E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21334-24pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[6]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[6]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[6]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[6]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[6]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[6,7]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[6,7]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Limited analog functionality.
 Two analog blocks and one CapSense[®].

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is summarized in four steps:

- 1. Select User Modules.
- 2. Configure User Modules.
- 3. Organize and Connect.
- 4. Generate, Verify, and Debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

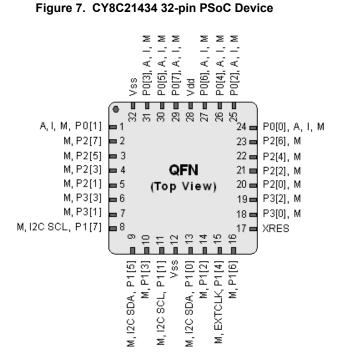
Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run-time and interrupt service routines that you can adapt as needed.


A complete code development environment allows you to develop and customize your applications in either C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events. These include monitoring address and data bus values, memory locations, and external signals.

CY8C21634/CY8C21534/CY8C21434 CY8C21334/CY8C21234

32-pin Part Pinout

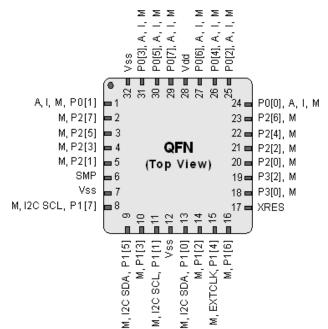


Figure 7. CY8C21634 32-pin PSoC Device

Figure 8. CY8C21434 32-pin Sawn PSoC Device Sawn

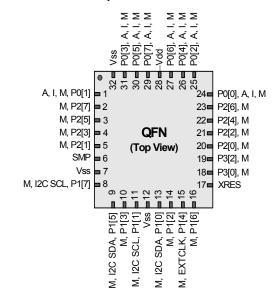



Figure 9. CY8C21634 32-pin Sawn PSoC Device Sawn

CY8C21001 56-pin SSOP Pin Definitions (continued)

	Ту	ре		
Pin No.	Digital	Analog	Pin Name	Description
20	I/O		P3[1]	
21		•	NC	No connection. Pin must be left floating
22			NC	No connection. Pin must be left floating
23	I/O		P1[7]	I ² C SCL
24	I/O		P1[5]	I ² C SDA
25		•	NC	No connection. Pin must be left floating
26	I/O		P1[3]	IFMTEST
27	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[19]
28	Power	•	V _{SS}	Ground connection ^[18]
29			NC	No connection. Pin must be left floating
30			NC	No connection. Pin must be left floating
31	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[19]
32	I/O		P1[2]	V _{FMTEST}
33	I/O		P1[4]	Optional external clock input (EXTCLK)
34	I/O		P1[6]	
35		•	NC	No connection. Pin must be left floating
36			NC	No connection. Pin must be left floating
37			NC	No connection. Pin must be left floating
38			NC	No connection. Pin must be left floating
39			NC	No connection. Pin must be left floating
40			NC	No connection. Pin must be left floating
41	Input		XRES	Active high external reset with internal pull-down
42	OCD		HCLK	OCD high-speed clock output
43	OCD		CCLK	OCD CPU clock output
44	I/O		P3[0]	
45	I/O		P3[2]	
46			NC	No connection. Pin must be left floating
47			NC	No connection. Pin must be left floating
48	I/O	I	P2[0]	
49	I/O	I	P2[2]	
50	I/O		P2[4]	
51	I/O		P2[6]	
52	I/O	I	P0[0]	Analog column mux input
53	I/O	I	P0[2]	Analog column mux input and column output
54	I/O	I	P0[4]	Analog column mux input and column output
55	I/O	I	P0[6]	Analog column mux input
56	Power	•	V _{DD}	Supply voltage

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Notes

18. All V_{SS} pins should be brought out to one common GND plane.
19. These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

Register Reference

This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, see the *PSoC Technical Reference Manual*.

Register Conventions

The register conventions specific to this section are listed in Table 2.

Table 2. Register Conventions

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Table 3. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		CO	
PRT0IE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	+
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	+
PRT1IE	05	RW		45		7.021101.0	85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	07	RW									
				48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			СВ	
PRT3DR	0C	RW		4C			8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW		4E			8E			CE	
PRT3DM2	0F	RW		4F			8F			CF	-
	10			50			90		CUR PP	D0	RW
	11			51			91		 STK_PP	D1	RW
	12			52			92		<u>-</u>	D2	+
	13			53			93		IDX PP	D3	RW
	14			54			94		MVR PP	D3	RW
	14		Į				94				
				55					MVW_PP	D5	RW
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	-
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	20	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW	_	6A	1		AA			EA	
DCB02CR0	2B	#		6B			AB			EB	+
DCB03DR0	2C	#	TMP DR0	6C	RW		AC			EC	+
DCB03DR1	20 2D	W	TMP_DR1	6D	RW		AD			ED	
			TMP_DR2								<u> </u>
DCB03DR2	2E	RW		6E	RW		AE			EE	┥───
DCB03CR0	2F	#	TMP_DR3	6F	RW	PDIADI	AF	DW		EF	—
	30		Į	70		RDIORI	BO	RW		F0	<u> </u>
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	1
	35	1		75		RDI0RO0	B5	RW		F5	1
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW	ŀ	F6	1
	37		ACE01CR2	77	RW	l	B7	<u> </u>	CPU_F	F7	RL
	38			78	<u> </u>		B8	<u> </u>	-	F8	+
	39			79	-		B9			F9	
	39 3A			79 7A	ļ		BA	ļ		FA	┥───
			Į								┥───
	3B			7B	L		BB	L		FB	<u> </u>
	3C			7C			BC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E 3F			7E 7F			BE BF		CPU_SCR1 CPU_SCR0	FE FF	# #

DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 6. 5-V and 3.3-V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	-	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5]))
I _{ОН}	High level source current	10	-	_	mA	$V_{OH} = V_{DD} - 1.0$ V, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	25	-	_	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 7. 2.7-V DC GPIO Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 0.4	_	-	V	I_{OH} = 2.5 mA (6.25 Typ), V_{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA Typ combined I _{OH} budget)
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget)
I _{OH}	High level source current	2.5	-	-	mA	$V_{OH} = V_{DD} - 0.4$ V, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	10	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	_	0.75	V	V _{DD} = 2.4 to 3.0
V _{IH}	Input high level	2.0	-	-	V	V _{DD} = 2.4 to 3.0
V _H	Input hysteresis	-	90	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

AC Electrical Characteristics

AC Chip-Level Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24} ^[28]	IMO frequency for 24 MHz	23.4	24	24.6 ^[29,30]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 14 on page 20. SLIMO mode = 0
F _{IMO6} ^[28]	IMO frequency for 6 MHz	5.52	6	6.48 ^[29,30]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See Figure 14 on page 20. SLIMO mode = 1
F _{CPU1}	CPU frequency (5 V nominal)	0.091	24	24.6 ^[29]	MHz	24 MHz only for SLIMO mode = 0
F _{CPU2}	CPU frequency (3.3 V nominal)	0.091	12	12.3 ^[30]	MHz	SLIMO mode = 0
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.2 ^[29,31]	MHz	Refer to AC Digital Block Specifications on page 29
F _{BLK33}	Digital PSoC block frequency (3.3 V nominal)	0	24	24.6 ^[31]	MHz	
F _{32K1}	ILO frequency	15	32	64	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the <i>PSoC</i> <i>Technical Reference Manual</i> for details on this timing
t _{XRST}	External reset pulse width	10	_	-	μS	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[29,30]	MHz	Trimmed. Using factory trim values
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	_	-	250	V/ms	V _{DD} slew rate during power-up
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual
t _{jit_IMO}	24-MHz IMO cycle-to-cycle jitter (RMS) ^[32]	_	200	700	ps	
	24-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[32]	_	300	900	ps	N = 32
	24-MHz IMO period jitter (RMS) ^[32]	-	100	400	ps	

Notes

- 28. Errata: The worst case IMO frequency deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$. 29. 4.75 V < V_{DD} < 5.25 V. 30. 3.0 V < V_{DD} < 3.6 V. See application note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 2.2 V v_{DD} < 3.6 V.
- at 3.3 V.

31. See the individual user module datasheets for information on maximum frequencies for user modules.

32. Refer to Cypress Jitter Specifications Application Note AN5054 "Understanding Datasheet Jitter Specifications for Cypress Timing Products" at www.cypress.com under Application Notes for more information.

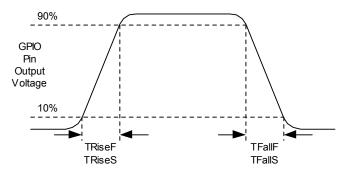
Table 17. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO12} ^[33]	IMO frequency for 12 MHz	11.04	12	12.96 ^[34, 35]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 14 on page 20. SLIMO mode = 1
F _{IMO6} ^[33]	IMO frequency for 6 MHz	5.52	6	6.48 ^[34, 35]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 14 on page 20. SLIMO mode = 1
F _{CPU1}	CPU frequency (2.7 V nominal)	0.093	3	3.15 ^[34]	MHz	12 MHz only for SLIMO mode = 0
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	0	12	12.5 ^[34,35]	MHz	Refer to AC Digital Block Specifications on page 29
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the <i>PSoC</i> <i>Technical Reference Manual</i> for details on this timing
t _{XRST}	External reset pulse width	10	_	-	μs	
DC _{ILO}	IILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO}	12 MHz IMO cycle-to-cycle jitter (RMS) ^[36]	I	400	1000	ps	
	12 MHz IMO long term N cycle-to-cycle jitter (RMS) ^[36]	-	600	1300	ps	N = 32
	12 MHz IMO period jitter (RMS) ^[36]	-	100	500	ps	

- Notes
 33. Errata: The worst case IMO frequency deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is ±5%.
 34. 2.4 V < V_{DD} < 3.0 V.
 35. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" available at http://www.cypress.com for information on maximum frequency for user modules.
 20. Defense Operation Provide the ANEOSA "Laboration Note Analytic Analytic Analytic Internation Detectors" and the ANEOSA "Laboration Provide Analytic Internation Provide Internation Provid
- 36. Refer to Cypress Jitter Specifications Application Note AN5054 "Understanding Datasheet Jitter Specifications for Cypress Timing Products" at www.cypress.com under Application Notes for more information.

AC General Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.


Table 18. 5-V and 3.3-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	7	27	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	7	22	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

Table 19. 2.7 V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%

Figure 13. GPIO Timing Diagram

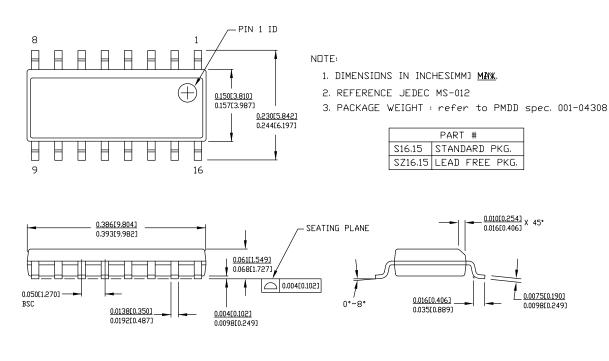
AC Operational Amplifier Specifications

Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.


Table 20. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP}	Comparator mode response time, 50 mV overdrive	-	-	100 200	ns ns	$V_{DD} \ge 3.0 \text{ V}$ 2.4 V < V_{DD} < 3.0 V

Table 28. 2.7-V AC Characteristics of the I²C SDA and SCL Pins (Fast Mode not Supported)


Symbol	Description	Standa	ard Mode	Fast	Mode	Units
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	-	-	kHz
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated.	4.0	-	-	-	μs
T _{LOWI2C}	Low period of the SCL clock	4.7	-	-	-	μs
T _{HIGHI2C}	High period of the SCL clock	4.0	-	-	-	μs
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	-	-	-	μs
T _{HDDATI2C}	Data hold time	0	-	-	-	μs
T _{SUDATI2C}	Data setup time	250	-	-	-	ns
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	-	-	μs
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	-	-	μs
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	-	-	ns

Packaging Information

This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package. **Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Figure 15. 16-pin SOIC (150 Mils) Package Outline, 51-85068

51-85068 *E

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 31. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

	0 0			
Part Number	Pin Package	Flex-Pod Kit ^[45]	Foot Kit ^[46]	Adapter
CY8C21234-24SXI	16-pin SOIC	CY3250-21X34		Adapters can be found at
CY8C21334-24PVXI	20-pin SSOP	CY3250-21X34	CY3250-20SSOP-FK	http://www.emulation.com.
CY8C21534-24PVXI	28-pin SSOP	CY3250-21X34	CY3250-28SSOP-FK	

45. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{46.} Foot kit includes surface mount feet that can be soldered to the target PCB.

Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
16-Pin (150-Mil) SOIC	CY8C21234-24SXI	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[47]	0	No
16-Pin (150-Mil) SOIC (Tape and Reel)	CY8C21234-24SXIT	8 K	512	Yes	–40 °C to +85 °C	4	4	12	12 ^[47]	0	No
20-Pin (210-Mil) SSOP	CY8C21334-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[47]	0	Yes
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21334-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	16	16 ^[47]	0	Yes
28-Pin (210-Mil) SSOP	CY8C21534-24PVXI	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[47]	0	Yes
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21534-24PVXIT	8 K	512	No	–40 °C to +85 °C	4	4	24	24 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN	CY8C21434-24LTXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN $^{[48]}$ (Tape and Reel)	CY8C21434-24LTXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN	CY8C21434-24LQXI	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 0.60 max) Thin Sawn QFN (Tape and Reel)	CY8C21434-24LQXIT	8 K	512	No	–40 °C to +85 °C	4	4	28	28 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN ^[48]	CY8C21634-24LTXI	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
32-Pin (5 × 5 mm 1.00 max) Sawn QFN ^[48] (Tape and Reel)	CY8C21634-24LTXIT	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
56-Pin OCD SSOP	CY8C21001-24PVXI	8 K	512	Yes	–40 °C to +85 °C	4	4	26	26 ^[47]	0	Yes
	CY8C21434-12X14I		e conta nation.	act sale	es office or Field Ap	oplicat	ions E	ngine	er (FAE)) for m	ore

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Notes47. All Digital I/O Pins also connect to the common analog mux.48. Refer to the section 32-pin Part Pinout on page 12 for pin differences.

Acronyms

Table 32 lists the acronyms that are used in this document.

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	PLL	phase-locked loop
СТ	continuous time	POR	power on reset
DAC	digital-to-analog converter	PPOR	precision power on reset
DC	direct current	PRS	pseudo-random sequence
DTMF	dual-tone multi-frequency	PSoC®	Programmable System-on-Chip
ECO	external crystal oscillator	PWM	pulse width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	RTC	real time clock
ICE	in-circuit emulator	SAR	successive approximation
IDE	integrated development environment	SC	switched capacitor
ILO	internal low speed oscillator	SLIMO	slow IMO
IMO	internal main oscillator	SMP	switch-mode pump
I/O	input/output	SOIC	small-outline integrated circuit
IrDA	infrared data association	SPI TM	serial peripheral interface
ISSP	in-system serial programming	SRAM	static random access memory
LCD	liquid crystal display	SROM	supervisory read only memory
LED	light-emitting diode	SSOP	shrink small-outline package
LPC	low power comparator	UART	universal asynchronous receiver / transmitter
LVD	low voltage detect	USB	universal serial bus
MAC	multiply-accumulate	WDT	watchdog timer
MCU	microcontroller unit	XRES	external reset

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC[®] Programmable System-on-Chip Technical Reference Manual (TRM) (001-14463)

Design Aids – Reading and Writing PSoC[®] Flash - AN2015 (001-40459)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Document Conventions

Units of Measure

Table 33 lists the units of measures.

Table 33. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μH	micro henry
dB	decibels	μs	microsecond
°C	degree Celsius	ms	millisecond
μF	microfarad	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolt
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nano volt
kΩ	kilo ohm	V	volt
Ω	ohm	μW	microwatt
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nano ampere	ppm	parts per million
pА	pico ampere	%	percent
mH	millihenry		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	 A functional unit that performs a single function, such as an oscillator. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	 A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

CY8C21X34 Errata Summary

The following table defines the errata applicability to available CY8C21X34 family devices. An "X" indicates that the errata pertains to the selected device.

Note Errata items, in the table below, are hyperlinked. Click on any item entry to jump to its description.

Items	Part Number	Silicon Revision	Fix Status
[1.]. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C21X34	A	No fix is currently planned.
[2]. I2C Errors	CY8C21X34	A	No fix is currently planned.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 °C to 70 °C. This problem does not affect end-product usage between 0 °C and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0 $^{\circ}$ C and above +70 $^{\circ}$ C and within the upper and lower datasheet temperature range is ±5%.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the datasheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 °C to +70 °C.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

No fix is currently planned.

2. I²C Errors

Problem Definition

The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep mode.

Parameters Affected

Affects reliability of I²C communication to device, between I²C master, and third party I²C slaves.

Trigger Condition(S)

Triggered by transitions into and out of the device's sleep mode.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Firmware workarounds are available in firmware. Generally the workaround consists of disconnecting the I^2C block from the bus prior to going to sleep modes. I^2C transactions during sleep are supported by a protocol in which the master wakes the device prior to the I^2C transaction

Fix Status

Will not be fixed.

Document History Page (continued)

Rev.	ECN	Orig. of Change	Submission Date	Description of Change
*R	2762499	JVY	09/11/2009	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified F_{IMO6} and T_{WRITE} specifications. Replaced T_{RAMP} (time) specification with SR_{POWER_UP} (slew rate) specification. Added note [11] to Flash Endurance specification. Added I _{OH} , I _{OL} , DC _{ILO} , F _{32K_U} , T _{POWERUP} , T _{ERASEALL} , T _{PROGRAM_HOT} , and T _{PROGRAM_COLD} specifications.
*S	2900687	MAXK / NJF	03/30/2010	Updated The Analog Multiplexer System. Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings. Removed DC Low Power Comparator section. Updated 5-V and 3.3-V AC Chip-Level Specifications. Removed AC Low Power Comparator and AC Analog Mux Bus sections. Updated note in Packaging Information and package diagrams. Added 56 SSOP values for Thermal Impedances, Solder Reflow Specifica- tions. Removed Third Party Tools and Build a PSoC Emulator into your Board. Updated Ordering Code Definitions. Removed inactive parts from Ordering Information Removed obsolete package spec 001-06392. Updated links in Sales, Solutions, and Legal Information.
*T	2937578	VMAD	05/26/2010	Updated content to match current style guide and data sheet template. No technical updates.
*U	3005573	NJF	09/02/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Template and styles update.
*V	3068269	ARVM	10/21/2010	Removed pruned parts CY8C21434-24LKXI and CY8C21434-24LKXIT from Ordering Information.
*W	3281271	VMAD	08/23/2011	Under Table 20 on page 28 "Notes" section, the text "2.4 V < V_{CC} < 3.0 V" is changed to "2.4 V < V_{DD} < 3.0 V". Updated Solder Reflow Specifications. Changed package diagram from 51-85188 *D to 001-30999 *C for QFN32 package.
*X	3383568	GIR	10/05/2011	The text "Pin must be left floating" is included under Description of NC pin in CY8C21001 56-pin SSOP Pin Definitions on page 14. Changed spec 001-30999 from 32-Pin (5 × 5 mm 0.93 Max) Sawn QFN to 32-Pin (5 × 5 mm 1.0 Max) Sawn QFN Removed pruned parts CY8C21434-24LCXI and CY8C21434-24LCXIT from the Ordering Information table.
*Y	3659297	YLIU	07/26/2012	Updated Packaging Information (Removed spec 001-44368).

Document History Page (continued)

Rev.	ECN	Orig. of Change	Submission Date	Description of Change
AD	4338103	PRKU	04/15/2014	Updated Pin Information: Updated CY8C21234 16-pin SOIC Pin Definitions (corresponding to CY8C21234): Added Note 9 and referred the same note in the description of pin 6 and pin 8 Updated CY8C21334 20-pin SSOP Pin Definitions (corresponding to CY8C21334): Added Note 11 and referred the same note in the description of pin 5 and pin 10 Updated CY8C21534 28-pin SSOP Pin Definitions (corresponding to CY8C21534): Added Note 13 and referred the same note in the description of pin 9 and pin 14 Updated CY8C21434/CY8C21634 32-pin QFN Pin Definitions (corresponding to CY8C21434/CY8C21634): Added Note 16 and referred the same note in the description of pin 7, pin 12 and pin 32. Updated CY8C21001 56-pin SSOP Pin Definitions (corresponding to CY8C21001): Added Note 18 and referred the same note in the description of pin 17, pin 18 and pin 28. Updated Packaging Information: Updated Packaging Information: Updated Thermal Impedances: Updated Note 43 referred in Table 29.
AE	4531967	DCHE	10/10/2014	Added More Information. Added PSoC Designer.
AF	4593771	DIMA	12/11/2014	Updated Pin Information: Updated CY8C21001 56-pin SSOP Pin Definitions: Referred Note 18 in description of pin 1. Updated Packaging Information: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F.
AG	4670626	DCHE	02/25/2015	Updated Errata: Replaced CY8C21234 with CY8C21X34 in all instances.
AH	5394304	DCHE	08/08/2016	Updated to new template. Completing Sunset Review.