

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	12
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21234-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, shown in Figure 2, consists of four main areas: the core, the system resources, the digital system, and the analog system. Configurable global bus resources allow combining all of the device resources into a complete custom system. Each CY8C21x34 PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

The PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO) and internal low speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz [3]. The M8C is a four-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor.

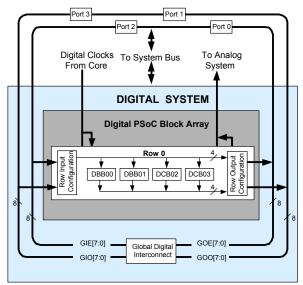
System resources provide these additional capabilities:

- Digital clocks for increased flexibility
- I²C^[4] functionality to implement an I²C master and slave
- An internal voltage reference, multi-master, that provides an absolute value of 1.3 V to a number of PSoC subsystems
- A SMP that generates normal operating voltages from a single battery cell
- Various system resets supported by the M8C

The digital system consists of an array of digital PSoC blocks that may be configured into any number of digital peripherals. The digital blocks are connected to the GPIOs through a series of global buses. These buses can route any signal to any pin, freeing designs from the constraints of a fixed peripheral controller.

The analog system consists of four analog PSoC blocks, supporting comparators, and analog-to-digital conversion up to 10 bits of precision.

The Digital System


The digital system consists of four digital PSoC blocks. Each block is an 8-bit resource that is used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals. which are called user modules. Digital peripheral configurations include:

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8- with selectable parity
- Serial peripheral interface (SPI) master and slave
- I²C slave and multi-master ^[4]
- CRC/generator (8-bit)
- IrDA
- PRS generators (8-bit to 32-bit)

The digital blocks are connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

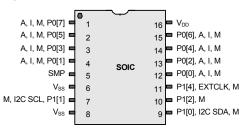
Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 6.

Figure 2. Digital System Block Diagram

Notes

4. mode

^{3.} Errata: The worst case IMO frequency deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is ±5%. Errata: The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep



Pin Information

The CY8C21x34 PSoC device is available in a variety of packages which are listed in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O and connection to the common analog bus. However, V_{SS} , V_{DD} , SMP, and XRES are not capable of Digital I/O.

16-pin Part Pinout

Figure 4. CY8C21234 16-pin PSoC Device

CY8C21234 16-pin SOIC Pin Definitions

Din No	Pin No.		Name	Description				
FILLING.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[7]	Analog column mux input				
2	I/O	I, M	P0[5]	Analog column mux input				
3	I/O	I, M	P0[3]	Analog column mux input, integrating input				
4	I/O	I, M	P0[1]	Analog column mux input, integrating input				
5	Power		SMP	Switch-mode pump (SMP) connection to required external components				
6	Power		V _{SS}	Ground connection ^[9]				
7	I/O	М	P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[10]				
8	Power		V _{SS}	Ground connection ^[9]				
9	I/O	М	P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[10]				
10	I/O	М	P1[2]					
11	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
12	I/O	I, M	P0[0]	Analog column mux input				
13	I/O	I, M	P0[2]	Analog column mux input				
14	I/O	I, M	P0[4]	Analog column mux input				
15	I/O	I, M	P0[6]	Analog column mux input				
16	Power	•	V _{DD}	Supply voltage				

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

9. All V_{SS} pins should be brought out to one common GND plane.

10. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.

20-pin Part Pinout

Figure 5. CY8C21334 20-pin PSoC Device

CY8C21334 20-pin SSOP Pin Definitions

Pin No.	Pin No. Type		Name	Description					
PIN NO.	Digital	Analog	Name	Description					
1	I/O	I, M	P0[7]	Analog column mux input					
2	I/O	I, M	P0[5]	Analog column mux input					
3	I/O	I, M	P0[3]	Analog column mux input, integrating input					
4	I/O	I, M	P0[1]	Analog column mux input, integrating input					
5	Power		V _{SS}	Ground connection [11]					
6	I/O	М	P1[7]	I ² C SCL					
7	I/O	М	P1[5]	I ² C SDA					
8	I/O	М	P1[3]						
9	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[12]					
10	Power		V _{SS}	Ground connection [11]					
11	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[12]					
12	I/O	М	P1[2]						
13	I/O	М	P1[4]	Optional external clock input (EXTCLK)					
14	I/O	М	P1[6]						
15	Input		XRES	Active high external reset with internal pull-down					
16	I/O	I, M	P0[0]	Analog column mux input					
17	I/O	I, M	P0[2]	Analog column mux input					
18	I/O	I, M	P0[4]	Analog column mux input					
19	I/O	I, M	P0[6]	Analog column mux input					
20	Power		V _{DD}	Supply voltage					

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

28-pin Part Pinout

Figure 6. CY8C21534 28-pin PSoC Device

	- [0	\bigcirc		
A, I, M, P0[7]	9	1		28	V _{DD}
A, I, M, P0[5]	4	2		27	P0[6], A, I, M
A, I, M, P0[3]	4	3		26	P0[4], A, I, M
A, I, M, P0[1]	4	4		25	P0[2], A, I, M
M, P2[7]	뼥	5		24	P0[0], A, I, M
M, P2[5]	4	6		23	P2[6], M
M, P2[3]	4	7	SSOP	22	■ P2[4], M
M, P2[1]	4	8	0001	21	P2[2], M
V _{SS}	4	9		20	P2[0], M
M, I2C SCL, P1[7]	4	10		19	XRES
M, I2C SDA, P1[5]	4	11		18	P1[6], M
M, P1[3]	4	12		17	P1[4], EXTCLK, M
M, I2C SCL, P1[1]	9	13		16	P1[2], M
V _{SS}	٩	14		15	P1[0], I2C SDA, M

CY8C21534 28-pin SSOP Pin Definitions

Pin No. Type		Name	Description					
PIII NO.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[7]	Analog column mux input				
2	I/O	I, M	P0[5]	Analog column mux input and column output				
3	I/O	I, M	P0[3]	Analog column mux input and column output, integrating input				
4	I/O	I, M	P0[1]	Analog column mux input, integrating input				
5	I/O	М	P2[7]					
6	I/O	М	P2[5]					
7	I/O	I, M	P2[3]	Direct switched capacitor block input				
8	I/O	I, M	P2[1]	Direct switched capacitor block input				
9	Power		V _{SS}	Ground connection ^[13]				
10	I/O	М	P1[7]	I ² C SCL				
11	I/O	М	P1[5]	I ² C SDA				
12	I/O	М	P1[3]					
13	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[14]				
14	Power		V _{SS}	Ground connection ^[13]				
15	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[14]				
16	I/O	М	P1[2]					
17	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
18	I/O	М	P1[6]					
19	Input		XRES	Active high external reset with internal pull-down				
20	I/O	I, M	P2[0]	Direct switched capacitor block input				
21	I/O	I, M	P2[2]	Direct switched capacitor block input				
22	I/O	М	P2[4]					
23	I/O	М	P2[6]					
24	I/O	I, M	P0[0]	Analog column mux input				
25	I/O	I, M	P0[2]	Analog column mux input				
26	I/O	I, M	P0[4]	Analog column mux input				
27	I/O	I, M	P0[6]	Analog column mux input				
28	Power		V _{DD}	Supply voltage				

LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

CY8C21434/CY8C21634 32-pin QFN Pin Definitions

Pin No. [15]	Туре								
Pin No. ¹¹⁰	Digital	Analog	Name	Description					
1	I/O	I, M	P0[1]	Analog column mux input, integrating input					
2	I/O	М	P2[7]						
3	I/O	М	P2[5]						
4	I/O	М	P2[3]						
5	I/O	М	P2[1]						
6	I/O	М	P3[3]	In CY8C21434 part					
6	Power		SMP	SMP connection to required external components in CY8C21634 part					
7	I/O	М	P3[1]	In CY8C21434 part					
7	Power		V _{SS}	Ground connection in CY8C21634 part ^[16]					
8	I/O	М	P1[7]	I ² C SCL					
9	I/O	М	P1[5]	I ² C SDA					
10	I/O	М	P1[3]						
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[17]					
12	Power		V _{SS}	Ground connection ^[16]					
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[17]					
14	I/O	М	P1[2]						
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)					
16	I/O	М	P1[6]						
17	Input		XRES	Active high external reset with internal pull-down					
18	I/O	М	P3[0]						
19	I/O	М	P3[2]						
20	I/O	М	P2[0]						
21	I/O	М	P2[2]						
22	I/O	М	P2[4]						
23	I/O	М	P2[6]						
24	I/O	I, M	P0[0]	Analog column mux input					
25	I/O	I, M	P0[2]	Analog column mux input					
26	I/O	I, M	P0[4]	Analog column mux input					
27	I/O	I, M	P0[6]	Analog column mux input					
28	Power		V _{DD}	Supply voltage					
29	I/O	I, M	P0[7]	Analog column mux input					
30	I/O	I, M	P0[5]	Analog column mux input					
31	I/O	I, M	P0[3]	Analog column mux input, integrating input					
32	Power		V _{SS}	Ground connection ^[16]					

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

56-pin Part Pinout

The 56-pin SSOP part is for the CY8C21001 on-chip debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.

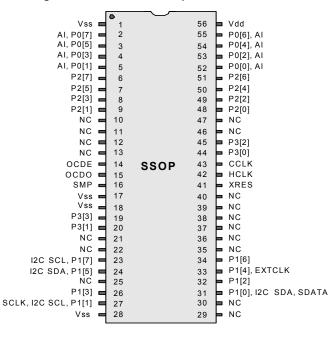


Figure 10. CY8C21001 56-pin PSoC Device

CY8C21001 56-pin SSOP Pin Definitions

Pin No.	Туре		Pin Name	Description					
PIII NO.	Digital	Analog		Description					
1	Power		V _{SS}	Ground connection ^[18]					
2	I/O	I	P0[7]	Analog column mux input					
3	I/O	I	P0[5]	Analog column mux input and column output					
4	I/O	I	P0[3]	Analog column mux input and column output					
5	I/O	I	P0[1]	Analog column mux input					
6	I/O		P2[7]						
7	I/O		P2[5]						
8	I/O	I	P2[3]	Direct switched capacitor block input					
9	I/O	I	P2[1]	Direct switched capacitor block input					
10			NC	No connection. Pin must be left floating					
11			NC	No connection. Pin must be left floating					
12			NC	No connection. Pin must be left floating					
13			NC	No connection. Pin must be left floating					
14	OCD		OCDE	OCD even data I/O					
15	OCD		OCDO	OCD odd data output					
16	Power	•	SMP	SMP connection to required external components					
17	Power		V _{SS}	Ground connection [18]					
18	Power		V _{SS}	Ground connection [18]					
19	I/O		P3[3]						

Table 4. Register Map 1 Table: Configuration Space

Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85		-	C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87		-	C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM0 PRT2DM1	09	RW									
				49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
PRT3DM0	0C	RW		4C			8C			CC	
PRT3DM1	0D	RW		4D			8D			CD	
PRT3IC0	0E	RW		4E			8E			CE	
PRT3IC1	0F	RW		4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI O OU	D2	RW
	13		ŀ	53		t	93	t	GDI_E_OU	D3	RW
	14			54			94			D4	+
	15			55		1	95	<u> </u>		D5	+
	15			55		l	95			D5	───
	16						96	<u> </u>		D6 D7	───
				57					1411/ 050		D 14/
	18			58			98		MUX_CR0	D8	RW
	19			59			99		MUX_CR1	D9	RW
	1A			5A			9A		MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	 CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF CR0	62	RW		A2		OSC CR2	E2	RW
2220000	23		AMD CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP GO EN	64	RW		A4	-	VLT_OR	E4	R
DBB01FN DBB01IN	25	RW	CIVIF_GO_EN	65	L M		A4 A5		ADC0_TR	E5	RW
					DW/						
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	<u> </u>
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B		CLK_CR3	6B	RW		AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	1
DCB03OU	2E	RW	 TMP_DR2	6E	RW		AE	1		EE	1
	2F		TMP DR3	6F	RW	1	AF			EF	1
	30			70		RDIORI	B0	RW		F0	1
	31			71		RDIOSYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B1 B2	RW		F2	┼────
	33		ACE00CR1	72	RW	RDI0IS RDI0LT0	B3	RW		F2 F3	───
			ACEUUCKZ		rt VV						───
	34			74		RDI0LT1	B4	RW		F4	───
	35			75	514	RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	<u> </u>
	37		ACE01CR2	77	RW	I	B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
-	3A			7A			BA		FLS_PR1	FA	RW
	3B			7B	1		BB			FB	1
	3C	1		7C	1		BC	1		FC	1
	3D		ł	7D	1	Ì	BD	1	DAC_CR	FD	RW
	3E			7E			BE		CPU SCR1	FE	#
	3F			7E 7F		1	BF	<u> </u>	CPU_SCR0	FF	#
	51	1		11		# Access is bit s		I	0 0_0000	1.1	π

Access is bit specific.

DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 6. 5-V and 3.3-V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	-	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5]))
I _{ОН}	High level source current	10	-	_	mA	$V_{OH} = V_{DD} - 1.0$ V, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	25	-	_	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 7. 2.7-V DC GPIO Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 0.4	_	-	V	I_{OH} = 2.5 mA (6.25 Typ), V_{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA Typ combined I _{OH} budget)
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget)
I _{OH}	High level source current	2.5	-	-	mA	$V_{OH} = V_{DD} - 0.4$ V, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	10	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	_	0.75	V	V _{DD} = 2.4 to 3.0
V _{IH}	Input high level	2.0	-	-	V	V _{DD} = 2.4 to 3.0
V _H	Input hysteresis	-	90	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

DC Programming Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at $25 \degree C$ and are for design guidance only.

Table 14. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7		5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	_	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	_	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	-	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	_	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[25]	-	-	I	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[26]	1,800,000	-	_	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	-	-	Years	

DC I²C Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15. DC I²C Specifications^[27]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	$2.4~V \leq V_{DD} \leq 5.25~V$

Notes

25. The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

26. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36×2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no single block ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC[®] Flash) for more information.

27. All GPIO meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.

Table 24. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	-	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
-	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	_	_	μs	

Table 25. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	-	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
-	High period with CPU clock divide by 1	160	-	5300	ns	
-	Low period with CPU clock divide by 1	160	_	_	ns	
-	Power-up IMO to switch	150	_	_	μs	

AC Programming Specifications

Table 26 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 26.	AC	Prog	gramming	I S	pecifications
-----------	----	------	----------	-----	---------------

Symbol	Description	Min	Тур	Мах	Units	Notes
T _{RSCLK}	Rise time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall time of SCLK	1	-	20	ns	
T _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash erase time (block)	-	10	-	ms	
T _{WRITE}	Flash block write time	-	40	-	ms	
T _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	3.6 < V _{DD}
T _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
T _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0$
T _{ERASEALL}	Flash erase time (Bulk)	-	20	-	ms	Erase all blocks and protection fields at once
T _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	100 ^[39]	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
T _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	200 ^[39]	ms	$-40~^\circ C \le Tj \le 0~^\circ C$

AC I²C ^[40] Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 27. AC Characteristics of the I ² C	SDA and SCL Pins for $V_{DD} \ge 3.0 \text{ V}$
--	---

Symbol	Description	Standar	d Mode	Fast M	Units		
Symbol	Description	Min	Max	Min	Max	Units	
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated	4.0	_	0.6	-	μs	
T _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs	
T _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs	
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	-	0.6	-	μs	
T _{HDDATI2C}	Data hold time	0	-	0	-	μs	
T _{SUDATI2C}	Data setup time	250	-	100 ^[41]	-	ns	
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	0.6	-	μs	
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	1.3	-	μs	
T _{SPI2C}	Pulse width of spikes suppressed by the input filter.	_	_	0	50	ns	

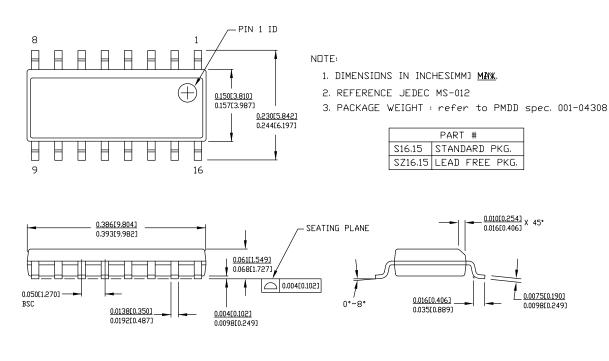
Notes

39. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC[®] Flash) for more information.


40. Errata: The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep mode.

41. A Fast-Mode I²C-bus device may be used in a Standard-Mode I²C-bus system, but it must meet the requirement T_{SU:DAT} ≥ 250 ns. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line T_{rmax} + T_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 28. 2.7-V AC Characteristics of the I²C SDA and SCL Pins (Fast Mode not Supported)


Symbol	Description	Standa	ard Mode	Fast	Mode	Units
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	-	-	kHz
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated.	4.0	-	-	-	μs
T _{LOWI2C}	Low period of the SCL clock	4.7	-	-	-	μs
T _{HIGHI2C}	High period of the SCL clock	4.0	-	-	-	μs
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	-	-	-	μs
T _{HDDATI2C}	Data hold time	0	-	-	-	μs
T _{SUDATI2C}	Data setup time	250	-	-	-	ns
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	-	-	μs
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	-	-	μs
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	-	-	ns

Packaging Information

This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package. **Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

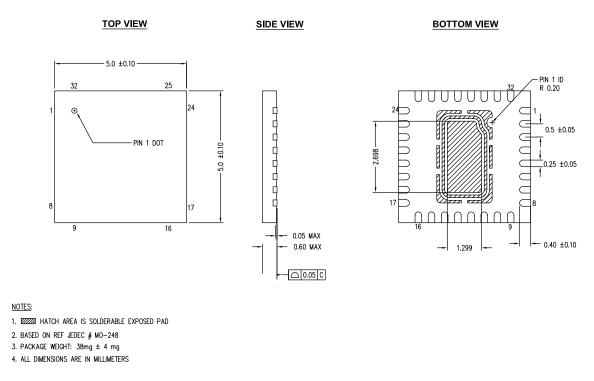


Figure 15. 16-pin SOIC (150 Mils) Package Outline, 51-85068

51-85068 *E

Figure 19. 32-pin QFN (5 × 5 × 0.55 mm) LQ32A 1.3 × 2.7 E-Pad (Sawn Type) Package Outline, 001-48913

001-48913 *D

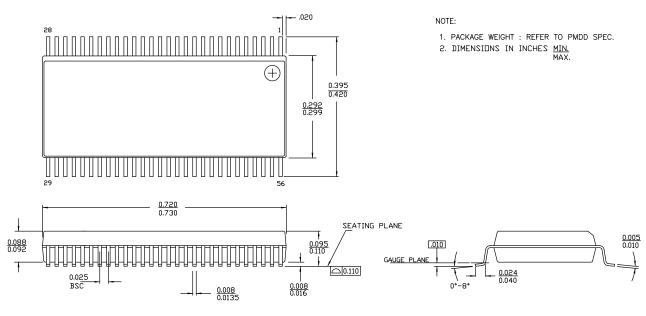


Figure 20. 56-pin SSOP (300 Mils) Package Outline, 51-85062

51-85062 *F

Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
16-Pin (150-Mil) SOIC	CY8C21234-24SXI	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[47]	0	No
16-Pin (150-Mil) SOIC (Tape and Reel)	CY8C21234-24SXIT	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[47]	0	No
20-Pin (210-Mil) SSOP	CY8C21334-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[47]	0	Yes
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21334-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[47]	0	Yes
28-Pin (210-Mil) SSOP	CY8C21534-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[47]	0	Yes
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21534-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN	CY8C21434-24LTXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN $^{[48]}$ (Tape and Reel)	CY8C21434-24LTXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN	CY8C21434-24LQXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN (Tape and Reel)	CY8C21434-24LQXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN ^[48]	CY8C21634-24LTXI	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN ^[48] (Tape and Reel)	CY8C21634-24LTXIT	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
56-Pin OCD SSOP	CY8C21001-24PVXI	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
	CY8C21434-12X14I		e conta nation.	act sale	es office or Field Ap	oplicat	ions E	ngine	er (FAE)) for m	ore

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Notes47. All Digital I/O Pins also connect to the common analog mux.48. Refer to the section 32-pin Part Pinout on page 12 for pin differences.

Acronyms

Table 32 lists the acronyms that are used in this document.

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	PLL	phase-locked loop
СТ	continuous time	POR	power on reset
DAC	digital-to-analog converter	PPOR	precision power on reset
DC	direct current	PRS	pseudo-random sequence
DTMF	dual-tone multi-frequency	PSoC®	Programmable System-on-Chip
ECO	external crystal oscillator	PWM	pulse width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	RTC	real time clock
ICE	in-circuit emulator	SAR	successive approximation
IDE	integrated development environment	SC	switched capacitor
ILO	internal low speed oscillator	SLIMO	slow IMO
IMO	internal main oscillator	SMP	switch-mode pump
I/O	input/output	SOIC	small-outline integrated circuit
IrDA	infrared data association	SPI TM	serial peripheral interface
ISSP	in-system serial programming	SRAM	static random access memory
LCD	liquid crystal display	SROM	supervisory read only memory
LED	light-emitting diode	SSOP	shrink small-outline package
LPC	low power comparator	UART	universal asynchronous receiver / transmitter
LVD	low voltage detect	USB	universal serial bus
MAC	multiply-accumulate	WDT	watchdog timer
MCU	microcontroller unit	XRES	external reset

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC[®] Programmable System-on-Chip Technical Reference Manual (TRM) (001-14463)

Design Aids – Reading and Writing PSoC[®] Flash - AN2015 (001-40459)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Document Conventions

Units of Measure

Table 33 lists the units of measures.

Table 33. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μH	micro henry
dB	decibels	μs	microsecond
°C	degree Celsius	ms	millisecond
μF	microfarad	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolt
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nano volt
kΩ	kilo ohm	V	volt
Ω	ohm	μW	microwatt
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nano ampere	ppm	parts per million
pА	pico ampere	%	percent
mH	millihenry		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.
modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	1. Pertaining to a process in which all events occur one after the other.
	Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page (continued)

Rev.	ECN	Orig. of Change	Submission Date	Description of Change
AD	4338103	PRKU	04/15/2014	Updated Pin Information: Updated CY8C21234 16-pin SOIC Pin Definitions (corresponding to CY8C21234): Added Note 9 and referred the same note in the description of pin 6 and pin 8 Updated CY8C21334 20-pin SSOP Pin Definitions (corresponding to CY8C21334): Added Note 11 and referred the same note in the description of pin 5 and pin 10 Updated CY8C21534 28-pin SSOP Pin Definitions (corresponding to CY8C21534): Added Note 13 and referred the same note in the description of pin 9 and pin 14 Updated CY8C21434/CY8C21634 32-pin QFN Pin Definitions (corresponding to CY8C21434/CY8C21634): Added Note 16 and referred the same note in the description of pin 7, pin 12 and pin 32. Updated CY8C21001 56-pin SSOP Pin Definitions (corresponding to CY8C21001): Added Note 18 and referred the same note in the description of pin 17, pin 18 and pin 28. Updated Packaging Information: Updated Packaging Information: Updated Thermal Impedances: Updated Note 43 referred in Table 29.
AE	4531967	DCHE	10/10/2014	Added More Information. Added PSoC Designer.
AF	4593771	DIMA	12/11/2014	Updated Pin Information: Updated CY8C21001 56-pin SSOP Pin Definitions: Referred Note 18 in description of pin 1. Updated Packaging Information: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F.
AG	4670626	DCHE	02/25/2015	Updated Errata: Replaced CY8C21234 with CY8C21X34 in all instances.
AH	5394304	DCHE	08/08/2016	Updated to new template. Completing Sunset Review.