

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

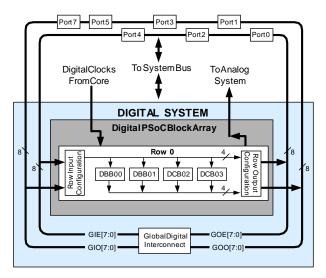
Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 48x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24794-24lfxi

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO (General Purpose IO).

The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU utilizes an interrupt controller with up to 20 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).


Memory encompasses 16K of Flash for program storage, 1K of SRAM for data storage, and up to 2K of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 8% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device. In USB systems, the IMO will self-tune to $\pm\,0.25\%$ accuracy for USB communication.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

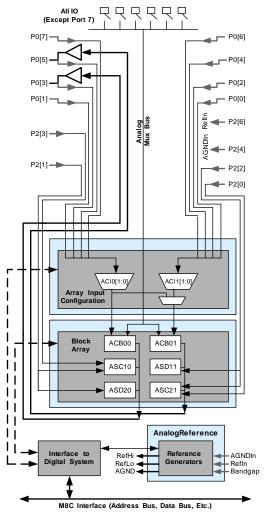
The Digital System is composed of 4 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital System Block Diagram

Digital peripheral configurations include those listed below.

- Full-Speed USB (12 Mbps)
- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 24 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity
- SPI master and slave
- I2C slave and multi-master
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.


Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled "PSoC Device Characteristics" on page 3.

The Analog System

The Analog System is composed of 6 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 2, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2 and 4 pole band-pass, low-pass, and notch)
- Amplifiers (up to 2, with selectable gain to 48x)
- Instrumentation amplifiers (1 with selectable gain to 93x)
- Comparators (up to 2, with 16 selectable thresholds)
- DACs (up to 2, with 6- to 9-bit resolution)
- Multiplying DACs (up to 2, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a PSoC Core Resource)
- 1.3V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak Detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks, as shown in the figure below.

Analog System Block Diagram

The Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin in ports 0-5. Pins can be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from up to 48 IO pins.
- Crosspoint connection between any IO pin combinations.

Additional System Resources

System Resources, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each resource follow.

- Full-Speed USB (12 Mbps) with 5 configurable endpoints and 256 bytes of RAM. No external components required except two series resistors. Wider than commercial temperature USB operation (-10°C to +85°C).
- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Two multiply accumulates (MACs) provide fast 8-bit multipliers with 32-bit accumulate, to assist in both general math as well as digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific PSoC device groups. The device covered by this data sheet is shown in the highlighted row of the table.

PSoC Device Characteristics

PSoC Part Number	Digital IO	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	12	4	4	12	2K	32K
CY8C27x43	up to 44	2	8	12	4	4	12	256 Bytes	16K
CY8C24794	50	1	4	48	2	2	6	1K	16K
CY8C24x23	up to 24	1	4	12	2	2	6	256 Bytes	4K
CY8C24x23A	up to 24	1	4	12	2	2	6	256 Bytes	4K
CY8C21x34	up to 28	1	4	28	0	2	4 ^a	512 Bytes	8K
CY8C21x23	16	1	4	8	0	2	4 ^a	256 Bytes	4K

a. Limited analog functionality.

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the PSoCTM Mixed-Signal Array Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

To determine which PSoC device meets your requirements, navigate through the PSoC Decision Tree in the Application Note AN2209 at http://www.cypress.com and select Application Notes under the Design Resources.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, **C** compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Technical Training

Free PSoC technical training is available for beginners and is taught by a marketing or application engineer over the phone. PSoC training classes cover designing, debugging, advanced analog, as well as application-specific classes covering topics such as PSoC and the LIN bus. Go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select Technical Training for more details.

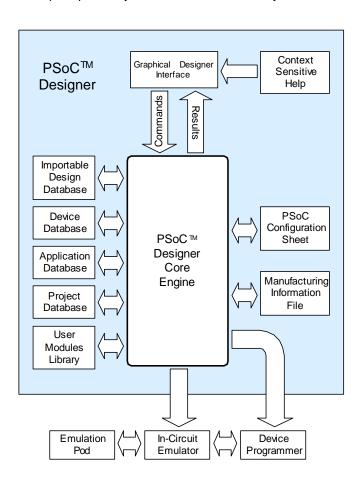
Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located on the left side of the web page, and select CYPros Consultants.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Application Notes


A long list of application notes will assist you in every aspect of your design effort. To view the PSoC application notes, go to the http://www.cypress.com web site and select Application Notes under the Design Resources list located in the center of the web page. Application notes are listed by date as default.

Development Tools

PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. (Reference the PSoC Designer Functional Flow diagram below.)

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

PSoC Designer Subsystems

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
FSR	full scale range
GPIO	general purpose IO
GUI	graphical user interface
HBM	human body model
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
Ю	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
PLL	phase-locked loop
POR	power on reset
PPOR	precision power on reset
PSoC™	Programmable System-on-Chip™
PWM	pulse width modulator
SC	switched capacitor
SRAM	static random access memory

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 3-1 on page 12 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexidecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexidecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (e.g., 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Table of Contents

For an in depth discussion and more information on your PSoC device, obtain the *PSoC Mixed-Signal Array Technical Reference Manual*. This document encompasses and is organized into the following chapters and sections.

1.	Pin Information											
	1.1	56-Pin Part Pinout	8									
2.	Reg	Register Reference										
	2.1	Register Conventions										
		2.1.1 Abbreviations Used										
	2.2 Register Mapping Tables											
3.	Elec	ctrical Specifications	. 12									
	3.1	Absolute Maximum Ratings	. 13									
	3.2	Operating Temperature	. 13									
	3.3	DC Electrical Characteristics	. 13									
		3.3.1 DC Chip-Level Specifications	. 13									
		3.3.2 DC General Purpose IO Specifications										
		3.3.3 DC Full-Speed USB Specifications										
		3.3.4 DC Operational Amplifier Specifications										
		3.3.5 DC Analog Output Buffer Specifications										
		3.3.6 DC Analog Reference Specifications										
		3.3.7 DC Analog PSoC Block Specifications										
		3.3.8 DC POR and LVD Specifications										
		3.3.9 DC Programming Specifications										
	3.4	AC Electrical Characteristics										
		3.4.1 AC Chip-Level Specifications										
		3.4.2 AC General Purpose IO Specifications										
		3.4.3 AC Full-Speed USB Specifications										
		3.4.4 AC Operational Amplifier Specifications										
		3.4.5 AC Digital Block Specifications										
		3.4.6 AC External Clock Specifications										
		3.4.7 AC Analog Output Buffer Specifications										
		3.4.8 AC Programming Specifications										
		3.4.9 AC I2C Specifications										
4.	Pac	kaging Information										
	4.1	Packaging Dimensions										
	4.2	Thermal Impedance										
	4.3	Solder Reflow Peak Temperature	. 30									
5.	Ord	ering Information										
	5.1	Ordering Code Definitions	. 31									
6.	Sale	es and Company Information	. 32									
	6.1	Revision History	. 32									
	6.2	Convrights and Code Protection										

1. Pin Information

This chapter describes, lists, and illustrates the CY8C24794 PSoC device pins and pinout configuration.

1.1 56-Pin Part Pinout

The CY8C24794 PSoC device is available in a 56-pin package which is listed and illustrated in the following table. Every port pin (labeled with a "P") is capable of Digital IO. However, Vss and Vdd are not capable of Digital IO.

Table 1-1. 56-Pin Part Pinout (MLF*)

Pin		ре	Name	Description				CY	8C24794 56-Pin PSoC Device
No.	Digital			•					-22
1	10	I, M	P2[3]	Direct switched capacitor block input.					$\Sigma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
2	10	I, M	P2[1]	Direct switched capacitor block input.					ररवेंगेंगें वेंगेंगेंरर
3	10	М	P4[7]						P2[5], M P0[1], A P0[1], A, Vss Vdd Vold, A, P0[6], A, P0[6], A, P0[6], A, P2[6], M
4	10	М	P4[5]						
5	10	M	P4[3]						
6	10	M	P4[1]				Λ I M	ומומם	882832844444
7	10	M	P3[7]				A, I, M	, P2[3] , P2[1]	■1 42 ■ P2[
8	10	M	P3[5]						
9	10	M	P3[3]					l, P4[7] l, P4[5]	
10	10	M	P3[1]						_
11 12	10	M	P5[7]						■5 38 ■ P4[■6 37 ■ P4[
	10	M	P5[5]						■ 7 MLF 36 P3[
13	10	M	P5[3]						=8 (Top View) 35 = P3[
14 15	10 10	M M	P5[1]	I2C Serial Clock (SCL).					=9 (10p view) 34 = P3[
16	10	M	P1[7] P1[5]	I2C Serial Clock (SCL).					■ 10 33 ■ P3[
17	10	M	P1[3]	12C Seriai Data (SDA).			M	l, P5[7]	■ 11 32 ■ P5[
18	10	M	P1[1]	I2C Serial Clock (SCL), ISSP-SCLK.			N	l, P5[5]	■ 12 31 ■ P5[
19		wer	Vss	Ground connection.			M	l, P5[3]	
20		SB	D+	Ground connection.			N	l, P5[1]	■ 14 29 ➡ P5[
21		SB	D-						₹ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
22		wer	Vdd	Supply voltage.				,	
23	10	WCI	P7[7]	Cupply voltage.					SCL, P1[7] SDA, P1[5] M,P1[3] SCL, P1[1] SCL, P1[1] P7[7] P7[7] M,P1[6] M,P1[6]
24	10		P7[0]						ۻۨٷۻٙۻٙ ڝ؋ٷڝٚۻٙ
25	10	М	P1[0]	I2C Serial Data (SDA), ISSP-SDATA.					ÖCL, M, M, M,
26	10	M	P1[2]	120 Genai Bata (GB/1), 1001 GB/1/1.					M, 12C SCL, P M, 12C SDA, P M, 12C SCL, P M, 12C SDA, P M, P M, P
27	IO	M	P1[4]						M, 12C %
28	10	M	P1[6]						ΣΣΣΣ
29	10	М	P5[0]		Pin	Τv	/ре		
30	10	M	P5[2]		No.		Analog	Name	Description
31	10	М	P5[4]		44	IO	M	P2[6]	External Voltage Reference (VREF) input.
32	10	М	P5[6]		45	Ю	I, M	P0[0]	Analog column mux input.
33	10	М	P3[0]		46	Ю	I, M	P0[2]	Analog column mux input and column output.
34	Ю	М	P3[2]		47	Ю	I, M	P0[4]	Analog column mux input and column output.
35	Ю	М	P3[4]		48	Ю	I, M	P0[6]	Analog column mux input.
36	Ю	М	P3[6]		49	Po	wer	Vdd	Supply voltage.
37	Ю	М	P4[0]		50	Po	wer	Vss	Ground connection.
38	Ю	М	P4[2]		51	Ю	I, M	P0[7]	Analog column mux input, integration input #1.
39	Ю	М	P4[4]		52	Ю	IO, M	P0[5]	Analog column mux input and column output, integration input #2.
40	Ю	М	P4[6]		53	Ю	IO, M	P0[3]	Analog column mux input and column output.
41	Ю	I, M	P2[0]	Direct switched capacitor block input.	54	Ю	I, M	P0[1]	Analog column mux input.
42	Ю	I, M	P2[2]	Direct switched capacitor block input.	55	Ю	M	P2[7]	· ·
43	10	M	P2[4]	External Analog Ground (AGND) input.	56	10	М	P2[5]	

 $\textbf{LEGEND} \ \ A = Analog, \ I = Input, \ O = Output, \ and \ M = Analog \ Mux \ Input.$

A, I, M A, I, M M M M M M M M M M M M M

^{*} The MLF package has a center pad that must be connected to ground (Vss).

2. Register Reference

This chapter lists the registers of the CY8C24794 PSoC device. For detailed register information, reference the PSoCTM Mixed-Signal Array Technical Reference Manual.

2.1 Register Conventions

2.1.1 Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description						
R	Read register or bit(s)						
W Write register or bit(s)							
L	Logical register or bit(s)						
С	Clearable register or bit(s)						
#	Access is bit specific						

2.2 Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as IO space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

CY8C24794 Final Data Sheet 2. Register Reference

Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	PMA0_DR	40	RW	ASC10CR0	80	RW		C0	
PRT0IE	01	RW	PMA1_DR	41	RW	ASC10CR1	81	RW		C1	
PRT0GS	02	RW	PMA2_DR	42	RW	ASC10CR2	82	RW		C2	
PRT0DM2	03	RW	PMA3_DR	43	RW	ASC10CR3	83	RW		C3	
PRT1DR	04	RW	PMA4_DR	44	RW	ASD11CR0	84	RW		C4	
PRT1IE	05	RW	PMA5_DR	45	RW	ASD11CR1	85	RW		C5	
PRT1GS	06	RW	PMA6_DR	46	RW	ASD11CR2	86	RW		C6	
PRT1DM2 PRT2DR	07	RW	PMA7_DR USB_SOF0	47 48	RW R	ASD11CR3	87 88	RW		C7	
PRT2IE	09	RW	USB_SOF1	49	R		89			C9	
PRT2GS	0A	RW	USB_CR0	4A	RW		8A			CA	
PRT2DM2	0B	RW	USBIO_CR0	4B	#		8B			CB	
PRT3DR	0C	RW	USBIO CR1	4C	RW		8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW	EP1_CNT1	4E	#		8E			CE	
PRT3DM2	0F	RW	EP1_CNT	4F	RW		8F			CF	
PRT4DR	10	RW	EP2_CNT1	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	EP2_CNT	51	RW	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	EP3_CNT1	52	#	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	EP3_CNT	53	RW	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	EP4_CNT1	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	EP4_CNT	55	RW	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	EP0_CR	56	#	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	EP0_CNT	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
	18		EP0_DR0	58	RW		98		I2C_DR	D8	RW
	19		EP0_DR1 EP0_DR2	59	RW RW		99		I2C_MSCR INT_CLR0	D9 DA	# RW
	1A 1B		EP0_DR2 EP0_DR3	5A 5B	RW		9A 9B		INT_CLR0 INT_CLR1	DB	RW
PRT7DR	1C	RW	EP0_DR4	5C	RW		9C		INT_CLR2	DC	RW
PRT7IE	1D	RW	EP0 DR5	5D	RW		9D		INT CLR3	DD	RW
PRT7GS	1E	RW	EP0_DR6	5E	RW		9E		INT MSK3	DE	RW
PRT7DM2	1F	RW	EP0_DR7	5F	RW		9F		INT MSK2	DF	RW
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCB02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCB02DR2	2A 2B	RW #		6A 6B		MUL1_DH MUL1_DL	AA AB	R R	MUL0_DH MUL0_DL	EA EB	R R
DCB02CR0 DCB03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCB03DR0	2D	W	TMP_DR1	6D	RW	ACC1_DR1	AD	RW	ACC0_DR0	ED	RW
DCB03DR1	2E	RW	TMP DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCB03CR0	2F	#	TMP_DR3	6F	RW	ACC1 DR2	AF	RW	ACC0_DR2	EF	RW
202000.10	30		ACB00CR3	70	RW	RDI0RI	B0	RW	7.000_27.12	F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	В3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC		DAG	FC	DIA
	3D			7D			BD		DAC_D	FD	RW #
	3E 3F			7E 7F			BE BF		CPU_SCR1 CPU_SCR0	FE FF	#
	J	i .		/ F	İ	Ī	DL	Ī	OFU_SCKU	LIE	#

CY8C24794 Final Data Sheet 2. Register Reference

Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	PMA0_WA	40	RW	ASC10CR0	80	RW	USBIO_CR2	C0	RW
PRT0DM1	01	RW	PMA1_WA	41	RW	ASC10CR1	81	RW	USB_CR1	C1	#
PRT0IC0	02	RW	PMA2_WA	42	RW	ASC10CR2	82	RW			
PRT0IC1	03	RW	PMA3_WA	43	RW	ASC10CR3	83	RW			
PRT1DM0	04	RW	PMA4_WA	44	RW	ASD11CR0	84	RW	EP1_CR0	C4	#
PRT1DM1	05	RW	PMA5_WA	45	RW	ASD11CR1	85	RW	EP2_CR0	C5	#
PRT1IC0	06	RW	PMA6_WA	46	RW	ASD11CR2	86	RW	EP3_CR0	C6	#
PRT1IC1	07	RW	PMA7_WA	47	RW	ASD11CR3	87	RW	EP4_CR0	C7	#
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09 0A	RW RW		49 4A			89 8A			C9 CA	
PRT2IC0	0B			4A 4B			8B			CB	
PRT2IC1 PRT3DM0	OC	RW RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	-
PRT3IC0	0E	RW		4E			8E			CE	
PRT3IC1	0F	RW		4F			8F			CF	
PRT4DM0	10	RW	PMA0_RA	50	RW		90		GDI_O_IN	D0	RW
PRT4DM1	11	RW	PMA1_RA	51	RW	ASD20CR1	91	RW	GDI_O_IN	D1	RW
PRT4IC0	12	RW	PMA2_RA	52	RW	ASD20CR1	92	RW	GDI_C_IN	D2	RW
PRT4IC1	13	RW	PMA3_RA	53	RW	ASD20CR2 ASD20CR3	93	RW	GDI_O_OU	D3	RW
PRT5DM0	14	RW	PMA4 RA	54	RW	ASC21CR0	94	RW	ODI_L_OU	D4	1200
PRT5DM1	15	RW	PMA5_RA	55	RW	ASC21CR1	95	RW		D5	
PRT5IC0	16	RW	PMA6_RA	56	RW	ASC21CR2	96	RW		D6	
PRT5IC1	17	RW	PMA7 RA	57	RW	ASC21CR3	97	RW		D7	
11(15)01	18	1000	1 107.07_10.1	58	1000	7100210110	98	1200	MUX_CR0	D8	RW
	19			59			99		MUX_CR1	D9	RW
	1A			5A			9A		MUX CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
PRT7DM0	1C	RW		5C			9C		MOX_ONO	DC	1000
PRT7DM1	1D	RW		5D			9D		OSC_GO_EN	DD	RW
PRT7IC0	1E	RW		5E			9E		OSC_CR4	DE	RW
PRT7IC1	1F	RW		5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD CR0	63	RW		A3		VLT CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW	CMP_GO_EN1	65	RW		A5		_	E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC		MUX_CR4	EC	RW
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD		MUX_CR5	ED	RW
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	В3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
	1 2 -	1		1 70	1			1	- ODII OOD4		#
	3E 3F			7E 7F			BE BF		CPU_SCR1 CPU_SCR0	FE FF	#

Blank fields are Reserved and should not be accessed.

Access is bit specific.

3. Electrical Specifications

This chapter presents the DC and AC electrical specifications of the CY8C24794 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.

Specifications are valid for $-40^{o}C \le T_{A} \le 85^{o}C$ and $T_{J} \le 100^{o}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{o}C \le T_{A} \le 70^{o}C$ and $T_{J} \le 82^{o}C$.

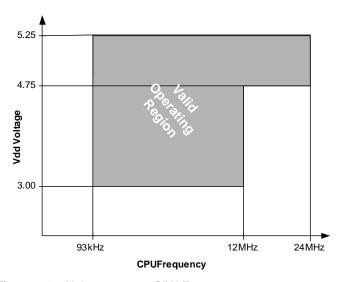


Figure 3-1a. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this chapter.

Table 3-1: Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μW	microwatts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	mV	milli-volts
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pA	picoampere
MΩ	megaohm	pF	picofarad
μΑ	microampere	pp	peak-to-peak
μF	microfarad	ppm	parts per million
μH	microhenry	ps	picosecond
μs	microsecond	sps	samples per second
μV	microvolts	σ	sigma: one standard deviation
μVrms	microvolts root-mean-square	V	volts

3.1 Absolute Maximum Ratings

Table 3-2. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	_	+100	°C	Higher storage temperatures will reduce data retention time.
T _A	Ambient Temperature with Power Applied	-40	_	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	_	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	_	Vdd + 0.5	V	
V _{IO2}	DC Voltage Applied to Tri-state	Vss - 0.5	_	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	_	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Configured as Analog Driver	-50	-	+50	mA	
ESD	Electro Static Discharge Voltage	2000	_	_	V	Human Body Model ESD.
LU	Latch-up Current	-	_	200	mA	

3.2 Operating Temperature

Table 3-3. Operating Temperature

Symbol	Description		Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	_	+85	°C	
T _{AUSB}	Ambient Temperature using USB	-10	_	+85	°C	
T _J	Junction Temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See "Thermal Impedance" on page 30. The user must limit the power consumption to comply with this requirement.

3.3 DC Electrical Characteristics

3.3.1 DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-4. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.0	-	5.25	V	See DC POR and LVD specifications, Table 3-14 on page 19.
I _{DD5}	Supply Current, IMO = 24 MHz (5V)	-	14	27	mA	Conditions are Vdd = 5.0 V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off.
I _{DD3}	Supply Current, IMO = 24 MHz (3.3V)	-	8	14	mA	Conditions are Vdd = 3.3V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.367 kHz, analog power = off.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^a	_	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 $^{\circ}$ C \leq T _A \leq 55 $^{\circ}$ C, analog power = off.
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^a	_	4	25	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 o C < $T_{A} \le 85$ o C, analog power = off.

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

3.3.4 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.

Table 3-7. 5V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value)					
	Power = Low, Opamp Bias = High	-	1.6	10	mV	
	Power = Medium, Opamp Bias = High	-	1.3	8	mV	
	Power = High, Opamp Bias = High	-	1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pA	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V_{CMOA}	Common Mode Voltage Range	0.0	_	Vdd	٧	The common-mode input voltage range is mea-
	Common Mode Voltage Range (high power or high opamp bias)	0.5	-	Vdd - 0.5		sured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open Loop Gain		_	-	dB	
	Power = Low, Opamp Bias = High	60				
	Power = Medium, Opamp Bias = High	60				
	Power = High, Opamp Bias = High	80				
$V_{OHIGHOA}$	High Output Voltage Swing (internal signals)					
	Power = Low, Opamp Bias = High	Vdd - 0.2	-	-	V	
	Power = Medium, Opamp Bias = High	Vdd - 0.2	_	_	V	
	Power = High, Opamp Bias = High	Vdd - 0.5	-	-	V	
V_{OLOWOA}	Low Output Voltage Swing (internal signals)					
	Power = Low, Opamp Bias = High	_	_	0.2	V	
	Power = Medium, Opamp Bias = High	-	-	0.2	V	
	Power = High, Opamp Bias = High	-	_	0.5	V	
I _{SOA}	Supply Current (including associated AGND buffer)					
	Power = Low, Opamp Bias = Low	-	400	800	μΑ	
	Power = Low, Opamp Bias = High	-	500	900	μΑ	
	Power = Medium, Opamp Bias = Low	-	800	1000	μΑ	
	Power = Medium, Opamp Bias = High	-	1200	1600	μΑ	
	Power = High, Opamp Bias = Low	_	2400	3200	μΑ	
	Power = High, Opamp Bias = High	_	4600	6400	μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	65	80	_	dB	$ \begin{tabular}{ll} Vss \le VIN \le (Vdd - 2.25) \ or \ (Vdd - 1.25V) \le VIN \\ \le Vdd. \end{tabular} $

3.3.5 DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-9. 5V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOB}	Input Offset Voltage (Absolute Value)	-	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	_	μV/°C	
V _{CMOB}	Common-Mode Input Voltage Range	0.5	_	Vdd - 1.0	V	
R _{OUTOB}	Output Resistance					
	Power = Low	_	0.6	_	Ω	
	Power = High	_	0.6	_	Ω	
V _{OHIGHOB}	High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.1 0.5 x Vdd + 1.1		-	V V	
V _{OLOWOB}	Low Output Voltage Swing (Load = 32 ohms to Vdd/2)					
	Power = Low	_	-	0.5 x Vdd - 1.3	V	
	Power = High	-	-	0.5 x Vdd - 1.3	V	
I _{SOB}	Supply Current Including Bias Cell (No Load)					
	Power = Low	_	1.1	5.1	mA	
	Power = High	_	2.6	8.8	mA	
PSRR _{OB}	Supply Voltage Rejection Ratio	53	64	-	dB	$(0.5 \text{ x Vdd} - 1.3) \le V_{OUT} \le (Vdd - 2.3).$

Table 3-10. 3.3V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOB}	Input Offset Voltage (Absolute Value)	-	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	-	μV/°C	
V _{CMOB}	Common-Mode Input Voltage Range	0.5	-	Vdd - 1.0	V	
R _{OUTOB}	Output Resistance					
	Power = Low	_	1	_	Ω	
	Power = High	_	1	_	Ω	
V _{OHIGHOB}	High Output Voltage Swing (Load = 1K ohms to Vdd/2)					
	Power = Low	0.5 x Vdd + 1.0	_	_	V	
	Power = High	0.5 x Vdd + 1.0	_	_	V	
V _{OLOWOB}	Low Output Voltage Swing (Load = 1K ohms to Vdd/2)					
	Power = Low	_	_	0.5 x Vdd - 1.0	V	
	Power = High	-	_	0.5 x Vdd - 1.0	V	
I _{SOB}	Supply Current Including Bias Cell (No Load)					
	Power = Low		0.8	2.0	mA	
	Power = High	_	2.0	4.3	mA	
PSRR _{OB}	Supply Voltage Rejection Ratio	34	64	_	dB	$(0.5 \text{ x Vdd} - 1.0) \le V_{OUT} \le (0.5 \text{ x})$ Vdd + 0.9).

3.3.6 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Table 3-11. 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
_	AGND = Vdd/2 ^a	Vdd/2 - 0.04	Vdd/2 - 0.01	Vdd/2 + 0.007	V
_	AGND = 2 x BandGap ^a	2 x BG - 0.048	2 x BG - 0.030	2 x BG + 0.024	V
_	AGND = P2[4] (P2[4] = Vdd/2) ^a	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
-	AGND = BandGap ^a	BG - 0.009	BG + 0.008	BG + 0.016	V
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.022	1.6 x BG - 0.010	1.6 x BG + 0.018	V
_	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.10	Vdd/2 + BG	Vdd/2 + BG + 0.10	V
_	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG	3 x BG + 0.06	V
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.113	2 x BG + P2[6] - 0.018	2 x BG + P2[6] + 0.077	V
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.130	P2[4] + BG - 0.016	P2[4] + BG + 0.098	V
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.133	P2[4] + P2[6] - 0.016	P2[4] + P2[6]+ 0.100	V
_	RefHi = 3.2 x BandGap	3.2 x BG - 0.112	3.2 x BG	3.2 x BG + 0.076	V
_	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.04	Vdd/2 - BG + 0.024	Vdd/2 - BG + 0.04	V
_	RefLo = BandGap	BG - 0.06	BG	BG + 0.06	V
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.084	2 x BG - P2[6] + 0.025	2 x BG - P2[6] + 0.134	V
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.026	P2[4] - BG + 0.107	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.057	P2[4] - P2[6] + 0.026	P2[4] - P2[6] + 0.110	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V \pm 0.02V.

Table 3-12. 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units						
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V						
-	AGND = Vdd/2 ^a	Vdd/2 - 0.03	Vdd/2 - 0.01	Vdd/2 + 0.005	V						
_	AGND = 2 x BandGap ^a	Not Allowed									
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4] + 0.001	P2[4] + 0.009	V						
_	AGND = BandGap ^a	BG - 0.009	BG + 0.005	BG + 0.015	V						
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.027	1.6 x BG - 0.010	1.6 x BG + 0.018	V						
_	AGND Column to Column Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V						
_	RefHi = Vdd/2 + BandGap	Not Allowed	Not Allowed								
_	RefHi = 3 x BandGap	Not Allowed									
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed									
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed									
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.075	P2[4] + P2[6] - 0.009	P2[4] + P2[6] + 0.057	V						
_	RefHi = 3.2 x BandGap	Not Allowed		•	•						
_	RefLo = Vdd/2 - BandGap	Not Allowed									
_	RefLo = BandGap	Not Allowed									
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed									
_	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	Not Allowed									
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4]- P2[6] + 0.022	P2[4] - P2[6] + 0.092	V						

a. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is $1.3V \pm 0.02V$.

3.3.7 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-13. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	_	12.2	_	kΩ	
C _{SC}	Capacitor Unit Value (Switched Capacitor)	_	80	_	fF	

3.3.8 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V or 3.3V at $25^{\circ}C$ and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the *PSoC Mixed-Signal Array Technical Reference Manual* for more information on the VLT_CR register.

Table 3-14. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
	Vdd Value for PPOR Trip (positive ramp)					
V_{PPOR0R}	PORLEV[1:0] = 00b		2.91		V	
V_{PPOR1R}	PORLEV[1:0] = 01b	-	4.39	-	V	
V_{PPOR2R}	PORLEV[1:0] = 10b		4.55		V	
	Vdd Value for PPOR Trip (negative ramp)					
V_{PPOR0}	PORLEV[1:0] = 00b		2.82		V	
V_{PPOR1}	PORLEV[1:0] = 01b	-	4.39	-	V	
V_{PPOR2}	PORLEV[1:0] = 10b		4.55		V	
	PPOR Hysteresis					
V_{PH0}	PORLEV[1:0] = 00b	-	92	_	mV	
V_{PH1}	PORLEV[1:0] = 01b	-	0	-	mV	
V_{PH2}	PORLEV[1:0] = 10b	_	0	_	mV	
	Vdd Value for LVD Trip					
V_{LVD0}	VM[2:0] = 000b	2.86	2.92	2.98 ^a	V	
V_{LVD1}	VM[2:0] = 001b	2.96	3.02	3.08	V	
V_{LVD2}	VM[2:0] = 010b	3.07	3.13	3.20	V	
V_{LVD3}	VM[2:0] = 011b	3.92	4.00	4.08	V	
V_{LVD4}	VM[2:0] = 100b	4.39	4.48	4.57	V	
V_{LVD5}	VM[2:0] = 101b	4.55	4.64	4.74 ^b	V	
V_{LVD6}	VM[2:0] = 110b	4.63	4.73	4.82	V	
V_{LVD7}	VM[2:0] = 111b	4.72	4.81	4.91	V	

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

3.3.9 DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-15. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply Current During Programming or Verify	_	15	30	mA	
V_{ILP}	Input Low Voltage During Programming or Verify	-	-	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.1	_	_	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	_	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	_	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	-	-	Vss + 0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	Vdd - 1.0	-	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000	_	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^a	1,800,000	-	_	_	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	_	_	Years	

a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

3.4 AC Electrical Characteristics

3.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-16. AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO245V}	Internal Main Oscillator Frequency for 24 MHz (5V)	23.04	24	24.96 ^{a,b}	MHz	Trimmed for 5V operation using factory trim values.
F _{IMO243V}	Internal Main Oscillator Frequency for 24 MHz (3.3V)	22.08	24	25.92 ^{a,c}	MHz	Trimmed for 3.3V operation using factory trim values.
F _{IMOUSB}	Internal Main Oscillator Frequency with USB Frequency locking enabled and USB traffic present.	23.94	24	24.06 ^b	MHz	$-10^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$
F _{CPU1}	CPU Frequency (5V Nominal)	0.93	24	24.96 ^{a,b}	MHz	
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.93	12	12.96 ^{b,c}	MHz	
F _{BLK5}	Digital PSoC Block Frequency (5V Nominal)	0	48	49.92 ^{a,b,d}	MHz	Refer to the AC Digital Block Specifications.
F _{BLK3}	Digital PSoC Block Frequency (3.3V Nominal)	0	24	25.92 ^{b, d}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
Jitter32k	32 kHz Period Jitter	_	100		ns	
Step24M	24 MHz Trim Step Size	-	50	-	kHz	
Fout48M	48 MHz Output Frequency	46.08	48.0	49.92 ^{a,c}	MHz	Trimmed. Utilizing factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO) Peak-to-Peak	-	300		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.96	MHz	
T _{RAMP}	Supply Ramp Time	0	_	_	μs	

- a. 4.75V < Vdd < 5.25V.
- b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.
- c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.
- d. See the individual user module data sheets for information on maximum frequencies for user modules.

Figure 3-2. 24 MHz Period Jitter (IMO) Timing Diagram

3.4.4 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp Bias = High is not supported at 3.3V.

Table 3-19. 5V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.9	μs	
	Power = Medium, Opamp Bias = High	-	_	0.72	μs	
	Power = High, Opamp Bias = High	_	_	0.62	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	_	_	5.9	μs	
	Power = Medium, Opamp Bias = High	_	_	0.92	μs	
	Power = High, Opamp Bias = High	_	_	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.15	-	_	V/μs	
	Power = Medium, Opamp Bias = High	1.7	-	-	V/μs	
	Power = High, Opamp Bias = High	6.5	-	_	V/μs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.01	-	-	V/μs	
	Power = Medium, Opamp Bias = High	0.5	-	_	V/μs	
	Power = High, Opamp Bias = High	4.0	_	_	V/μs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.75	_	_	MHz	
	Power = Medium, Opamp Bias = High	3.1	_	-	MHz	
	Power = High, Opamp Bias = High	5.4	_	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	-	nV/rt-Hz	

Table 3-20. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	_	_	3.92	μs	
	Power = Medium, Opamp Bias = High	_	_	0.72	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	_	_	5.41	μs	
	Power = Medium, Opamp Bias = High	_	_	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.31	_	_	V/μs	
	Power = Medium, Opamp Bias = High	2.7	_	_	V/μs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.24	_	_	V/μs	
	Power = Medium, Opamp Bias = High	1.8	_	_	V/μs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.67	_	_	MHz	
	Power = Medium, Opamp Bias = High	2.8	_	_	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	_	100	-	nV/rt-Hz	

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

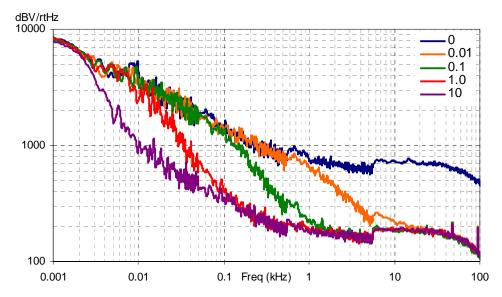


Figure 3-4. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

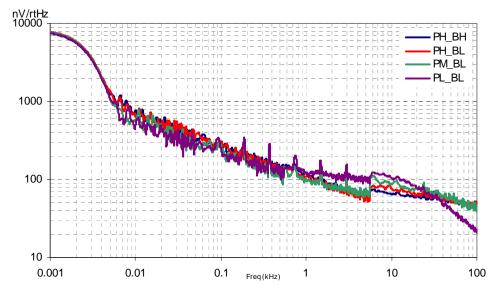


Figure 3-5. Typical Opamp Noise

3.4.9 AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-26. AC Characteristics of the I²C SDA and SCL Pins for Vdd

		Standa	ard Mode	Fast Mode			
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	_	1.3	-	μs	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	_	0.6	-	μs	
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7	_	0.6	_	μs	
T _{HDDATI2C}	Data Hold Time	0	_	0	_	μs	
T _{SUDATI2C}	Data Set-up Time	250	_	100 ^a	_	ns	
T _{SUSTOI2C}	Set-up Time for STOP Condition	4.0	_	0.6	_	μs	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μs	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	-	0	50	ns	

a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

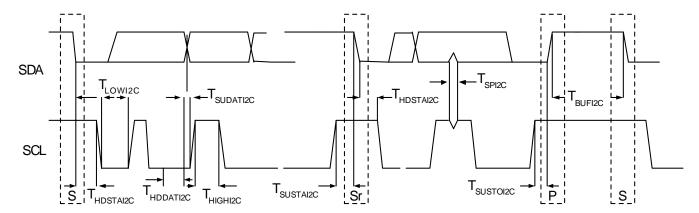
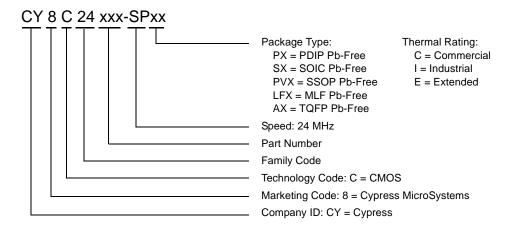


Figure 3-6. Definition for Timing for Fast/Standard Mode on the I²C Bus

5. Ordering Information



The following table lists the CY8C24794 PSoC device's key package features and ordering codes.

Table 5-1. CY8C24794 PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Temperature Range	Digital Blocks	Analog Blocks	Digital IO Pins	Analog Inputs	Analog Outputs	XRES Pin
56 Pin (8x8 mm) MLF	CY8C24794-24LFXI	16K	1K	-40C to +85C	4	6	50	48	2	No
56 Pin (8x8 mm) MLF (Tape and Reel)	CY8C24794-24LFXIT	16K	1K	-40C to +85C	4	6	50	48	2	No

5.1 Ordering Code Definitions

