperature, JFN package, TP pattern #301 C16F1519 - I/P Justrial temperature JIP package C16F1518 - E/SS tended temperature, GOP package
Temperature Range:	I = -4(E = -4()°C to +85°C)°C to +125°C	(Industrial) (Extended)				
Package: ⁽²⁾ Pattern:	ML = Thi MV = Ult P = Pla PT = TQ SO = SC SP = Ski SS = SS QTP. SQTP. C	n Quad Flat, no ra Thin Quad Fla stic DIP (PDIP) FP IC nny Plastic DIP OP Code or Special F	lead (QFN) tt, no lead (UQFN) (SPDIP) Requirements)	Note	2:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.
Pattern:	QTP, SQTP, C (blank otherwi	code or Special F se)	Requirements				