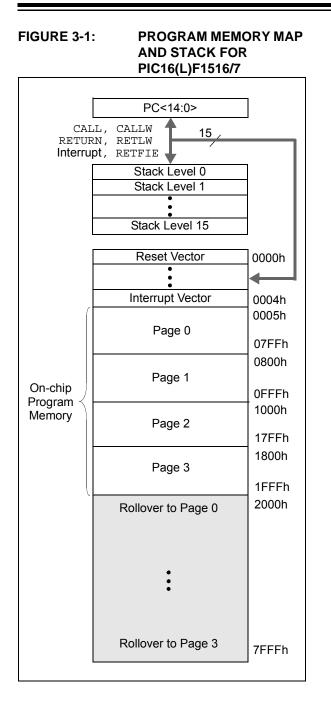


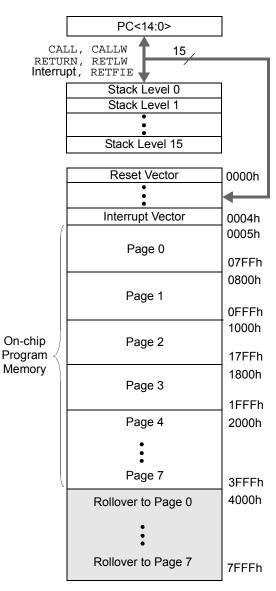
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1518t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

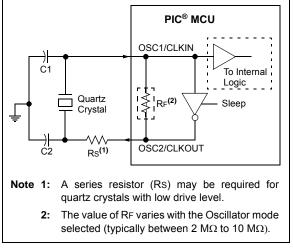
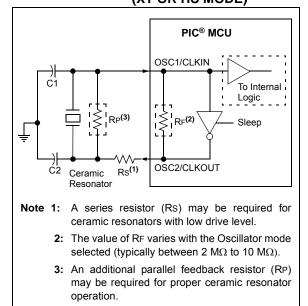


TABLE 3-5: PIC16(L)F1518/9 MEMORY MAP (CONTINUED)

	BANK 8	•	BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h 40Bh	Core Registers (Table 3-2)	480h 48Bh	Core Registers (Table 3-2)	500h 50Bh	Core Registers (Table 3-2)	580h 58Bh	Core Registers (Table 3-2)	600h 60Bh	Core Registers (Table 3-2)	680h 68Bh	Core Registers (Table 3-2)	700h 70Bh	Core Registers (Table 3-2)	780h 78Bh	Core Registers (Table 3-2)
40Bh 40Ch	Unimplemented Read as '0'	48Ch	Unimplemented Read as '0'	50Ch	Unimplemented Read as '0'	58Ch	Unimplemented Read as '0'	60Ch	Unimplemented Read as '0'	68Ch	Unimplemented Read as '0'	70Bh	Unimplemented Read as '0'	78Ch	Unimplemented Read as '0'
41Fh 420h 46Fh	General Purpose Register 80 Bytes	49Fh 4A0h 4EFh	General Purpose Register 80 Bytes	51Fh 520h 56Fh	General Purpose Register 80 Bytes	59Fh 5A0h 5EFh	General Purpose Register 80 Bytes	61Fh 620h 64Fh 650h 66Fh	General Purpose Register 48 Bytes Unimplemented Read as '0'	69Fh 6A0h 6EFh	Unimplemented Read as '0'	71Fh 720h 76Fh	Unimplemented Read as '0'	79Fh 7A0h 7EFh	Unimplemented Read as '0'
470h 47Fh	Common RAM (Accesses 70h – 7Fh)	4F0h 4FFh	Common RAM (Accesses 70h – 7Fh)	570h 57Fh	Common RAM (Accesses 70h – 7Fh)	5F0h 5FFh	Common RAM (Accesses 70h – 7Fh)	670h 67Fh	Common RAM (Accesses 70h – 7Fh)	6F0h 6FFh	Common RAM (Accesses 70h – 7Fh)	770h 77Fh	Common RAM (Accesses 70h – 7Fh)	7F0h 7FFh	Common RAM (Accesses 70h – 7Fh)

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	Core Registers (Table 3-2)	880h	Core Registers (Table 3-2)	900h	Core Registers (Table 3-2)	980h	Core Registers (Table 3-2)	A00h	Core Registers (Table 3-2)	A80h	Core Registers (Table 3-2)	B00h	Core Registers (Table 3-2)	B80h	Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h 87Fh	Common RAM (Accesses 70h – 7Fh)	8F0h 8FFh	Common RAM (Accesses 70h – 7Fh)	970h 97Fh	Common RAM (Accesses 70h – 7Fh)	9F0h 9FFh	Common RAM (Accesses 70h – 7Fh)	A70h A7Fh	Common RAM (Accesses 70h – 7Fh)	AF0h AFFh	Common RAM (Accesses 70h – 7Fh)	B70h B7Fh	Common RAM (Accesses 70h – 7Fh)	BF0h BFFh	Common RAM (Accesses 70h – 7Fh)

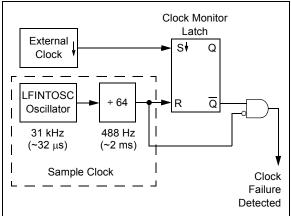

FIGURE 5-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, Basic PIC[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, Making Your Oscillator Work (DS00949)

FIGURE 5-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

5.2.1.3 Oscillator Start-up Timer (OST)


If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-Up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, RC and secondary oscillator).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

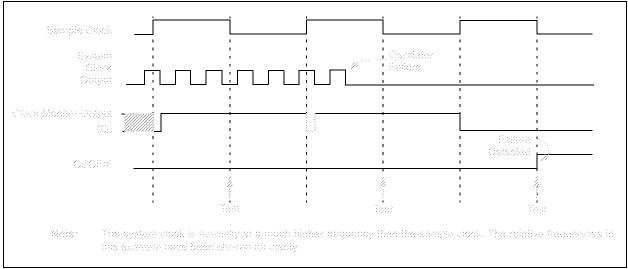
The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64 (see Figure 5-9). Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING


The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note:	Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate
	amount of time, the user should check the Status bits in the OSCSTAT register to verify the oscillator start-up and that the
	system clock switchover has successfully completed.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7	•						bit 0

Legend:						
HC = Bit is cleared by hardwar	re	HS = Bit is set by hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition				

bit 7	 STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set to '1' by firmware 0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

14.3 Register Definitions: FVR Control

R/W-0/		R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
FVREN	(1) FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	_	—	ADFVR	<1:0>(1)		
bit 7							bit		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
	unchanged	x = Bit is unk		•	at POR and BO		other Resets		
'1' = Bit is	•	'0' = Bit is cle			pends on condit				
				•		-			
bit 7	0 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled	bit ⁽¹⁾					
bit 6	FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽²⁾ 0 = Fixed Voltage Reference output is not ready or not enabled 1 = Fixed Voltage Reference output is ready for use								
bit 5	0 = Tempera	erature Indicator ture Indicator i ture Indicator i	s disabled)					
bit 4	0 = VOUT = V	iperature Indica /DD - 2V⊤ (Low /DD - 4V⊤ (Higł	Range)	election bit ⁽³⁾					
bit 3-2	Unimplemen	ted: Read as	0'						
bit 1-0	11 = ADC FV 10 = ADC FV 01 = ADC FV	ADFVR<1:0>: ADC FVR Buffer Gain Selection bits ⁽¹⁾ 11 = ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR ⁽⁴⁾ 10 = ADC FVR Buffer Gain is 2x, with output VADFVR = 2x VFVR ⁽⁴⁾ 01 = ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR 00 = ADC FVR Buffer is off							
Note 1: 2:	To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits. FVRRDY is always '1' on PIC16F1516/7/8/9 only.								

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

3: See Section 15.0 "Temperature Indicator Module" for additional information.

4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR<1:0>		128

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μs after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μs between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	_	ADFVR<1:0>		128

Legend: Shaded cells are unused by the temperature indicator module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	-			CHS<4:0>			GO/DONE	ADON	137
ADCON1	ADFM		ADCS<2:0>		—	—	ADPRE	138	
ADRESH	ADC Result	Register Hig	h						139, 140
ADRESL	ADC Result	Register Lov	v						139, 140
ANSELA	—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	108
ANSELB		_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	112
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	_	115
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	118
ANSELE ⁽¹⁾		_	—	—	_	ANSE2	ANSE1	ANSE0	121
CCP1CON	_	_	DC1E	s<1:0>		CCP1	V<3:0>		168
CCP2CON		_	DC2B	3<1:0>		168			
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFV	128	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	74
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	75
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	77
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	107
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	111
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	114
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	117
TRISE	—	—	—	—	(2)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	120

TABLE 16-3:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC
-------------	--

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

Note 1: PIC16(L)F1517/9 only.

22.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 22-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table . The fifth rising edge will occur on the RX pin at the end of the 8th bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table . During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH

and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 22.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 22-5:	BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock		
0	0	Fosc/64	Fosc/512		
0	1	Fosc/16	Fosc/128		
1	0	Fosc/16	Fosc/128		
1	1	Fosc/4	Fosc/32		

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

XXXXh 0000h 001Ch **BRG** Value Edge #1 Edge #2 Edge #3 Edge #4 Edge #5 RX pin Start bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 Stop bit Auto-Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG SPBRGL XXh 1Ch SPBRGH 00h XXh Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.

FIGURE 22-6: AUTOMATIC BAUD RATE CALIBRATION

23.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "PIC16(L)F151X/152X Memory Programming Specification", (DS41442).

23.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

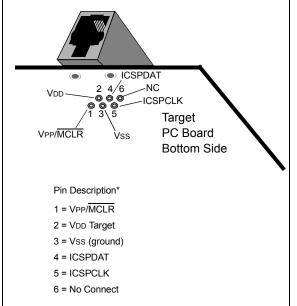
23.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

23.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 23-1.

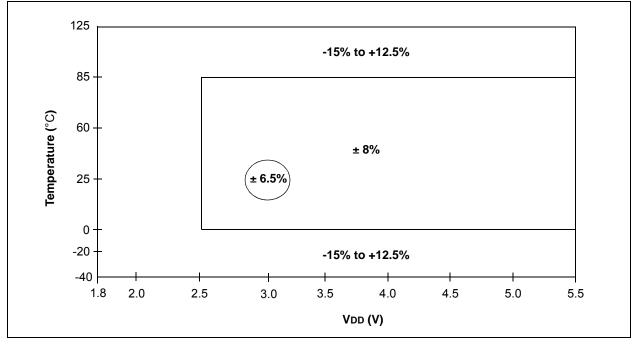
Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 23-2.

For additional interface recommendations, refer to the specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 23-3 for more information.

25.0 ELECTRICAL SPECIFICATIONS

25.1 Absolute Maximum Ratings^(†)


Ambient temperature under bias	40°C to +125°C				
Storage temperature	65°C to +150°C				
Voltage on VDD with respect to Vss, PIC16F1516/7/8/9	-0.3V to +6.5V				
Voltage on VDD with respect to Vss, PIC16LF1516/7/8/9	-0.3V to +4.0V				
Voltage on MCLR with respect to Vss	-0.3V to +9.0V				
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)				
Total power dissipation ⁽²⁾	800 mW				
Maximum current					
on Vss pin for 28-Pin devices ⁽¹⁾					
$\label{eq:alpha} \begin{array}{l} -40^\circ C \leq T_A \leq +85^\circ C \\ +85^\circ C \leq T_A \leq +125^\circ C \end{array}$					
on VDD pin for 28-Pin devices ⁽¹⁾					
$\begin{array}{l} -40^{\circ}C \leq Ta \leq +85^{\circ}C \\ +85^{\circ}C \leq Ta \leq +125^{\circ}C \end{array}$					
on Vss pin for 40/44-Pin devices ⁽¹⁾					
-40°C \leq Ta \leq +85°C					
on VDD pin for 40/44-Pin devices ⁽¹⁾					
-40°C \leq Ta \leq +85°C					
Clamp current, Ік (Vpin < 0 or Vpin > Vpd)	± 20 mA				
Maximum output current sunk by any I/O pin					
Maximum output current sourced by any I/O pin					

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 25-5 to calculate device specifications.

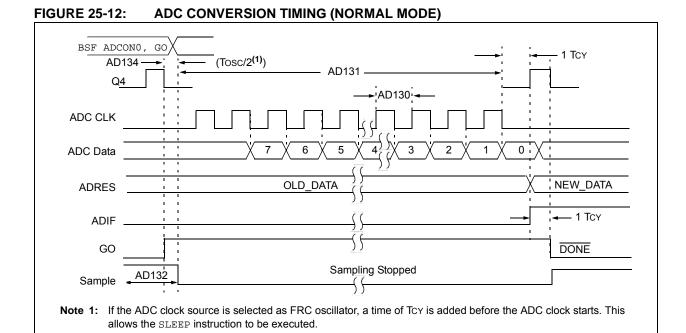
2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

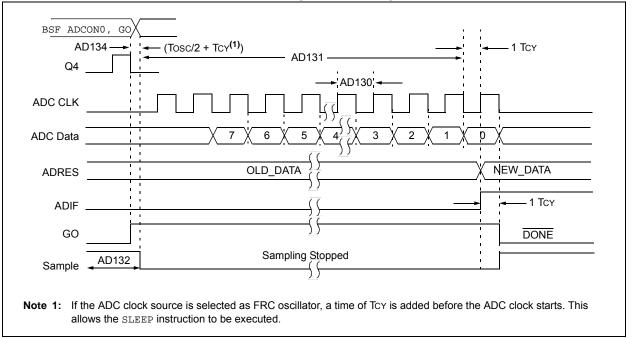
25.4 DC Characteristics: Supply Current (IDD) (Continued)

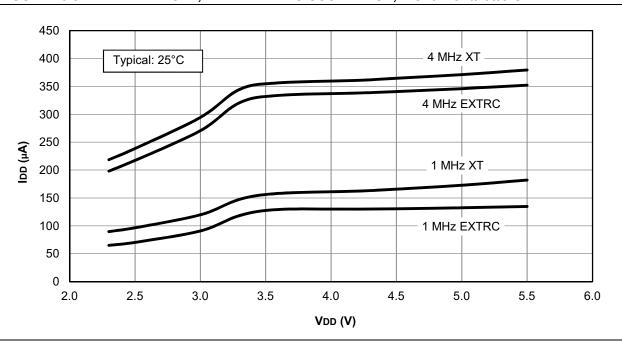
PIC16LF1516/7/8/9								
PIC16F1516/7/8/9			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param	Device Characteristics	Min.	Тур†	Max.	Units	Conditions		
No.						Vdd	Note	
	Supply Current (IDD) ^(1, 2, 3)							
D020			1.0	1.80	mA	3.0	Fosc = 20 MHz	
			1.2	2.10	mA	3.6	HS Oscillator	
D020			1.4	1.70	mA	3.0	Fosc = 20 MHz HS Oscillator	
			1.7	2.10	mA	5.0		
D021			150	220	μA	1.8	Fosc = 4 MHz	
		l	250	380	μA	3.0	EXTRC (Note 4)	
D021	D21 — 165 330	μA	2.3	Fosc = 4 MHz				
		_	280	420	μA	3.0	EXTRC (Note 4)	
		_	350	500	μA	5.0		

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.


3: 0.1 μF capacitor on VCAP pin, PIC16F1516/7/8/9 only.

4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 25-13: ADC CONVERSION TIMING (SLEEP MODE)

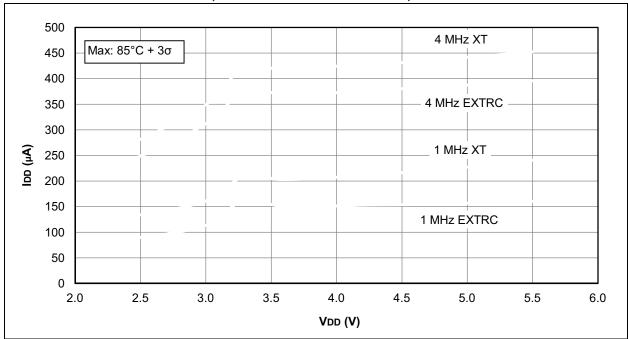
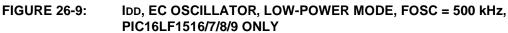



FIGURE 26-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1516/7/8/9 ONLY

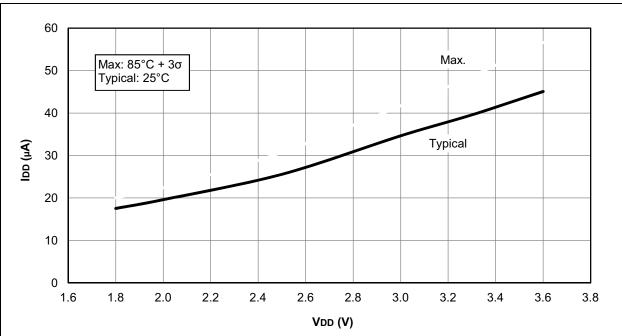
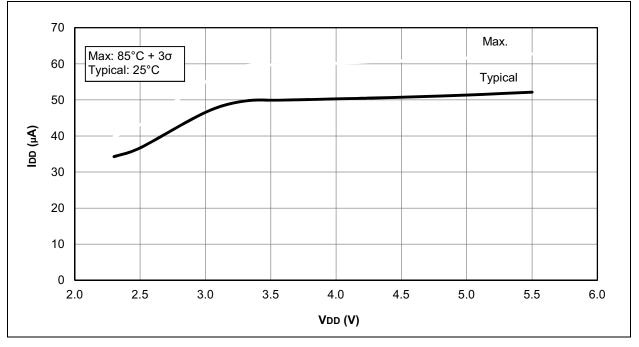
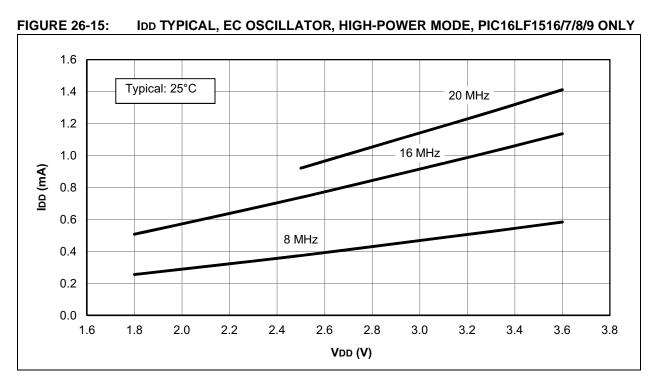
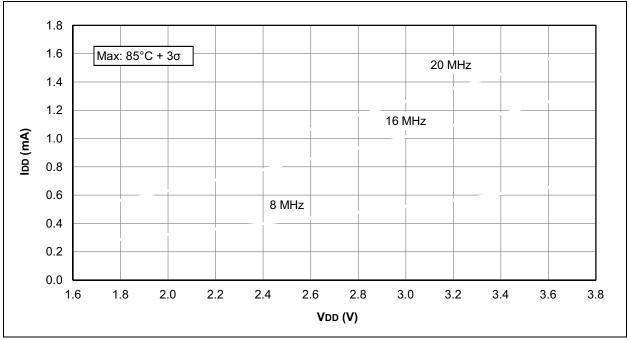
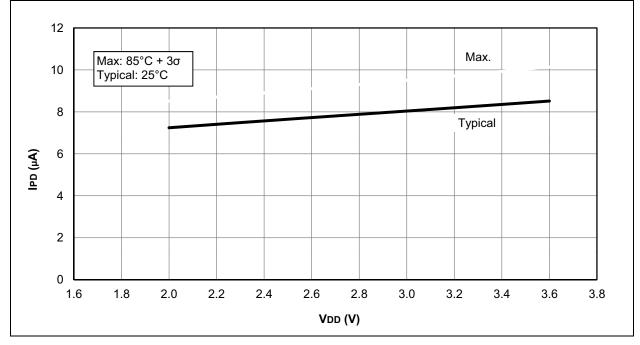
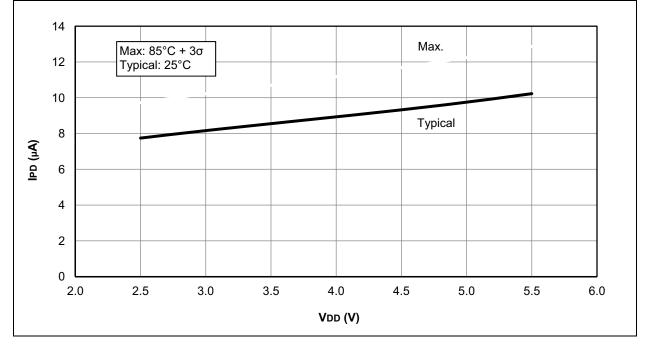



FIGURE 26-10: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY


FIGURE 26-16: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16LF1516/7/8/9 ONLY

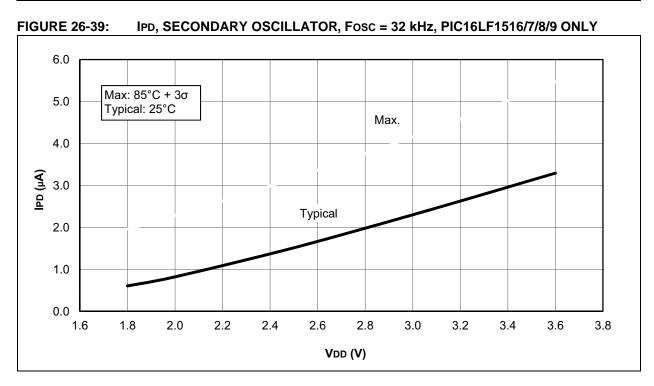
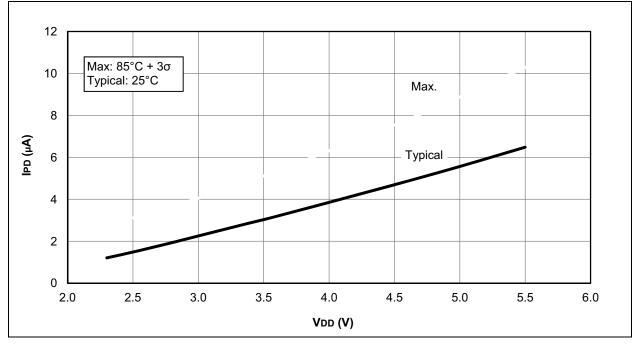



FIGURE 26-40: IPD, SECONDARY OSCILLATOR, Fosc = 32 kHz, PIC16F1516/7/8/9 ONLY

