

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21334-24pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, shown in Figure 2, consists of four main areas: the core, the system resources, the digital system, and the analog system. Configurable global bus resources allow combining all of the device resources into a complete custom system. Each CY8C21x34 PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

The PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and internal main oscillator (IMO) and internal low speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz [3]. The M8C is a four-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor.

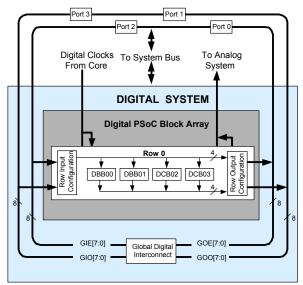
System resources provide these additional capabilities:

- Digital clocks for increased flexibility
- I²C^[4] functionality to implement an I²C master and slave
- An internal voltage reference, multi-master, that provides an absolute value of 1.3 V to a number of PSoC subsystems
- A SMP that generates normal operating voltages from a single battery cell
- Various system resets supported by the M8C

The digital system consists of an array of digital PSoC blocks that may be configured into any number of digital peripherals. The digital blocks are connected to the GPIOs through a series of global buses. These buses can route any signal to any pin, freeing designs from the constraints of a fixed peripheral controller.

The analog system consists of four analog PSoC blocks, supporting comparators, and analog-to-digital conversion up to 10 bits of precision.

The Digital System


The digital system consists of four digital PSoC blocks. Each block is an 8-bit resource that is used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals. which are called user modules. Digital peripheral configurations include:

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8- with selectable parity
- Serial peripheral interface (SPI) master and slave
- I²C slave and multi-master ^[4]
- CRC/generator (8-bit)
- IrDA
- PRS generators (8-bit to 32-bit)

The digital blocks are connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 6.

Figure 2. Digital System Block Diagram

Notes

4. mode

^{3.} Errata: The worst case IMO frequency deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is ±5%. Errata: The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[6]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[6]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[6]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[6]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[6]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[6,7]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[6,7]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Limited analog functionality.
 Two analog blocks and one CapSense[®].

28-pin Part Pinout

Figure 6. CY8C21534 28-pin PSoC Device

		0	\bigcirc		
A, I, M, P0[7]	9	1		28	V _{DD}
A, I, M, P0[5]	4	2		27	P0[6], A, I, M
A, I, M, P0[3]	4	3		26	P0[4], A, I, M
A, I, M, P0[1]	4	4		25	P0[2], A, I, M
M, P2[7]	뼥	5		24	P0[0], A, I, M
M, P2[5]	4	6		23	P2[6], M
M, P2[3]	4	7	SSOP	22	■ P2[4], M
M, P2[1]	4	8	0001	21	P2[2], M
V _{SS}	4	9		20	P2[0], M
M, I2C SCL, P1[7]	4	10		19	XRES
M, I2C SDA, P1[5]	4	11		18	P1[6], M
M, P1[3]	4	12		17	P1[4], EXTCLK, M
M, I2C SCL, P1[1]	9	13		16	P1[2], M
V _{SS}	٩	14		15	P1[0], I2C SDA, M

CY8C21534 28-pin SSOP Pin Definitions

Pin No. Type		Name	Description					
PIII NO.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[7]	Analog column mux input				
2	I/O	I, M	P0[5]	Analog column mux input and column output				
3	I/O	I, M	P0[3]	Analog column mux input and column output, integrating input				
4	I/O	I, M	P0[1]	Analog column mux input, integrating input				
5	I/O	М	P2[7]					
6	I/O	М	P2[5]					
7	I/O	I, M	P2[3]	Direct switched capacitor block input				
8	I/O	I, M	P2[1]	Direct switched capacitor block input				
9	Power		V _{SS}	Ground connection ^[13]				
10	I/O	М	P1[7]	I ² C SCL				
11	I/O	М	P1[5]	I ² C SDA				
12	I/O	М	P1[3]					
13	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[14]				
14	Power		V _{SS}	Ground connection ^[13]				
15	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[14]				
16	I/O	М	P1[2]					
17	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
18	I/O	М	P1[6]					
19	Input		XRES	Active high external reset with internal pull-down				
20	I/O	I, M	P2[0]	Direct switched capacitor block input				
21	I/O	I, M	P2[2]	Direct switched capacitor block input				
22	I/O	М	P2[4]					
23	I/O	М	P2[6]					
24	I/O	I, M	P0[0]	Analog column mux input				
25	I/O	I, M	P0[2]	Analog column mux input				
26	I/O	I, M	P0[4]	Analog column mux input				
27	I/O	I, M	P0[6]	Analog column mux input				
28	Power		V _{DD}	Supply voltage				

LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

CY8C21434/CY8C21634 32-pin QFN Pin Definitions

Pin No. [15]		Гуре			
Pin No. ¹¹⁰	Digital	Analog	Name	Description	
1	I/O	I, M	P0[1]	Analog column mux input, integrating input	
2	I/O	М	P2[7]		
3	I/O	М	P2[5]		
4	I/O	М	P2[3]		
5	I/O	М	P2[1]		
6	I/O	М	P3[3]	In CY8C21434 part	
6	Power		SMP	SMP connection to required external components in CY8C21634 part	
7	I/O	М	P3[1]	In CY8C21434 part	
7	Power		V _{SS}	Ground connection in CY8C21634 part ^[16]	
8	I/O	М	P1[7]	I ² C SCL	
9	I/O	М	P1[5]	I ² C SDA	
10	I/O	М	P1[3]		
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[17]	
12	Power		V _{SS}	Ground connection ^[16]	
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[17]	
14	I/O	М	P1[2]		
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)	
16	I/O	М	P1[6]		
17	Input		XRES	Active high external reset with internal pull-down	
18	I/O	М	P3[0]		
19	I/O	М	P3[2]		
20	I/O	М	P2[0]		
21	I/O	М	P2[2]		
22	I/O	М	P2[4]		
23	I/O	М	P2[6]		
24	I/O	I, M	P0[0]	Analog column mux input	
25	I/O	I, M	P0[2]	Analog column mux input	
26	I/O	I, M	P0[4]	Analog column mux input	
27	I/O	I, M	P0[6]	Analog column mux input	
28	Power		V _{DD}	Supply voltage	
29	I/O	I, M	P0[7]	Analog column mux input	
30	I/O	I, M	P0[5]	Analog column mux input	
31	I/O	I, M	P0[3]	Analog column mux input, integrating input	
32	Power		V _{SS}	Ground connection ^[16]	

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

CY8C21001 56-pin SSOP Pin Definitions (continued)

Туре			Description					
Pin No.	Digital	Analog	Pin Name	Description				
20	I/O		P3[1]					
21		•	NC	No connection. Pin must be left floating				
22			NC	No connection. Pin must be left floating				
23	I/O		P1[7]	I ² C SCL				
24	I/O		P1[5]	I ² C SDA				
25		•	NC	No connection. Pin must be left floating				
26	I/O		P1[3]	IFMTEST				
27	I/O		P1[1]	I ² C SCL, ISSP-SCLK ^[19]				
28	Power	•	V _{SS}	Ground connection ^[18]				
29			NC	No connection. Pin must be left floating				
30			NC	No connection. Pin must be left floating				
31	I/O		P1[0]	I ² C SDA, ISSP-SDATA ^[19]				
32	I/O		P1[2]	V _{FMTEST}				
33	I/O		P1[4]	Optional external clock input (EXTCLK)				
34	I/O		P1[6]					
35		•	NC	No connection. Pin must be left floating				
36			NC	No connection. Pin must be left floating				
37			NC	No connection. Pin must be left floating				
38			NC	No connection. Pin must be left floating				
39			NC	No connection. Pin must be left floating				
40			NC	No connection. Pin must be left floating				
41	Input		XRES	Active high external reset with internal pull-down				
42	OCD		HCLK	OCD high-speed clock output				
43	OCD		CCLK	OCD CPU clock output				
44	I/O		P3[0]					
45	I/O		P3[2]					
46			NC	No connection. Pin must be left floating				
47			NC	No connection. Pin must be left floating				
48	I/O	I	P2[0]					
49	I/O	I	P2[2]					
50	I/O		P2[4]					
51	I/O		P2[6]					
52	I/O	I	P0[0]	Analog column mux input				
53	I/O	I	P0[2]	Analog column mux input and column output				
54	I/O	I	P0[4]	Analog column mux input and column output				
55	I/O	I	P0[6]	Analog column mux input				
56	Power	•	V _{DD}	Supply voltage				

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Notes

18. All V_{SS} pins should be brought out to one common GND plane.
19. These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

Register Reference

This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, see the *PSoC Technical Reference Manual*.

Register Conventions

The register conventions specific to this section are listed in Table 2.

Table 2. Register Conventions

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	_	+6.0	V	
V _{IO}	DC input voltage	V _{SS} – 0.5	_	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch-up current	_	_	200	mA	

Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See Table 29 on page 38. You must limit the power consumption to comply with this requirement.

DC Operational Amplifier Specifications

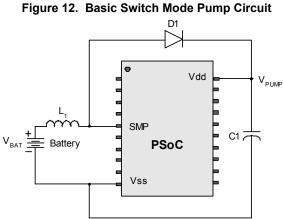
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 8. 5-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins 7-to-1)	-	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	-	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μA	

Table 9. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	-	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	


Table 10. 2.7-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
I _{EBOA00}	Input leakage current (Port 0, Pin 0 analog pin)	-	50	-	nA	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0	-	V _{DD} – 1.0	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Amplifier supply current	_	10	30	μA	

DC Switch Mode Pump Specifications

Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 11. DC Switch Mode Pump (SMP) Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP5V}	5 V output voltage from pump	4.75	5.0	5.25	V	Configured as in Note 20 Average, neglecting ripple SMP trip voltage is set to 5.0 V
V _{PUMP3V}	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configured as in Note 20 Average, neglecting ripple. SMP trip voltage is set to 3.25 V
V _{PUMP2V}	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configured as in Note 20 Average, neglecting ripple. SMP trip voltage is set to 2.55 V
I _{PUMP}	Available output current V _{BAT} = 1.8 V, V _{PUMP} = 5.0 V V _{BAT} = 1.5 V, V _{PUMP} = 3.25 V V _{BAT} = 1.3 V, V _{PUMP} = 2.55 V	5 8 8	_ _ _	_ _ _	mA mA mA	Configured as in Note 20 SMP trip voltage is set to 5.0 V SMP trip voltage is set to 3.25 V SMP trip voltage is set to 2.55 V
V _{BAT5V}	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 20 SMP trip voltage is set to 5.0 V
V _{BAT3V}	Input voltage range from battery	1.0	-	3.3	V	Configured as in Note 20 SMP trip voltage is set to 3.25 V
V _{BAT2V}	Input voltage range from battery	1.0	-	2.8	V	Configured as in Note 20 SMP trip voltage is set to 2.55 V
V _{BATSTART}	Minimum input voltage from battery to start pump	1.2	-	-	V	$\begin{array}{l} \mbox{Configured as in Note 20} \\ 0 \ ^{\circ}\mbox{C} \leq T_A \leq 100. \ 1.25 \ V \ at \\ T_A = -40 \ ^{\circ}\mbox{C} \end{array}$
ΔV_{PUMP}_{Line}	Line regulation (over Vi range)	_	5	_	%V _O	Configured as in Note 20 V_O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 13 on page 24
ΔV_{PUMP_Load}	Load regulation	-	5	_	%V _O	Configured as in Note 20 V_O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 13 on page 24
$\Delta V_{\text{PUMP}}_{\text{Ripple}}$	Output voltage ripple (depends on cap/load)	-	100	-	mVpp	Configured as in Note 20 Load is 5 mA
E ₃	Efficiency	35	50	-	%	Configured as in Note 20 Load is 5 mA. SMP trip voltage is set to 3.25 V

Note

20. L₁ = 2 mH inductor, C₁ = 10 mF capacitor, D₁ = Schottky diode. See Figure 12 on page 23.

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	_	-	49.2	MHz	
	V _{DD} < 4.75 V	1	-	24.6	MHz	
Timer	Input clock frequency				•	
	No capture, $V_{DD} \ge 4.75 \text{ V}$	_	-	49.2	MHz	
	No capture, V _{DD} < 4.75 V	1	-	24.6	MHz	
	With capture	-	-	24.6	MHz	
	Capture pulse width	50 ^[37]	-	-	ns	
Counter	Input clock frequency				•	
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	_	-	49.2	MHz	
	No enable input, V _{DD} < 4.75 V	-	_	24.6	MHz	
	With enable input	-	_	24.6	MHz	
	Enable input pulse width	50 ^[37]	-	-	ns	
Dead Band	Kill pulse width					
	Asynchronous restart mode	20	_	-	ns	
	Synchronous restart mode	50 ^[37]	-	-	ns	
	Disable mode	50 ^[37]	_	-	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	V _{DD} < 4.75 V	-	_	24.6	MHz	
CRCPRS	Input clock frequency					
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	_	49.2	MHz	
mode)	V _{DD} < 4.75 V	-	_	24.6	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	24.6	MHz	
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[37]	-	1	ns	
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	_	49.2	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	24.6	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.2	MHz	
	$V_{DD} \ge 4.75 \text{ V}, 1 \text{ stop bit}$	-	-	24.6	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	

Note 37.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

Table 22. 2.7-V AC Digital Block Specifications

Function	Description	Min	Тур	Мах	Units	Notes
All functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V
Timer	Capture pulse width	100 ^[38]	-	-	ns	
	Input clock frequency, with or without capture	-	-	12.7	MHz	
Counter	Enable input pulse width	100	-	-	ns	
	Input clock frequency, no enable input	-	-	12.7	MHz	
	Input clock frequency, enable input	-	-	12.7	MHz	
Dead Band	Kill pulse width:					
	Asynchronous restart mode	20	-	_	ns	
	Synchronous restart mode	100	_	_	ns	
	Disable mode	100	-	_	ns	
	Input clock frequency	-	-	12.7	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	_	12.7	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	12.7	MHz	
SPIM	Input clock frequency	-	_	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	
	Width of SS_ Negated between transmissions	100	-	_	ns	
Transmitter	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	_	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

AC External Clock Specifications

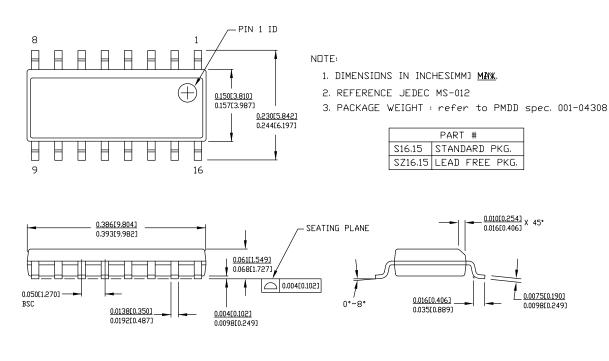
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 23. 5-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High period	20.6	-	5300	ns	
-	Low period	20.6	-	-	ns	
_	Power-up IMO to switch	150	-	_	μs	

Table 24. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	-	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
-	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	_	_	μs	


Table 25. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	-	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met
-	High period with CPU clock divide by 1	160	-	5300	ns	
-	Low period with CPU clock divide by 1	160	_	_	ns	
-	Power-up IMO to switch	150	_	_	μs	

Packaging Information

This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package. **Important Note** Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

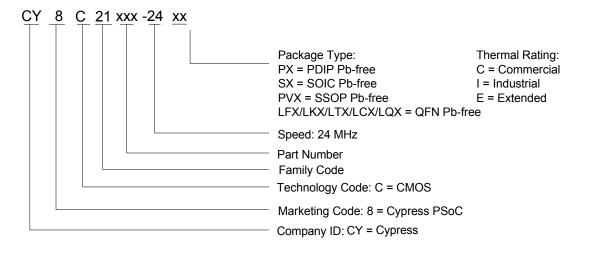


Figure 15. 16-pin SOIC (150 Mils) Package Outline, 51-85068

51-85068 *E

Ordering Code Definitions

Document Conventions

Units of Measure

Table 33 lists the units of measures.

Table 33. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μH	micro henry
dB	decibels	μs	microsecond
°C	degree Celsius	ms	millisecond
μF	microfarad	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolt
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nano volt
kΩ	kilo ohm	V	volt
Ω	ohm	μW	microwatt
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nano ampere	ppm	parts per million
pА	pico ampere	%	percent
mH	millihenry		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.
modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	1. Pertaining to a process in which all events occur one after the other.
	Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Errata

This section describes the errata for the PSoC[®] Programmable System-on-Chip CY8C21X34. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
CY8C21X34	CY8C21234-24SXI
	CY8C21234-24SXIT
	CY8C21334-24PVXI
	CY8C21334-24PVXIT
	CY8C21534-24PVXI
	CY8C21534-24PVXIT
	CY8C21434-24LFXI
	CY8C21434-24LFXIT
	CY8C21434-24LKXI
	CY8C21434-24LKXIT
	CY8C21634-24LFXI
	CY8C21634-24LFXIT
	CY8C21434-24LTXI
	CY8C21434-24LTXIT
	CY8C21434-24LQXI
	CY8C21434-24LQXIT
	CY8C21634-24LTXI
	CY8C21634-24LTXIT
	CY8C21001-24PVXI

CY8C21X34 Qualification Status

Product Status: Production

Document History Page (continued)

Rev.	ECN	Orig. of Change	Submission Date	Description of Change	
AD	4338103	PRKU	04/15/2014	Updated Pin Information: Updated CY8C21234 16-pin SOIC Pin Definitions (corresponding to CY8C21234): Added Note 9 and referred the same note in the description of pin 6 and pin 8 Updated CY8C21334 20-pin SSOP Pin Definitions (corresponding to CY8C21334): Added Note 11 and referred the same note in the description of pin 5 and pin 10 Updated CY8C21534 28-pin SSOP Pin Definitions (corresponding to CY8C21534): Added Note 13 and referred the same note in the description of pin 9 and pin 14 Updated CY8C21434/CY8C21634 32-pin QFN Pin Definitions (corresponding to CY8C21434/CY8C21634): Added Note 16 and referred the same note in the description of pin 7, pin 12 and pin 32. Updated CY8C21001 56-pin SSOP Pin Definitions (corresponding to CY8C21001): Added Note 18 and referred the same note in the description of pin 17, pin 18 and pin 28. Updated Packaging Information: Updated Packaging Information: Updated Thermal Impedances: Updated Note 43 referred in Table 29.	
AE	4531967	DCHE	10/10/2014	Added More Information. Added PSoC Designer.	
AF	4593771	DIMA	12/11/2014	Updated Pin Information: Updated CY8C21001 56-pin SSOP Pin Definitions: Referred Note 18 in description of pin 1. Updated Packaging Information: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F.	
AG	4670626	DCHE	02/25/2015	Updated Errata: Replaced CY8C21234 with CY8C21X34 in all instances.	
AH	5394304	DCHE	08/08/2016	Updated to new template. Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infinged by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-12025 Rev. AH

Revised August 8, 2016

Page 55 of 55

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.