

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | M8C                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 24MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                           |
| Peripherals                | POR, PWM, WDT                                                               |
| Number of I/O              | 12                                                                          |
| Program Memory Size        | 8KB (8K x 8)                                                                |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 512 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 5.25V                                                                |
| Data Converters            | A/D 28x8b                                                                   |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 16-SOIC (0.154", 3.90mm Width)                                              |
| Supplier Device Package    | 16-SOIC                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21234-24sxit |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# CY8C21634/CY8C21534/CY8C21434 CY8C21334/CY8C21234

## Contents

| PSoC Functional Overview              | 4  |
|---------------------------------------|----|
| The PSoC Core                         | 4  |
| The Digital System                    | 4  |
| The Analog System                     | 5  |
| Additional System Resources           | 5  |
| PSoC Device Characteristics           | 6  |
| Getting Started                       | 6  |
| Application Notes                     | 6  |
| Development Kits                      | 6  |
| Training                              | 6  |
| CYPros Consultants                    | 6  |
| Solutions Library                     | 6  |
| Technical Support                     | 6  |
| Development Tools                     | 7  |
| PSoC Designer Software Subsystems     | 7  |
| Designing with PSoC Designer          | 8  |
| Select User Modules                   | 8  |
| Configure User Modules                | 8  |
| Organize and Connect                  | 8  |
| Generate, Verify, and Debug           | 8  |
| Pin Information                       | 9  |
| 16-pin Part Pinout                    | 9  |
| CY8C21234 16-pin SOIC Pin Definitions | 9  |
| 20-pin Part Pinout                    | 10 |
| CY8C21334 20-pin SSOP Pin Definitions | 10 |
| 28-pin Part Pinout                    | 11 |
| CY8C21534 28-pin SSOP Pin Definitions | 11 |
| 32-pin Part Pinout                    | 12 |
| CY8C21434/CY8C21634 32-pin QFN        |    |
| Pin Definitions                       | 13 |
| 56-pin Part Pinout                    | 14 |
| CY8C21001 56-pin SSOP Pin Definitions | 14 |
| Register Reference                    | 16 |
| Register Conventions                  | 16 |
| Register Mapping Tables               | 16 |
|                                       |    |

| Absolute Maximum Ratings                | 19 |
|-----------------------------------------|----|
| Operating Temperature                   | 19 |
| Electrical Specifications               | 20 |
| DC Electrical Characteristics           | 20 |
| AC Electrical Characteristics           | 26 |
| Packaging Information                   | 34 |
| Thermal Impedances                      | 38 |
| Solder Reflow Specifications            | 38 |
| Development Tool Selection              | 39 |
| Software                                | 39 |
| Development Kits                        | 39 |
| Evaluation Tools                        | 39 |
| Device Programmers                      | 40 |
| Accessories (Emulation and Programming) | 40 |
| Ordering Information                    | 41 |
| Ordering Code Definitions               | 42 |
| Acronyms                                | 43 |
| Reference Documents                     | 43 |
| Document Conventions                    | 44 |
| Units of Measure                        | 44 |
| Numeric Conventions                     | 44 |
| Glossary                                | 44 |
| Errata                                  | 49 |
| Part Numbers Affected                   | 49 |
| CY8C21X34 Qualification Status          | 49 |
| CY8C21X34 Errata Summary                | 50 |
| Document History Page                   | 51 |
| Sales, Solutions, and Legal Information | 55 |
| Worldwide Sales and Design Support      | 55 |
| Products                                | 55 |
| PSoC®Solutions                          | 55 |
| Cypress Developer Community             | 55 |
| Technical Support                       | 55 |



## The Analog System

The analog system consists of four configurable blocks that allow for the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- ADCs (single or dual, with 8-bit or 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34 devices provide limited functionality Type E analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Technical Reference Manual* for detailed information on the CY8C21x34's Type E analog blocks.

#### Figure 3. Analog System Block Diagram



#### The Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins may be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing
- Chip-wide mux that allows analog input from any I/O pin
- Crosspoint connection between any I/O pin combinations

#### **Additional System Resources**

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a switch-mode pump, low-voltage detection, and power-on-reset (POR).

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I<sup>2</sup>C <sup>[5]</sup> module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.
- Versatile analog multiplexer system.

Note
 5. Errata: The I<sup>2</sup>C block exhibits occasional data and bus corruption errors when the I2C master initiates transactions while the device is transitioning in to or out of sleep mode.



## **PSoC Device Characteristics**

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

| PSoC Part<br>Number | Digital<br>I/O | Digital<br>Rows | Digital<br>Blocks | Analog<br>Inputs | Analog<br>Outputs | Analog<br>Columns | Analog<br>Blocks               | SRAM<br>Size | Flash<br>Size |
|---------------------|----------------|-----------------|-------------------|------------------|-------------------|-------------------|--------------------------------|--------------|---------------|
| CY8C29x66           | up to 64       | 4               | 16                | up to 12         | 4                 | 4                 | 12                             | 2 K          | 32 K          |
| CY8C28xxx           | up to 44       | up to 3         | up to 12          | up to 44         | up to 4           | up to 6           | up to<br>12 + 4 <sup>[6]</sup> | 1 K          | 16 K          |
| CY8C27x43           | up to 44       | 2               | 8                 | up to 12         | 4                 | 4                 | 12                             | 256          | 16 K          |
| CY8C24x94           | up to 56       | 1               | 4                 | up to 48         | 2                 | 2                 | 6                              | 1 K          | 16 K          |
| CY8C24x23A          | up to 24       | 1               | 4                 | up to 12         | 2                 | 2                 | 6                              | 256          | 4 K           |
| CY8C23x33           | up to 26       | 1               | 4                 | up to 12         | 2                 | 2                 | 4                              | 256          | 8 K           |
| CY8C22x45           | up to 38       | 2               | 8                 | up to 38         | 0                 | 4                 | 6 <sup>[6]</sup>               | 1 K          | 16 K          |
| CY8C21x45           | up to 24       | 1               | 4                 | up to 24         | 0                 | 4                 | 6 <sup>[6]</sup>               | 512          | 8 K           |
| CY8C21x34           | up to 28       | 1               | 4                 | up to 28         | 0                 | 2                 | 4 <sup>[6]</sup>               | 512          | 8 K           |
| CY8C21x23           | up to 16       | 1               | 4                 | up to 8          | 0                 | 2                 | 4 <sup>[6]</sup>               | 256          | 4 K           |
| CY8C20x34           | up to 28       | 0               | 0                 | up to 28         | 0                 | 0                 | 3 <sup>[6,7]</sup>             | 512          | 8 K           |
| CY8C20xx6           | up to 36       | 0               | 0                 | up to 36         | 0                 | 0                 | 3 <sup>[6,7]</sup>             | up to 2 K    | up to 32 K    |

#### Table 1. PSoC Device Characteristics

## **Getting Started**

For in-depth information, along with detailed programming details, see the  $PSoC^{\textcircled{R}}$  Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

## **Application Notes**

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

## **Development Kits**

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

## Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

## **CYPros Consultants**

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

## **Solutions Library**

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

#### **Technical Support**

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Limited analog functionality.
 Two analog blocks and one CapSense<sup>®</sup>.



## **Development Tools**

PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- □ Hardware and software I<sup>2</sup>C <sup>[8]</sup> slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

## **PSoC Designer Software Subsystems**

#### Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are ADCs, DACs, amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

#### Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

**Assemblers**. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

**C Language Compilers**. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

#### Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

#### Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support Forum to aid the designer.

#### In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Note
8. Errata: The I<sup>2</sup>C block exhibits occasional data and bus corruption errors when the I<sup>2</sup>C master initiates transactions while the device is transitioning in to or out of sleep mode.



## **Designing with PSoC Designer**

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure User Modules.
- 3. Organize and Connect.
- 4. Generate, Verify, and Debug.

#### Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

#### **Configure User Modules**

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

#### **Organize and Connect**

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

#### Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations, and external signals.



## 28-pin Part Pinout

## Figure 6. CY8C21534 28-pin PSoC Device

|                   | - 1 | <b>A</b> | $\sim$ |    |                   |
|-------------------|-----|----------|--------|----|-------------------|
| A, I, M, P0[7]    | 4   | <b>1</b> |        | 28 | V <sub>DD</sub>   |
| A, I, M, P0[5]    | 4   | 2        |        | 27 | P0[6], A, I, M    |
| A, I, M, P0[3]    | 4   | 3        |        | 26 | P0[4], A, I, M    |
| A, I, M, P0[1]    | 4   | 4        |        | 25 | P0[2], A, I, M    |
| M, P2[7]          | 4   | 5        |        | 24 | P0[0], A, I, M    |
| M, P2[5]          | 4   | 6        |        | 23 | ■ P2[6], M        |
| M, P2[3]          | 4   | 7        | SSOP   | 22 | ■ P2[4], M        |
| M, P2[1]          | 4   | 8        | 330F   | 21 | ■ P2[2], M        |
| V <sub>SS</sub>   | 4   | 9        |        | 20 | P2[0], M          |
| M, I2C SCL, P1[7] | 4   | 10       |        | 19 | XRES              |
| M, I2C SDA, P1[5] | 4   | 11       |        | 18 | ■ P1[6], M        |
| M, P1[3]          | 4   | 12       |        | 17 | P1[4], EXTCLK, M  |
| M, I2C SCL, P1[1] | 4   | 13       |        | 16 | P1[2], M          |
| V <sub>SS</sub>   | 4   | 14       |        | 15 | P1[0], I2C SDA, M |
|                   | L   |          |        |    |                   |

## CY8C21534 28-pin SSOP Pin Definitions

| Pin No    | Туре    |        | Namo            | Description                                                  |  |  |  |  |  |
|-----------|---------|--------|-----------------|--------------------------------------------------------------|--|--|--|--|--|
| T III NO. | Digital | Analog | Name            | Description                                                  |  |  |  |  |  |
| 1         | I/O     | I, M   | P0[7]           | Analog column mux input                                      |  |  |  |  |  |
| 2         | I/O     | I, M   | P0[5]           | Analog column mux input and column output                    |  |  |  |  |  |
| 3         | I/O     | I, M   | P0[3]           | Analog column mux input and column output, integrating input |  |  |  |  |  |
| 4         | I/O     | I, M   | P0[1]           | Analog column mux input, integrating input                   |  |  |  |  |  |
| 5         | I/O     | М      | P2[7]           |                                                              |  |  |  |  |  |
| 6         | I/O     | М      | P2[5]           |                                                              |  |  |  |  |  |
| 7         | I/O     | I, M   | P2[3]           | Direct switched capacitor block input                        |  |  |  |  |  |
| 8         | I/O     | I, M   | P2[1]           | Direct switched capacitor block input                        |  |  |  |  |  |
| 9         | Power   |        | V <sub>SS</sub> | Ground connection <sup>[13]</sup>                            |  |  |  |  |  |
| 10        | I/O     | М      | P1[7]           | I <sup>2</sup> C SCL                                         |  |  |  |  |  |
| 11        | I/O     | М      | P1[5]           | I <sup>2</sup> C SDA                                         |  |  |  |  |  |
| 12        | I/O     | М      | P1[3]           |                                                              |  |  |  |  |  |
| 13        | I/O     | М      | P1[1]           | I <sup>2</sup> C SCL, ISSP-SCLK <sup>[14]</sup>              |  |  |  |  |  |
| 14        | Power   | •      | V <sub>SS</sub> | Ground connection <sup>[13]</sup>                            |  |  |  |  |  |
| 15        | I/O     | М      | P1[0]           | I <sup>2</sup> C SDA, ISSP-SDATA <sup>[14]</sup>             |  |  |  |  |  |
| 16        | I/O     | М      | P1[2]           |                                                              |  |  |  |  |  |
| 17        | I/O     | М      | P1[4]           | Optional external clock input (EXTCLK)                       |  |  |  |  |  |
| 18        | I/O     | М      | P1[6]           |                                                              |  |  |  |  |  |
| 19        | Input   |        | XRES            | Active high external reset with internal pull-down           |  |  |  |  |  |
| 20        | I/O     | I, M   | P2[0]           | Direct switched capacitor block input                        |  |  |  |  |  |
| 21        | I/O     | I, M   | P2[2]           | Direct switched capacitor block input                        |  |  |  |  |  |
| 22        | I/O     | М      | P2[4]           |                                                              |  |  |  |  |  |
| 23        | I/O     | М      | P2[6]           |                                                              |  |  |  |  |  |
| 24        | I/O     | I, M   | P0[0]           | Analog column mux input                                      |  |  |  |  |  |
| 25        | I/O     | I, M   | P0[2]           | Analog column mux input                                      |  |  |  |  |  |
| 26        | I/O     | I, M   | P0[4]           | Analog column mux input                                      |  |  |  |  |  |
| 27        | I/O     | I, M   | P0[6]           | Analog column mux input                                      |  |  |  |  |  |
| 28        | Power   |        | V <sub>DD</sub> | Supply voltage                                               |  |  |  |  |  |

LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.

#### Notes

All V<sub>SS</sub> pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.



## 56-pin Part Pinout

The 56-pin SSOP part is for the CY8C21001 on-chip debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.



Figure 10. CY8C21001 56-pin PSoC Device

## CY8C21001 56-pin SSOP Pin Definitions

| Din No   | Тур     | )e     | Din Nama        | Description                                    |  |  |  |  |
|----------|---------|--------|-----------------|------------------------------------------------|--|--|--|--|
| FIII NO. | Digital | Analog |                 | Description                                    |  |  |  |  |
| 1        | Power   |        | V <sub>SS</sub> | Ground connection <sup>[18]</sup>              |  |  |  |  |
| 2        | I/O     | I      | P0[7]           | Analog column mux input                        |  |  |  |  |
| 3        | I/O     | I      | P0[5]           | Analog column mux input and column output      |  |  |  |  |
| 4        | I/O     | I      | P0[3]           | Analog column mux input and column output      |  |  |  |  |
| 5        | I/O     | I      | P0[1]           | Analog column mux input                        |  |  |  |  |
| 6        | I/O     |        | P2[7]           |                                                |  |  |  |  |
| 7        | I/O     |        | P2[5]           |                                                |  |  |  |  |
| 8        | I/O     | l      | P2[3]           | Direct switched capacitor block input          |  |  |  |  |
| 9        | I/O     | I      | P2[1]           | Direct switched capacitor block input          |  |  |  |  |
| 10       |         |        | NC              | No connection. Pin must be left floating       |  |  |  |  |
| 11       |         |        | NC              | No connection. Pin must be left floating       |  |  |  |  |
| 12       |         |        | NC              | No connection. Pin must be left floating       |  |  |  |  |
| 13       |         |        | NC              | No connection. Pin must be left floating       |  |  |  |  |
| 14       | OCD     |        | OCDE            | OCD even data I/O                              |  |  |  |  |
| 15       | OCD     |        | OCDO            | OCD odd data output                            |  |  |  |  |
| 16       | Power   |        | SMP             | SMP connection to required external components |  |  |  |  |
| 17       | Power   |        | V <sub>SS</sub> | Ground connection <sup>[18]</sup>              |  |  |  |  |
| 18       | Power   |        | V <sub>SS</sub> | Ground connection <sup>[18]</sup>              |  |  |  |  |
| 19       | I/O     |        | P3[3]           |                                                |  |  |  |  |



## Table 3. Register Map 0 Table: User Space

| Name      | Addr (0,Hex) | Access | Name     | Addr (0,Hex) | Access | Name     | Addr (0,Hex) | Access       | Name     | Addr (0,Hex) | Access |
|-----------|--------------|--------|----------|--------------|--------|----------|--------------|--------------|----------|--------------|--------|
| PRT0DR    | 00           | RW     |          | 40           |        | ASE10CR0 | 80           | RW           |          | C0           |        |
| PRTOIE    | 01           | RW     |          | 41           |        |          | 81           |              |          | C1           |        |
| PRT0GS    | 02           | RW     |          | 42           |        |          | 82           |              |          | C2           |        |
| PRT0DM2   | 03           | RW     |          | 43           |        |          | 83           |              |          | C3           |        |
| PRT1DR    | 04           | RW     |          | 44           |        | ASE11CR0 | 84           | RW           |          | C4           |        |
| PRT1IF    | 05           | RW     |          | 45           |        |          | 85           |              |          | C5           |        |
| DDT1CS    | 06           | DW/    |          | 46           |        |          | 86           |              |          | C6           |        |
|           | 00           |        |          | 40           |        |          | 00           |              |          | C0           |        |
| PRIIDIVIZ | 07           |        |          | 47           |        |          | 07           |              |          | 0            |        |
| PRIZDR    | 08           | RW     |          | 48           |        |          | 88           |              |          | 68           |        |
| PRT2IE    | 09           | RW     |          | 49           |        |          | 89           |              |          | C9           |        |
| PRT2GS    | 0A           | RW     |          | 4A           |        |          | 8A           |              |          | CA           |        |
| PRT2DM2   | 0B           | RW     |          | 4B           |        |          | 8B           |              |          | СВ           |        |
| PRT3DR    | 0C           | RW     |          | 4C           |        |          | 8C           |              |          | CC           |        |
| PRT3IE    | 0D           | RW     |          | 4D           |        |          | 8D           |              |          | CD           |        |
| PRT3GS    | 0E           | RW     |          | 4E           |        |          | 8E           |              |          | CE           |        |
| PRT3DM2   | 0F           | RW     |          | 4F           |        |          | 8F           |              |          | CF           |        |
|           | 10           |        |          | 50           |        |          | 90           |              | CUR PP   | D0           | RW     |
|           | 11           |        |          | 51           |        |          | 91           |              | STK PP   | D1           | RW     |
|           | 12           |        |          | 52           |        |          | 92           |              | 0        | D2           |        |
|           | 12           |        |          | 53           |        |          | 03           |              |          | D2           | DW/    |
|           | 13           |        |          | 55           |        |          | 93           |              |          | D3           |        |
|           | 14           |        |          | 54           |        |          | 94           |              | MVR_PP   | D4           | RW     |
|           | 15           |        |          | 55           |        |          | 95           |              | MVW_PP   | D5           | RW     |
|           | 16           |        |          | 56           |        |          | 96           |              | I2C_CFG  | D6           | RW     |
|           | 17           |        |          | 57           |        |          | 97           |              | I2C_SCR  | D7           | #      |
|           | 18           |        |          | 58           |        |          | 98           |              | I2C_DR   | D8           | RW     |
|           | 19           |        |          | 59           |        |          | 99           |              | I2C_MSCR | D9           | #      |
|           | 1A           |        |          | 5A           |        |          | 9A           |              | INT_CLR0 | DA           | RW     |
|           | 1B           |        |          | 5B           |        |          | 9B           |              | INT CLR1 | DB           | RW     |
|           | 1C           |        |          | 5C           |        |          | 9C           |              | -        | DC           |        |
|           | 1D           |        |          | 5D           |        |          | 9D           |              | INT CLR3 | DD           | RW     |
|           | 15<br>1F     |        |          | 5E           |        |          | 0E           |              | INT MSK3 | DE           | RW     |
|           | 15           |        |          | 55           |        |          | 0E           |              |          | DE           |        |
| DDD00DD0  | 16           | ш      |          | JF<br>CO     |        |          | 9F           |              | INT MOKO | DF           |        |
| DBB00DR0  | 20           | #      |          | 60           | RW     |          | AU           |              | INT_MSKU | EU           | RW     |
| DBB00DR1  | 21           | W      | AMUXCFG  | 61           | RW     |          | A1           |              | INT_MSK1 | E1           | RW     |
| DBB00DR2  | 22           | RW     | PWM_CR   | 62           | RW     |          | A2           |              | INT_VC   | E2           | RC     |
| DBB00CR0  | 23           | #      |          | 63           |        |          | A3           |              | RES_WDT  | E3           | W      |
| DBB01DR0  | 24           | #      | CMP_CR0  | 64           | #      |          | A4           |              |          | E4           |        |
| DBB01DR1  | 25           | W      |          | 65           |        |          | A5           |              |          | E5           |        |
| DBB01DR2  | 26           | RW     | CMP_CR1  | 66           | RW     |          | A6           |              | DEC_CR0  | E6           | RW     |
| DBB01CR0  | 27           | #      |          | 67           |        |          | A7           |              | DEC_CR1  | E7           | RW     |
| DCB02DR0  | 28           | #      | ADC0 CR  | 68           | #      |          | A8           |              |          | E8           |        |
| DCB02DR1  | 29           | W      | ADC1 CR  | 69           | #      |          | A9           |              |          | E9           |        |
| DCB02DR2  | 2A           | RW     |          | 6A           |        |          | AA           |              |          | FA           |        |
| DCB02CR0  | 2B           | #      |          | 6R           |        |          | AB           |              |          | FR           |        |
|           | 20           | "<br># |          | 60           | RW/    |          | AC           |              |          | EC           |        |
|           | 20           | ·/     |          | 60           | D\//   |          |              |              |          |              |        |
| DCDUJDKI  | 20           |        |          |              |        |          |              |              |          |              |        |
| DCB03DR2  | 2E           | KVV    | TMP_DR2  |              | RVV    |          | AE           |              |          |              |        |
| DCB03CR0  | 2⊦           | #      | TMP_DR3  | 0F           | RW     | DD14D1   | AF           | <b>D</b> 144 |          |              |        |
|           | 30           |        |          | 70           |        | RDIORI   | R0           | RW           |          | F0           |        |
|           | 31           |        |          | 71           |        | RDI0SYN  | B1           | RW           |          | F1           |        |
|           | 32           |        | ACE00CR1 | 72           | RW     | RDI0IS   | B2           | RW           |          | F2           |        |
|           | 33           |        | ACE00CR2 | 73           | RW     | RDI0LT0  | B3           | RW           |          | F3           |        |
|           | 34           |        |          | 74           |        | RDI0LT1  | B4           | RW           |          | F4           |        |
|           | 35           |        |          | 75           |        | RDI0RO0  | B5           | RW           |          | F5           | 1      |
|           | 36           |        | ACE01CR1 | 76           | RW     | RDI0RO1  | B6           | RW           |          | F6           |        |
|           | 37           |        | ACE01CR2 | 77           | RW     |          | B7           |              | CPU F    | F7           | RL     |
|           | 38           |        |          | 78           |        |          | B8           |              | -        | F8           |        |
|           | 30           | -      |          | 79           | -      |          | BQ           |              |          | . 5<br>FQ    |        |
|           | 20           |        |          | 7.5          |        |          | D3           |              |          |              |        |
|           | JA<br>2D     |        |          | 78           |        |          | DA           |              |          | FA           |        |
|           | зв           |        |          | 7B           |        |          | BB<br>BB     |              |          | FB           |        |
|           | 3C           |        |          | 7C           |        |          | RC           |              |          | FC           |        |
|           | 3D           |        |          | 7D           |        |          | BD           |              | DAC_D    | FD           | RW     |
|           | 3E           |        |          | 7Ē           |        |          | BE           |              | CPU_SCR1 | FE           | #      |
|           | 3F           |        |          | 7F           |        |          | BF           |              | CPU_SCR0 | FF           | #      |
|           |              |        |          |              |        |          |              |              |          | ,            |        |

Blank fields are reserved and must not be accessed.

# Access is bit specific.



## DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, 3.0 V to 3.6 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 2.4 V to 3.0 V and –40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

#### Table 6. 5-V and 3.3-V DC GPIO Specifications

| Symbol           | Description                       | Min                   | Тур | Мах  | Units | Notes                                                                                                                                                                 |
|------------------|-----------------------------------|-----------------------|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>PU</sub>  | Pull-up resistor                  | 4                     | 5.6 | 8    | kΩ    |                                                                                                                                                                       |
| R <sub>PD</sub>  | Pull-down resistor                | 4                     | 5.6 | 8    | kΩ    |                                                                                                                                                                       |
| V <sub>OH</sub>  | High output level                 | V <sub>DD</sub> – 1.0 | _   | -    | V     | $I_{OH}$ = 10 mA, $V_{DD}$ = 4.75 to 5.25 V<br>(8 total loads, 4 on even port pins (for<br>example, P0[2], P1[4]), 4 on odd port<br>pins (for example, P0[3], P1[5])  |
| V <sub>OL</sub>  | Low output level                  | _                     | -   | 0.75 | V     | $I_{OL}$ = 25 mA, $V_{DD}$ = 4.75 to 5.25 V<br>(8 total loads, 4 on even port pins (for<br>example, P0[2], P1[4]), 4 on odd port<br>pins (for example, P0[3], P1[5])) |
| I <sub>ОН</sub>  | High level source current         | 10                    | -   | _    | mA    | $V_{OH} = V_{DD} - 1.0 V$ , see the limitations of the total current in the note for $V_{OH}$                                                                         |
| I <sub>OL</sub>  | Low level sink current            | 25                    | -   | -    | mA    | $V_{OL}$ = 0.75 V, see the limitations of the total current in the note for $V_{OL}$                                                                                  |
| V <sub>IL</sub>  | Input low level                   | -                     | _   | 0.8  | V     | V <sub>DD</sub> = 3.0 to 5.25                                                                                                                                         |
| V <sub>IH</sub>  | Input high level                  | 2.1                   | -   |      | V     | V <sub>DD</sub> = 3.0 to 5.25                                                                                                                                         |
| V <sub>H</sub>   | Input hysteresis                  | -                     | 60  | -    | mV    |                                                                                                                                                                       |
| IIL              | Input leakage (absolute value)    | -                     | 1   | _    | nA    | Gross tested to 1 µA                                                                                                                                                  |
| C <sub>IN</sub>  | Capacitive load on pins as input  | -                     | 3.5 | 10   | pF    | Package and pin dependent<br>Temp = 25 °C                                                                                                                             |
| C <sub>OUT</sub> | Capacitive load on pins as output | -                     | 3.5 | 10   | pF    | Package and pin dependent<br>Temp = 25 °C                                                                                                                             |

#### Table 7. 2.7-V DC GPIO Specifications

| Symbol           | Description                       | Min                   | Тур | Max  | Units | Notes                                                                                                           |
|------------------|-----------------------------------|-----------------------|-----|------|-------|-----------------------------------------------------------------------------------------------------------------|
| R <sub>PU</sub>  | Pull-up resistor                  | 4                     | 5.6 | 8    | kΩ    |                                                                                                                 |
| R <sub>PD</sub>  | Pull-down resistor                | 4                     | 5.6 | 8    | kΩ    |                                                                                                                 |
| V <sub>OH</sub>  | High output level                 | V <sub>DD</sub> – 0.4 | -   | -    | V     | $I_{OH}$ = 2.5 mA (6.25 Typ), $V_{DD}$ = 2.4 to<br>3.0 V (16 mA maximum, 50 mA Typ<br>combined $I_{OH}$ budget) |
| V <sub>OL</sub>  | Low output level                  | -                     | _   | 0.75 | V     | $I_{OL}$ = 10 mA, $V_{DD}$ = 2.4 to 3.0 V (90 mA maximum combined $I_{OL}$ budget)                              |
| I <sub>OH</sub>  | High level source current         | 2.5                   | _   | -    | mA    | $V_{OH} = V_{DD} - 0.4 V$ , see the limitations of the total current in the note for $V_{OH}$                   |
| I <sub>OL</sub>  | Low level sink current            | 10                    | -   | -    | mA    | $V_{OL}$ = 0.75 V, see the limitations of the total current in the note for $V_{OL}$                            |
| V <sub>IL</sub>  | Input low level                   | -                     | -   | 0.75 | V     | V <sub>DD</sub> = 2.4 to 3.0                                                                                    |
| V <sub>IH</sub>  | Input high level                  | 2.0                   | -   | -    | V     | V <sub>DD</sub> = 2.4 to 3.0                                                                                    |
| V <sub>H</sub>   | Input hysteresis                  | -                     | 90  | -    | mV    |                                                                                                                 |
| IIL              | Input leakage (absolute value)    | -                     | 1   | -    | nA    | Gross tested to 1 µA                                                                                            |
| C <sub>IN</sub>  | Capacitive load on pins as input  | -                     | 3.5 | 10   | pF    | Package and pin dependent<br>Temp = 25 °C                                                                       |
| C <sub>OUT</sub> | Capacitive load on pins as output | -                     | 3.5 | 10   | pF    | Package and pin dependent<br>Temp = 25 °C                                                                       |



#### Table 11. DC Switch Mode Pump (SMP) Specifications (continued)

| Symbol             | Description          | Min | Тур | Max | Units | Notes                                                                                                                 |
|--------------------|----------------------|-----|-----|-----|-------|-----------------------------------------------------------------------------------------------------------------------|
| E <sub>2</sub>     | Efficiency           | 35  | 80  | -   | %     | For I load = 1mA, $V_{PUMP}$ = 2.55 V,<br>$V_{BAT}$ = 1.3 V,<br>10 µH inductor, 1 µF capacitor, and<br>Schottky diode |
| F <sub>PUMP</sub>  | Switching frequency  | -   | 1.3 | -   | MHz   |                                                                                                                       |
| DC <sub>PUMP</sub> | Switching duty cycle | -   | 50  | -   | %     |                                                                                                                       |

#### DC Analog Mux Bus Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 2.4 V to 3.0 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

#### Table 12. DC Analog Mux Bus Specifications

| Symbol           | Description                                            | Min | Тур | Max        | Units | Notes                                              |
|------------------|--------------------------------------------------------|-----|-----|------------|-------|----------------------------------------------------|
| R <sub>SW</sub>  | Switch resistance to common analog bus                 | -   | -   | 400<br>800 | Ω     | $V_{DD} \ge 2.7 V$<br>2.4 V $\le V_{DD} \le 2.7 V$ |
| R <sub>VDD</sub> | Resistance of initialization switch to V <sub>DD</sub> | -   | -   | 800        | Ω     |                                                    |

#### DC POR and LVD Specifications

Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 2.4 V to 3.0 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

#### Table 13. DC POR and LVD Specifications

| Symbol                                                                                 | Description                                                                                                                                                                                                          | Min                                                          | Тур                                                          | Max                                                                                                | Units                                  | Notes                                                                                                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Vppor0<br>Vppor1<br>Vppor2                                                             | V <sub>DD</sub> value for PPOR trip<br>PORLEV[1:0] = 00b<br>PORLEV[1:0] = 01b<br>PORLEV[1:0] = 10b                                                                                                                   | _<br>_<br>_                                                  | 2.36<br>2.82<br>4.55                                         | 2.40<br>2.95<br>4.70                                                                               | V<br>V<br>V                            | $V_{DD}$ must be greater than or equal to 2.5 V during startup, the reset from the XRES pin, or reset from watchdog |
| VLVD0<br>VLVD1<br>VLVD2<br>VLVD3<br>VLVD4<br>VLVD4<br>VLVD5<br>VLVD6<br>VLVD6<br>VLVD7 | $\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$  | 2.40<br>2.85<br>2.95<br>3.06<br>4.37<br>4.50<br>4.62<br>4.71 | 2.45<br>2.92<br>3.02<br>3.13<br>4.48<br>4.64<br>4.73<br>4.81 | 2.51 <sup>[21]</sup><br>2.99 <sup>[22]</sup><br>3.09<br>3.20<br>4.55<br>4.75<br>4.83<br>4.95       | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |                                                                                                                     |
| VPUMP0<br>VPUMP1<br>VPUMP2<br>VPUMP3<br>VPUMP4<br>VPUMP5<br>VPUMP6<br>VPUMP7           | $\begin{array}{l} V_{DD} \text{ value for pump trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$ | 2.45<br>2.96<br>3.03<br>3.18<br>4.54<br>4.62<br>4.71<br>4.89 | 2.55<br>3.02<br>3.10<br>3.25<br>4.64<br>4.73<br>4.82<br>5.00 | $\begin{array}{c} 2.62^{[23]}\\ 3.09\\ 3.16\\ 3.32^{[24]}\\ 4.74\\ 4.83\\ 4.92\\ 5.12 \end{array}$ | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |                                                                                                                     |

Notes

- 21. Always greater than 50 mV above  $V_{PPOR}$  (PORLEV = 00) for falling supply. 22. Always greater than 50 mV above  $V_{PPOR}$  (PORLEV = 01) for falling supply. 23. Always greater than 50 mV above  $V_{LVD0}$ . 24. Always greater than 50 mV above  $V_{LVD0}$ .



## DC Programming Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  $-40 \degree C \le T_A \le 85 \degree C$ , 3.0 V to 3.6 V and  $-40 \degree C \le T_A \le 85 \degree C$ , or 2.4 V to 3.0 V and  $-40 \degree C \le T_A \le 85 \degree C$ , respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at  $25 \degree C$  and are for design guidance only.

#### Table 14. DC Programming Specifications

| Symbol                | Description                                                                                 | Min                    | Тур | Max                    | Units | Notes                                                                                  |
|-----------------------|---------------------------------------------------------------------------------------------|------------------------|-----|------------------------|-------|----------------------------------------------------------------------------------------|
| V <sub>DDP</sub>      | $V_{DD}$ for programming and erase                                                          | 4.5                    | 5   | 5.5                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDLV</sub>     | Low V <sub>DD</sub> for verify                                                              | 2.4                    | 2.5 | 2.6                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDHV</sub>     | High V <sub>DD</sub> for verify                                                             | 5.1                    | 5.2 | 5.3                    | V     | This specification applies to the functional requirements of external programmer tools |
| V <sub>DDIWRITE</sub> | Supply voltage for flash write operation                                                    | 2.7                    |     | 5.25                   | V     | This specification applies to this device when it is executing internal flash writes   |
| I <sub>DDP</sub>      | Supply current during programming or verify                                                 | -                      | 5   | 25                     | mA    |                                                                                        |
| V <sub>ILP</sub>      | Input low voltage during programming or verify                                              | -                      | -   | 0.8                    | V     |                                                                                        |
| V <sub>IHP</sub>      | Input high voltage during programming or verify                                             | 2.2                    | -   | -                      | V     |                                                                                        |
| I <sub>ILP</sub>      | Input current when applying V <sub>ILP</sub> to P1[0] or P1[1] during programming or verify | -                      | -   | 0.2                    | mA    | Driving internal pull-down resistor                                                    |
| I <sub>IHP</sub>      | Input current when applying V <sub>IHP</sub> to P1[0] or P1[1] during programming or verify | -                      | -   | 1.5                    | mA    | Driving internal pull-down resistor                                                    |
| V <sub>OLV</sub>      | Output low voltage during programming or verify                                             | -                      | _   | V <sub>SS</sub> + 0.75 | V     |                                                                                        |
| V <sub>OHV</sub>      | Output high voltage during programming or verify                                            | V <sub>DD</sub> – 1.0  | _   | V <sub>DD</sub>        | V     |                                                                                        |
| Flash <sub>ENPB</sub> | Flash endurance (per block)                                                                 | 50,000 <sup>[25]</sup> | -   | -                      | -     | Erase/write cycles per block                                                           |
| Flash <sub>ENT</sub>  | Flash endurance (total) <sup>[26]</sup>                                                     | 1,800,000              | -   | -                      | -     | Erase/write cycles                                                                     |
| Flash <sub>DR</sub>   | Flash data retention                                                                        | 10                     | -   | -                      | Years |                                                                                        |

## DC I<sup>2</sup>C Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$ T<sub>A</sub>  $\leq$ 85 °C, 3.0 V to 3.6 V and -40 °C  $\leq$ T<sub>A</sub>  $\leq$ 85 °C, or 2.4 V to 3.0 V and -40 °C  $\leq$ T<sub>A</sub>  $\leq$ 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

#### Table 15. DC I<sup>2</sup>C Specifications<sup>[27]</sup>

| Symbol             | Description      | Min                 | Тур | Max                  | Units | Notes                            |
|--------------------|------------------|---------------------|-----|----------------------|-------|----------------------------------|
| V <sub>ILI2C</sub> | Input low level  | -                   | I   | $0.3 \times V_{DD}$  | V     | $2.4~V \leq V_{DD} \leq 3.6~V$   |
|                    |                  | -                   | -   | $0.25 \times V_{DD}$ | V     | $4.75~V \leq V_{DD} \leq 5.25~V$ |
| V <sub>IHI2C</sub> | Input high level | $0.7 \times V_{DD}$ | 1   | _                    | V     | $2.4~V \leq V_{DD} \leq 5.25~V$  |

Notes

25. The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

26. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36×2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no single block ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC<sup>®</sup> Flash) for more information.
27. All GPIO meet the DC GPIO VII. and VII. specifications found in the DC GPIO Specifications sections. The <sup>12</sup>C GPIO pipe also meet the above specifications.

27. All GPIO meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I<sup>2</sup>C GPIO pins also meet the above specs.



## Table 24. 3.3-V AC External Clock Specifications

| Symbol              | Description                                     | Min   | Тур | Max  | Units | Notes                                                                                                                                                                                                                             |
|---------------------|-------------------------------------------------|-------|-----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>OSCEXT</sub> | Frequency with CPU clock divide by 1            | 0.093 | _   | 12.3 | MHz   | Maximum CPU frequency is 12 MHz<br>at 3.3 V. With the CPU clock divider<br>set to 1, the external clock must<br>adhere to the maximum frequency<br>and duty cycle requirements                                                    |
| F <sub>OSCEXT</sub> | Frequency with CPU clock divide by 2 or greater | 0.186 | _   | 24.6 | MHz   | If the frequency of the external clock<br>is greater than 12 MHz, the CPU clock<br>divider must be set to 2 or greater. In<br>this case, the CPU clock divider<br>ensures that the fifty percent duty<br>cycle requirement is met |
| -                   | High period with CPU clock divide by 1          | 41.7  | -   | 5300 | ns    |                                                                                                                                                                                                                                   |
| -                   | Low period with CPU clock divide by 1           | 41.7  | -   | -    | ns    |                                                                                                                                                                                                                                   |
| -                   | Power-up IMO to switch                          | 150   | _   | -    | μs    |                                                                                                                                                                                                                                   |

## Table 25. 2.7-V AC External Clock Specifications

| Symbol              | Description                                        | Min   | Тур | Мах  | Units | Notes                                                                                                                                                                                                                            |
|---------------------|----------------------------------------------------|-------|-----|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>OSCEXT</sub> | Frequency with CPU clock divide by 1               | 0.093 | -   | 3.08 | MHz   | Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements                                                                |
| F <sub>OSCEXT</sub> | Frequency with CPU clock divide<br>by 2 or greater | 0.186 | -   | 6.35 | MHz   | If the frequency of the external clock<br>is greater than 3 MHz, the CPU clock<br>divider must be set to 2 or greater. In<br>this case, the CPU clock divider<br>ensures that the fifty percent duty<br>cycle requirement is met |
| -                   | High period with CPU clock divide by 1             | 160   | -   | 5300 | ns    |                                                                                                                                                                                                                                  |
| -                   | Low period with CPU clock divide by 1              | 160   | -   | -    | ns    |                                                                                                                                                                                                                                  |
| -                   | Power-up IMO to switch                             | 150   | _   | _    | μs    |                                                                                                                                                                                                                                  |



## AC Programming Specifications

Table 26 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

| Table 26. | AC P | rogramming | Specifications |
|-----------|------|------------|----------------|
|-----------|------|------------|----------------|

| Symbol                    | Description                                | Min | Тур | Max                 | Units | Notes                                          |
|---------------------------|--------------------------------------------|-----|-----|---------------------|-------|------------------------------------------------|
| T <sub>RSCLK</sub>        | Rise time of SCLK                          | 1   | -   | 20                  | ns    |                                                |
| T <sub>FSCLK</sub>        | Fall time of SCLK                          | 1   | -   | 20                  | ns    |                                                |
| T <sub>SSCLK</sub>        | Data setup time to falling edge of SCLK    | 40  | -   | -                   | ns    |                                                |
| T <sub>HSCLK</sub>        | Data hold time from falling edge of SCLK   | 40  | -   | -                   | ns    |                                                |
| F <sub>SCLK</sub>         | Frequency of SCLK                          | 0   | -   | 8                   | MHz   |                                                |
| T <sub>ERASEB</sub>       | Flash erase time (block)                   | -   | 10  | -                   | ms    |                                                |
| T <sub>WRITE</sub>        | Flash block write time                     | -   | 40  | -                   | ms    |                                                |
| T <sub>DSCLK</sub>        | Data out delay from falling edge of SCLK   | -   | -   | 45                  | ns    | 3.6 < V <sub>DD</sub>                          |
| T <sub>DSCLK3</sub>       | Data out delay from falling edge of SCLK   | -   | -   | 50                  | ns    | $3.0 \leq V_{DD} \leq 3.6$                     |
| T <sub>DSCLK2</sub>       | Data out delay from falling edge of SCLK   | -   | -   | 70                  | ns    | $2.4 \leq V_{DD} \leq 3.0$                     |
| T <sub>ERASEALL</sub>     | Flash erase time (Bulk)                    | -   | 20  | -                   | ms    | Erase all blocks and protection fields at once |
| T <sub>PROGRAM_HOT</sub>  | Flash block erase + flash block write time | -   | -   | 100 <sup>[39]</sup> | ms    | $0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$     |
| T <sub>PROGRAM_COLD</sub> | Flash block erase + flash block write time | -   | -   | 200 <sup>[39]</sup> | ms    | $-40~^\circ C \le Tj \le 0~^\circ C$           |

## AC I<sup>2</sup>C <sup>[40]</sup> Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, 3.0 V to 3.6 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, or 2.4 V to 3.0 V and -40 °C  $\leq$  T<sub>A</sub>  $\leq$  85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

| Table 27. AC Characteristics of the l | <sup>2</sup> C SDA and SCL Pins for $V_{DD} \ge 3.0 V$ |
|---------------------------------------|--------------------------------------------------------|
|---------------------------------------|--------------------------------------------------------|

| Symbol                | Description                                                                                 | Standar | d Mode | Fast Mo             | Unite |       |
|-----------------------|---------------------------------------------------------------------------------------------|---------|--------|---------------------|-------|-------|
| Symbol                | Description                                                                                 | Min     | Max    | Min                 | Max   | Units |
| F <sub>SCLI2C</sub>   | SCL clock frequency                                                                         | 0       | 100    | 0                   | 400   | kHz   |
| T <sub>HDSTAI2C</sub> | Hold time (repeated) start condition. After this period, the first clock pulse is generated | 4.0     | -      | 0.6                 | -     | μs    |
| T <sub>LOWI2C</sub>   | Low period of the SCL clock                                                                 | 4.7     | -      | 1.3                 | -     | μs    |
| T <sub>HIGHI2C</sub>  | High period of the SCL clock                                                                | 4.0     | -      | 0.6                 | -     | μs    |
| T <sub>SUSTAI2C</sub> | Setup time for a repeated start condition                                                   | 4.7     | _      | 0.6                 | -     | μs    |
| T <sub>HDDATI2C</sub> | Data hold time                                                                              | 0       | -      | 0                   | -     | μs    |
| T <sub>SUDATI2C</sub> | Data setup time                                                                             | 250     | -      | 100 <sup>[41]</sup> | -     | ns    |
| T <sub>SUSTOI2C</sub> | Setup time for stop condition                                                               | 4.0     | -      | 0.6                 | -     | μs    |
| T <sub>BUFI2C</sub>   | Bus free time between a stop and start condition                                            | 4.7     | -      | 1.3                 | -     | μs    |
| T <sub>SPI2C</sub>    | Pulse width of spikes suppressed by the input filter.                                       | _       | _      | 0                   | 50    | ns    |

#### Notes

39. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC<sup>®</sup> Flash) for more information.

40. Errata: The I<sup>2</sup>C block exhibits occasional data and bus corruption errors when the I<sup>2</sup>C master initiates transactions while the device is transitioning in to or out of sleep mode.

41. A Fast-Mode I<sup>2</sup>C-bus device may be used in a Standard-Mode I<sup>2</sup>C-bus system, but it must meet the requirement T<sub>SU:DAT</sub> ≥ 250 ns. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line T<sub>rmax</sub> + T<sub>SU:DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard-Mode I<sup>2</sup>C-bus specification) before the SCL line is released.



## **Packaging Information**

This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package. **Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.



## Figure 15. 16-pin SOIC (150 Mils) Package Outline, 51-85068

51-85068 \*E





## Figure 18. 32-pin QFN (5 × 5 × 1.0 mm) Package Outline, 001-30999

001-30999 \*D

**Important Note** For information on the preferred dimensions for mounting QFN packages, see the *Application Note EROS - Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices* available at http://www.cypress.com.



## **Development Tool Selection**

This section presents the development tools available for all current PSoC device families including the CY8C21x34 family.

## Software

#### PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

#### PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

#### **Development Kits**

All development kits can be purchased from the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface allows you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

## **Evaluation Tools**

All evaluation tools can be purchased from the Cypress Online Store.

#### CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

#### CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

#### CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. The board includes both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and example projects CD
- Getting Started guide
- Wire pack



## **Device Programmers**

All device programmers can be purchased from the Cypress Online Store.

#### CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

## Accessories (Emulation and Programming)

#### Table 31. Emulation and Programming Accessories

#### CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

| Part Number      | Pin Package | Flex-Pod Kit <sup>[45]</sup> | Foot Kit <sup>[46]</sup> | Adapter                   |
|------------------|-------------|------------------------------|--------------------------|---------------------------|
| CY8C21234-24SXI  | 16-pin SOIC | CY3250-21X34                 | CY3250-16SOIC-FK         | Adapters can be found at  |
| CY8C21334-24PVXI | 20-pin SSOP | CY3250-21X34                 | CY3250-20SSOP-FK         | http://www.emulation.com. |
| CY8C21534-24PVXI | 28-pin SSOP | CY3250-21X34                 | CY3250-28SSOP-FK         |                           |

45. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

<sup>46.</sup> Foot kit includes surface mount feet that can be soldered to the target PCB.



## Errata

This section describes the errata for the PSoC<sup>®</sup> Programmable System-on-Chip CY8C21X34. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

## **Part Numbers Affected**

| Part Number | Ordering Information |
|-------------|----------------------|
| CY8C21X34   | CY8C21234-24SXI      |
|             | CY8C21234-24SXIT     |
|             | CY8C21334-24PVXI     |
|             | CY8C21334-24PVXIT    |
|             | CY8C21534-24PVXI     |
|             | CY8C21534-24PVXIT    |
|             | CY8C21434-24LFXI     |
|             | CY8C21434-24LFXIT    |
|             | CY8C21434-24LKXI     |
|             | CY8C21434-24LKXIT    |
|             | CY8C21634-24LFXI     |
|             | CY8C21634-24LFXIT    |
|             | CY8C21434-24LTXI     |
|             | CY8C21434-24LTXIT    |
|             | CY8C21434-24LQXI     |
|             | CY8C21434-24LQXIT    |
|             | CY8C21634-24LTXI     |
|             | CY8C21634-24LTXIT    |
|             | CY8C21001-24PVXI     |

## CY8C21X34 Qualification Status

Product Status: Production



# **Document History Page**

| Documen<br>Documen | t Title: CY8C<br>t Number: 38 | 21634/CY80<br>3-12025 | C21534/CY8C2       | 1434/CY8C21334/CY8C21234, PSoC <sup>®</sup> Programmable System-on-Chip™                                                                                                                                                                                                                                   |
|--------------------|-------------------------------|-----------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev.               | ECN                           | Orig. of<br>Change    | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                      |
| **                 | 227340                        | HMT                   | See ECN            | New silicon and document (Revision **).                                                                                                                                                                                                                                                                    |
| *A                 | 235992                        | SFV                   | See ECN            | Updated Overview and Electrical Spec. chapters, along with revisions to the 24-Pin pinout part. Revised the register mapping tables. Added a SSOP 28-Pin part.                                                                                                                                             |
| *В                 | 248572                        | SFV                   | See ECN            | Changed title to include all part #s. Changed 28-Pin SSOP from CY8C21434 to CY8C21534. Changed pin 9 on the 28-Pin SSOP from SMP pin to Vss pin. Added SMP block to architecture diagram. Update Electrical Specifications. Added another 32-Pin MLF part: CY8C21634.                                      |
| *C                 | 277832                        | HMT                   | See ECN            | Verify datasheet standards from SFV memo. Add Analog Input Mux to appli-<br>cable pin outs. Update PSoC Characteristics table. Update diagrams and<br>specs. Final.                                                                                                                                        |
| *D                 | 285293                        | HMT                   | See ECN            | Update 2.7 V DC GPIO spec. Add Reflow Peak Temp. table.                                                                                                                                                                                                                                                    |
| *E                 | 301739                        | HMT                   | See ECN            | DC Chip-Level Specification changes. Update links to new CY.com Portal.                                                                                                                                                                                                                                    |
| *F                 | 329104                        | HMT                   | See ECN            | Re-add pinout ISSP notation. Fix TMP register names. Clarify ADC feature.<br>Update Electrical Specifications. Update Reflow Peak Temp. table. Add 32<br>MLF E-PAD dimensions. Add ThetaJC to Thermal Impedance table. Fix 20-Pin<br>package order number. Add CY logo. Update CY copyright.               |
| *G                 | 352736                        | HMT                   | See ECN            | Add new color and logo. Add URL to preferred dimensions for mounting MLF packages. Update Transmitter and Receiver AC Digital Block Electrical Specifications.                                                                                                                                             |
| ۴H                 | 390152                        | HMT                   | See ECN            | Clarify MLF thermal pad connection info. Replace 16-Pin 300-MIL SOIC with correct 150-MIL.                                                                                                                                                                                                                 |
| *                  | 413404                        | HMT                   | See ECN            | Update 32-Pin QFN E-Pad dimensions and rev. *A. Update CY branding and QFN convention.                                                                                                                                                                                                                     |
| ل*                 | 430185                        | НМТ                   | See ECN            | Add new 32-Pin 5x5 mm 0.60 thickness QFN package and diagram,<br>CY8C21434-24LKXI. Update thermal resistance data. Add 56-Pin SSOP<br>on-chip debug non-production part, CY8C21001-24PVXI. Update typical and<br>recommended Storage Temperature per industrial specs. Update copyright<br>and trademarks. |
| *К                 | 677717                        | HMT                   | See ECN            | Add CapSense SNR requirement reference. Add new Dev. Tool section. Add CY8C20x34 to PSoC Device Characteristics table. Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Update rev. of 32-Lead (5x5 mm 0.60 MAX) QFN package diagram.                                                         |
| *L                 | 2147847                       | UVS /<br>PYRS         | 02/27/08           | Added 32-Pin QFN Sawn pin diagram, package diagram, and ordering information.                                                                                                                                                                                                                              |
| *M                 | 2273246                       | UVS /<br>AESA         | 04/01/08           | Added 32 pin thin sawn package diagram.                                                                                                                                                                                                                                                                    |
| *N                 | 2618124                       | OGNE /<br>PYRS        | 12/09/08           | Added Note in Ordering Information section.<br>Changed title from PSoC Mixed-Signal Array to PSoC<br>Programmable System-on-Chip                                                                                                                                                                           |
| *0                 | 2684145                       | SNV /<br>AESA         | 04/06/2009         | Updated 32-Pin Sawn QFN package dimension for CY8C21434-24LTXIT<br>Updated Getting Started, Development Tools, and Designing with PSoC<br>Designer Sections                                                                                                                                                |
| *P                 | 2693024                       | DPT /<br>PYRS         | 04/16/2009         | Updated 32-Pin Sawn QFN package diagram                                                                                                                                                                                                                                                                    |
| *Q                 | 2720594                       | BRW                   | 06/22/09           | Corrected ohm symbol and parenthesis in figure caption (Fig.25)<br>Removed references to mixed-sginal array from the text.<br>Updated Development Tools Selection section.                                                                                                                                 |



## Document History Page (continued)

| Document Title: CY8C21634/CY8C21534/CY8C21434/CY8C21334/CY8C21234, PSoC <sup>®</sup> Programmable System-on-Chip™ Document Number: 38-12025 |         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev.                                                                                                                                        | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *R                                                                                                                                          | 2762499 | JVY                | 09/11/2009         | Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as<br>follows:<br>Modified F <sub>IMO6</sub> and T <sub>WRITE</sub> specifications.<br>Replaced T <sub>RAMP</sub> (time) specification with SR <sub>POWER_UP</sub> (slew rate)<br>specification.<br>Added note [11] to Flash Endurance specification.<br>Added I <sub>OH</sub> , I <sub>OL</sub> , DC <sub>ILO</sub> , F <sub>32K_U</sub> , T <sub>POWERUP</sub> , T <sub>ERASEALL</sub> , T <sub>PROGRAM_HOT</sub> , and<br>T <sub>PROGRAM_COLD</sub> specifications.                                                                                                                                                                                                                                     |
| *S                                                                                                                                          | 2900687 | MAXK /<br>NJF      | 03/30/2010         | Updated The Analog Multiplexer System.<br>Updated Cypress website links.<br>Added T <sub>BAKETEMP</sub> and T <sub>BAKETIME</sub> parameters in Absolute Maximum Ratings.<br>Removed DC Low Power Comparator section.<br>Updated 5-V and 3.3-V AC Chip-Level Specifications.<br>Removed AC Low Power Comparator and AC Analog Mux Bus sections.<br>Updated note in Packaging Information and package diagrams.<br>Added 56 SSOP values for Thermal Impedances, Solder Reflow Specifica-<br>tions.<br>Removed Third Party Tools and Build a PSoC Emulator into your Board.<br>Updated Ordering Code Definitions.<br>Removed inactive parts from Ordering Information<br>Removed obsolete package spec 001-06392.<br>Updated links in Sales, Solutions, and Legal Information. |
| *T                                                                                                                                          | 2937578 | VMAD               | 05/26/2010         | Updated content to match current style guide and data sheet template. No technical updates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| *U                                                                                                                                          | 3005573 | NJF                | 09/02/10           | Added PSoC Device Characteristics table.<br>Added DC I <sup>2</sup> C Specifications table.<br>Added F <sub>32K U</sub> max limit.<br>Added Tjit_IMO specification, removed existing jitter specifications.<br>Updated Units of Measure, Acronyms, Glossary, and References sections.<br>Updated solder reflow specifications.<br>No specific changes were made to AC Digital Block Specifications table and<br>I <sup>2</sup> C Timing Diagram. They were updated for clearer understanding.<br>Template and styles update.                                                                                                                                                                                                                                                 |
| *V                                                                                                                                          | 3068269 | ARVM               | 10/21/2010         | Removed pruned parts CY8C21434-24LKXI and CY8C21434-24LKXIT from<br>Ordering Information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| *W                                                                                                                                          | 3281271 | VMAD               | 08/23/2011         | Under Table 20 on page 28 "Notes" section, the text " $2.4 \text{ V} < \text{V}_{CC} < 3.0 \text{ V}$ " is changed to " $2.4 \text{ V} < \text{V}_{DD} < 3.0 \text{ V}$ ".<br>Updated Solder Reflow Specifications.<br>Changed package diagram from 51-85188 *D to 001-30999 *C for QFN32 package.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *X                                                                                                                                          | 3383568 | GIR                | 10/05/2011         | The text "Pin must be left floating" is included under Description of NC pin in CY8C21001 56-pin SSOP Pin Definitions on page 14.<br>Changed spec 001-30999 from 32-Pin (5 × 5 mm 0.93 Max) Sawn QFN to 32-Pin (5 × 5 mm 1.0 Max) Sawn QFN<br>Removed pruned parts CY8C21434-24LCXI and CY8C21434-24LCXIT from the Ordering Information table.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *Y                                                                                                                                          | 3659297 | YLIU               | 07/26/2012         | Updated Packaging Information (Removed spec 001-44368).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |