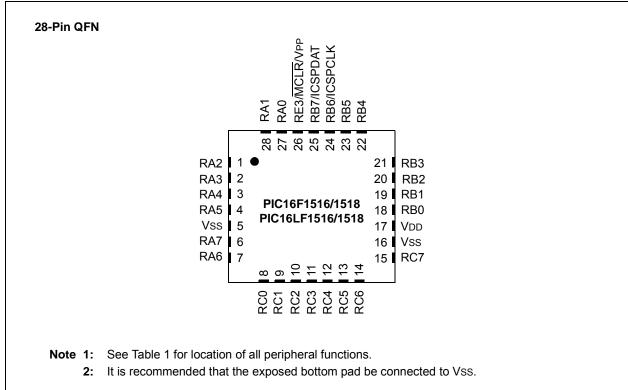


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1519-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3: PIC16(L)F1516/7 MEMORY MAP (CONTINUED)

	Bank 31
F80h	Core Registers (Table 3-2)
F8Bh F8Ch	
	Unimplemented Read as '0'
FE3h	
FE4h	STATUS_SHAD
FE5h	WREG_SHAD
FE6h	BSR_SHAD
FE7h	PCLATH_SHAD
FE8h	FSR0L_SHAD
FE9h	FSR0H_SHAD
FEAh	FSR1L_SHAD
FEBh	FSR1H_SHAD
FECh	—
FEDh	STKPTR
FEEh	TOSL
FEFh	TOSH
FF0h	Common RAM (Accesses 70h – 7Fh)
FFFh	

= Unimplemented data memory locations, read as '0',

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7 bit 0					bit 0		

Legend:		
HC = Bit is cleared by hardware		HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

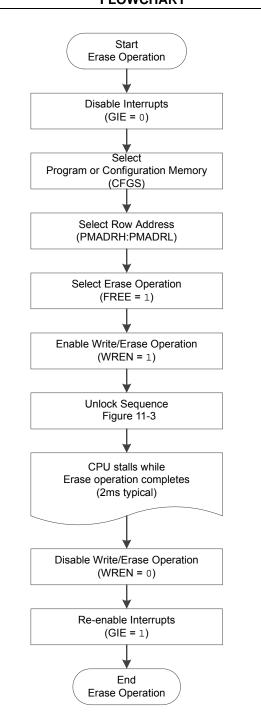
bit 7	 STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	Unimplemented: Read as '0'
bit 4	RWDT: Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set to '1' by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set to '1' by firmware 0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR : Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	
bit 7							bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch		x = Bit is unkr		•	at POR and BO		ther Resets	
'1' = Bit is set	0.1	'0' = Bit is clea	ared					
bit 7		mer1 Gate Inte	•					
		the Timer1 Gate the Timer1 Gat						
bit 6	ADIE: Analog	g-to-Digital Con	verter (ADC)	Interrupt Enabl	le bit			
		1 = Enables the ADC interrupt						
	0 = Disables the ADC interrupt							
bit 5		RT Receive Interrupt Enable bit						
	 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt 							
bit 4		T Transmit Inter		it				
	1 = Enables the USART transmit interrupt							
	0 = Disables the USART transmit interrupt							
bit 3		hronous Serial	. ,	Interrupt Enabl	le bit			
	1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt							
hit O								
bit 2		P1 Interrupt En the CCP1 interr						
		the CCP1 inter						
bit 1		R2 to PR2 Mate		nable bit				
	1 = Enables the Timer2 to PR2 match interrupt							
	0 = Disables the Timer2 to PR2 match interrupt							
bit 0		er1 Overflow Ir						
		the Timer1 over						
		the Timer1 ove	mow interrupt					
Note: Bit		TCON register	must he					
	to enable any							

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

11.2.3 ERASING FLASH PROGRAM MEMORY

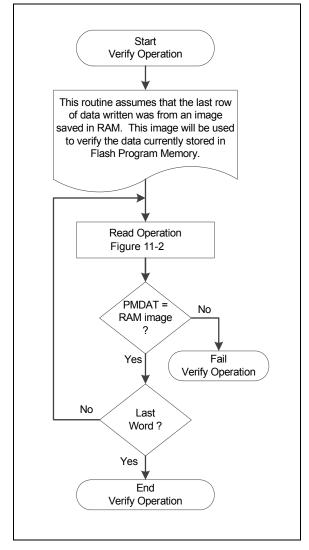
While executing code, program memory can only be erased by rows. To erase a row:


- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 11-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions immediately following the WR bit set instruction. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction.

FIGURE 11-4: FLAS


FLASH PROGRAM MEMORY ERASE FLOWCHART

11.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

12.6 PORTE Registers

12.6.1 DATA REGISTER

PORTE is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The exception is RE3, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTE register (Register 12-19) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE). RE3 reads '0' when MCLRE = 1.

Note:	RE<2:0>	and	TRISE<2:0>	pins	are
	available o	on PIC	16(L)F1517/9 c	only.	

12.6.2 ANALOG CONTROL

The ANSELE register (Register 12-22) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELE bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELE bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

The TRISE register (Register 12-20) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

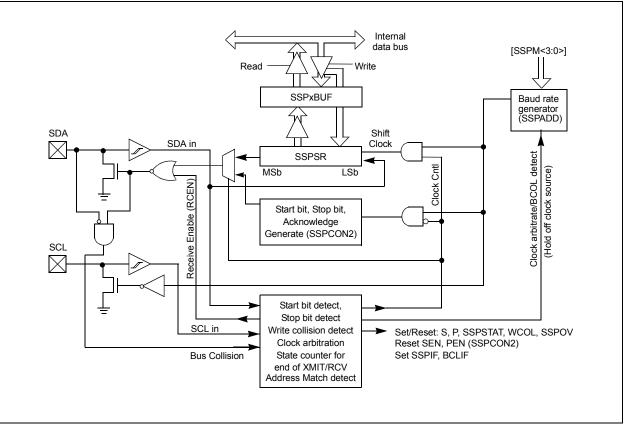
Note:	The ANSELE bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

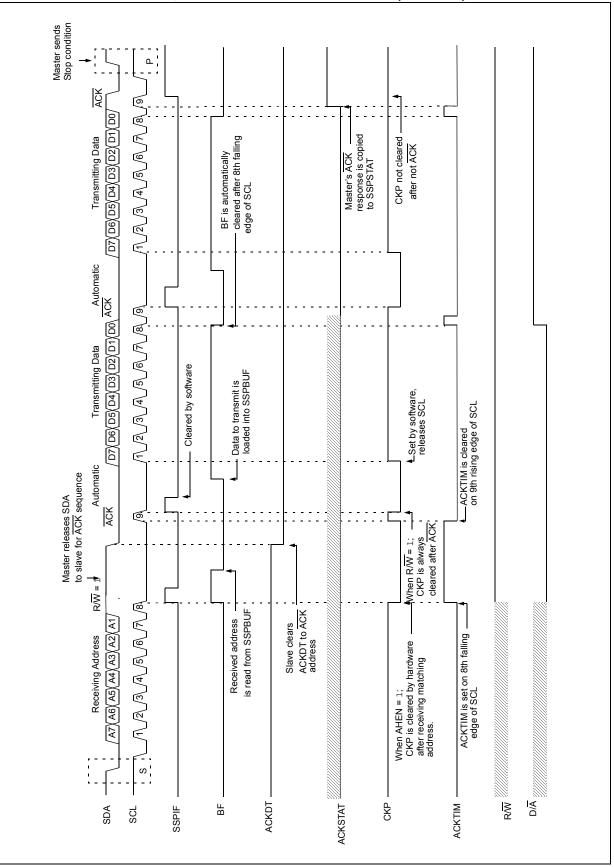
12.6.3 PORTE FUNCTIONS AND OUTPUT PRIORITIES

PORTE has no peripheral outputs, so the PORTE output has no priority function.

19.5 Register Definitions: Timer2 Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_		T2OUT	PS<3:0>		TMR2ON	T2CKF	'S<1:0>	
bit 7							bit	
Legend:								
R = Readable bit		W = Writable bit		-	mented bit, read			
u = Bit is unchanged		x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is s	et	'0' = Bit is clea	ared					
bit 7	Unimpleme	ented: Read as '	0'					
bit 6-3	T2OUTPS<	3:0>: Timer2 Ou	tput Postscale	er Select bits				
	1111 = 1:16	Postscaler						
	1110 = 1:15	1110 = 1:15 Postscaler						
	1101 = 1:14 Postscaler							
	1100 = 1:13 Postscaler							
	1011 = 1:12 Postscaler							
	1010 = 1:11 Postscaler							
	1001 = 1:10 Postscaler							
	1000 = 1:9 Postscaler							
		0111 = 1:8 Postscaler 0110 = 1:7 Postscaler						
		0110 = 1.7 Postscaler						
	0100 = 1.5 Postscaler							
	0011 = 1:4							
	0010 = 1 :3	Postscaler						
	0001 = 1:2	Postscaler						
	0000 = 1:1	Postscaler						
bit 2	TMR2ON: T	ïmer2 On bit						
	1 = Timer2	is ON						
	0 = Timer2	is OFF						
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits				
	11 = Prescaler is 64							
	10 = Presca							
	01 = Presca							
	00 = Presca							


REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER


The I²C interface supports the following modes and features:

- · Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Address Hold and Data Hold modes
- Selectable SDA hold times

Figure 21-2 is a block diagram of the I^2C interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 21-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

24.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table lists the instructions recognized by the MPASM[™] assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

24.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 24-1:	OPCODE FIELD
	DESCRIPTIONS

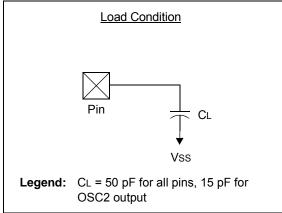
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 24-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

25.2 Standard Operating Conditions

The standard operating co	onditions for any device are defined as:	
	$VDDMIN \leq VDD \leq VDDMAX$	
Operating Temperature:	— — —	
VDD — Operating Supply	y Voltage ⁽¹⁾	
PIC16LF1516/7/8/9	9	
Vddmin (F	Fosc ≤ 16 MHz)	
VDDMIN (1	l6 MHz ≤Fosc ≤ 20 MHz)	+2.5V
VDDMAX		
PIC16F1516/7/8/9		
Vddmin (F	Fosc ≤ 16 MHz)	
VDDMIN (1	l6 MHz ≤Fosc ≤ 20 MHz)	
VDDMAX		+5.5V
TA — Operating Ambien	t Temperature Range	
Industrial Temperat	ture	
TA_MIN		40°C
Та_мах		+85°C
Extended Tempera	ture	
TA_MIN		40°C
Та_мах		+125°C
Note 1: See Paramete	er D001, DC Characteristics: Supply Voltage.	

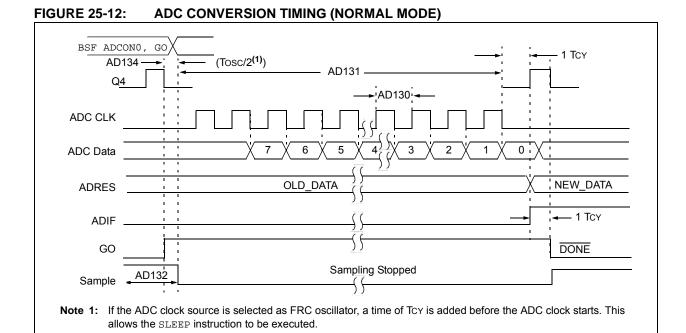

25.9 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

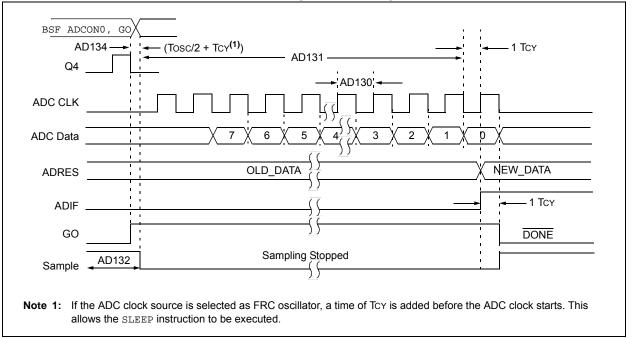
- 1. TppS2ppS
- 2. TppS

2. Tpp5					
Т					
F	Frequency	Т	Time		
Lowerc	case letters (pp) and their meanings:				
рр					
сс	CCP1	OSC	OSC1		
ck	CLKOUT	rd	RD		
cs	CS	rw	RD or WR		
di	SDIx	SC	SCKx		
do	SDO	SS	SS		
dt	Data in	tO	ТОСКІ		
io	I/O PORT	t1	T1CKI		
mc	MCLR	wr	WR		
Uppercase letters and their meanings:					
S					
F	Fall	Р	Period		
н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		

FIGURE 25-5: LOAD CONDITIONS


TABLE 25-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)


Param No.	Sym.		Characterist	ic	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	
			With Presca		10		_	ns	
41* T⊤0L	T0CKI Low Pulse Width No		No Prescaler	0.5 Tcy + 20		_	ns		
		With Prescaler		10	—		ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45* T⊤1H	T⊤1H	T1CKI High Time	Synchronous,	No Prescaler	0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30		_	ns	
46* Tī	T⊤1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5 Tcy + 20	—		ns	
			Synchronous,	with Prescaler	15	—		ns	
			Asynchronous		30	—		ns	
47* T⊤1	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60		_	ns	
48	FT1	Secondary Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.

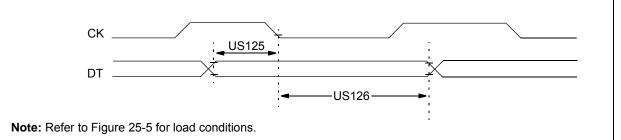

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

FIGURE 25-13: ADC CONVERSION TIMING (SLEEP MODE)

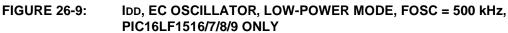


FIGURE 25-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 25-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Symbol Characteristic		Max.	Units	Conditions	
US125	TDTV2CKL	SYNC RCV (Master and Slave)					
		Data-hold before CK \downarrow (DT hold time)	10		ns		
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns		

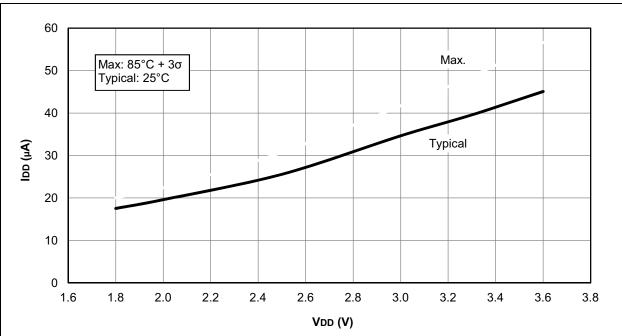
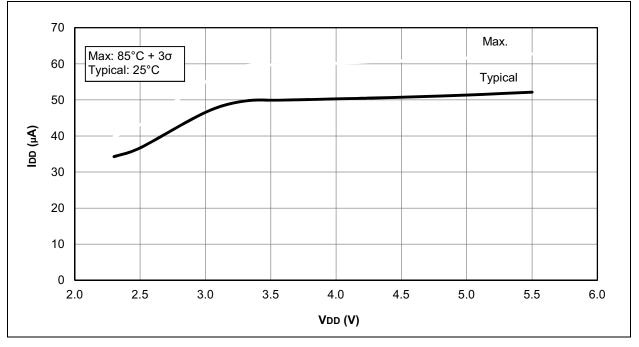



FIGURE 26-10: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY

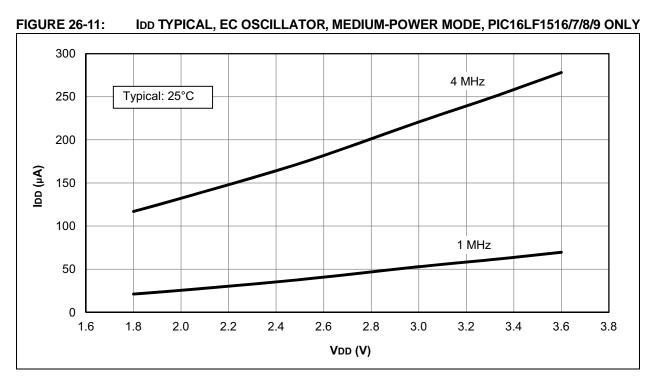
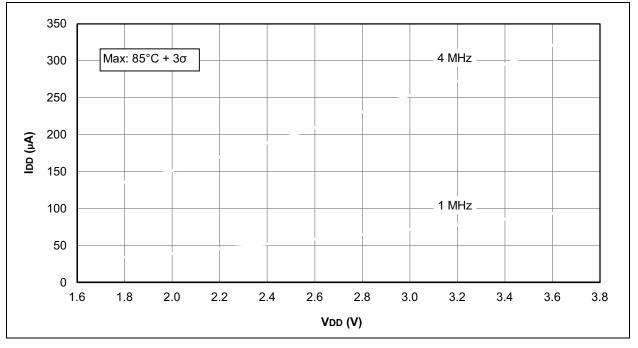
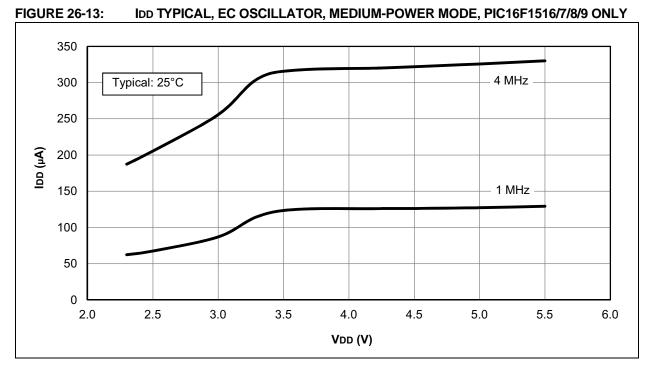
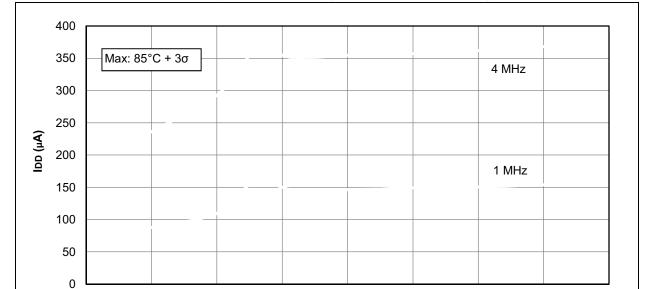





FIGURE 26-12: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1516/7/8/9 ONLY

4.0

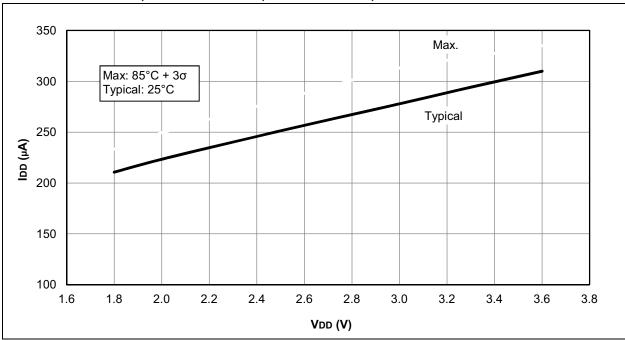
VDD (V)

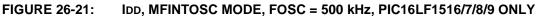
4.5

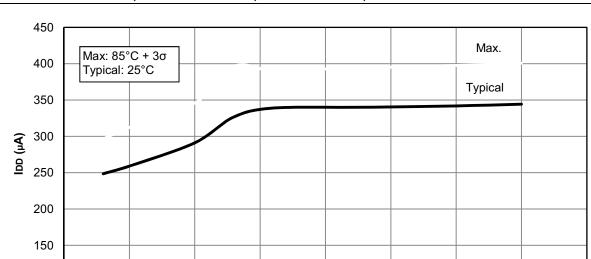
5.0

FIGURE 26-14: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16F1516/7/8/9 ONLY

2.0


2.5


3.0


3.5

5.5

6.0

4.0

VDD (V)

4.5

5.0

FIGURE 26-22: IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY

3.5

100 L 2.0

2.5

3.0

5.5

6.0