

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21434-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8C21634/CY8C21534/CY8C21434 CY8C21334/CY8C21234

Contents

PSoC Functional Overview	4
The PSoC Core	4
The Digital System	4
The Analog System	5
Additional System Resources	5
PSoC Device Characteristics	6
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pin Information	9
16-pin Part Pinout	9
CY8C21234 16-pin SOIC Pin Definitions	9
20-pin Part Pinout	10
CY8C21334 20-pin SSOP Pin Definitions	10
28-pin Part Pinout	11
CY8C21534 28-pin SSOP Pin Definitions	11
32-pin Part Pinout	12
CY8C21434/CY8C21634 32-pin QFN	
Pin Definitions	13
56-pin Part Pinout	14
CY8C21001 56-pin SSOP Pin Definitions	14
Register Reference	16
Register Conventions	16
Register Mapping Tables	16

Absolute Maximum Ratings	19
Operating Temperature	19
Electrical Specifications	20
DC Electrical Characteristics	20
AC Electrical Characteristics	26
Packaging Information	34
Thermal Impedances	38
Solder Reflow Specifications	38
Development Tool Selection	39
Software	39
Development Kits	39
Evaluation Tools	39
Device Programmers	40
Accessories (Emulation and Programming)	40
Ordering Information	41
Ordering Code Definitions	42
Acronyms	43
Reference Documents	43
Document Conventions	44
Units of Measure	44
Numeric Conventions	44
Glossary	44
Errata	49
Part Numbers Affected	49
CY8C21X34 Qualification Status	49
CY8C21X34 Errata Summary	50
Document History Page	51
Sales, Solutions, and Legal Information	55
Worldwide Sales and Design Support	55
Products	55
PSoC®Solutions	55
Cypress Developer Community	55
Technical Support	55

The Analog System

The analog system consists of four configurable blocks that allow for the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are:

- ADCs (single or dual, with 8-bit or 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34 devices provide limited functionality Type E analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Technical Reference Manual* for detailed information on the CY8C21x34's Type E analog blocks.

Figure 3. Analog System Block Diagram

The Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins may be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and analog-to-digital converters. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing
- Chip-wide mux that allows analog input from any I/O pin
- Crosspoint connection between any I/O pin combinations

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a switch-mode pump, low-voltage detection, and power-on-reset (POR).

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks may be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I²C ^[5] module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3-V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.
- Versatile analog multiplexer system.

Note
 5. Errata: The I²C block exhibits occasional data and bus corruption errors when the I2C master initiates transactions while the device is transitioning in to or out of sleep mode.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[6]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[6]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[6]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[6]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[6]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[6,7]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[6,7]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Limited analog functionality.
 Two analog blocks and one CapSense[®].

20-pin Part Pinout

Figure 5. CY8C21334 20-pin PSoC Device

	- F	•	\sim $-$	1
A, I, M, P0[7]		1	20	V _{DD}
A, I, M, P0[5]	9	2	19	🗖 P0[6], A, I, M
A, I, M, P0[3]	9	3	18	🗖 P0[4], A, I, M
A, I, M, P0[1]	미	4	17	🗖 P0[2], A, I, M
V _{SS}	미	5	SSOP 16	P0[0], A, I, M
M, I2C SCL, P1[7]		6	15	P XRES
M, I2C SDA, P1[5]		7	14	Þ P1[6], M
M, P1[3]	미	8	13	P1[4], EXTCLK, M
M, I2C SCL, P1[1]		9	12	🗖 P1[2], M
V _{SS}	미	10	11	P P1[0], I2C SDA, M
		_		-

CY8C21334 20-pin SSOP Pin Definitions

Din No	Туре		Namo	Description					
FILLINO.	Digital	Analog	Name	Description					
1	I/O	I, M	P0[7]	Analog column mux input					
2	I/O	I, M	P0[5]	Analog column mux input					
3	I/O	I, M	P0[3]	Analog column mux input, integrating input					
4	I/O	I, M	P0[1]	Analog column mux input, integrating input					
5	Power		V _{SS}	Ground connection [11]					
6	I/O	М	P1[7]	I ² C SCL					
7	I/O	М	P1[5]	I ² C SDA					
8	I/O	М	P1[3]						
9	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[12]					
10	Power V _{SS}		V _{SS}	Ground connection ^[11]					
11	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[12]					
12	I/O	М	P1[2]						
13	I/O	М	P1[4]	Optional external clock input (EXTCLK)					
14	I/O	М	P1[6]						
15	Input		XRES	Active high external reset with internal pull-down					
16	I/O	I, M	P0[0]	Analog column mux input					
17	I/O	I, M	P0[2]	Analog column mux input					
18	I/O	I, M	P0[4]	Analog column mux input					
19	I/O	I, M	P0[6]	Analog column mux input					
20	Power		V _{DD}	Supply voltage					

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not High Z at POR. See the *PSoC Technical Reference Manual* for details.

CY8C21634/CY8C21534/CY8C21434 CY8C21334/CY8C21234

32-pin Part Pinout

Figure 7. CY8C21634 32-pin PSoC Device

Figure 8. CY8C21434 32-pin Sawn PSoC Device Sawn

Figure 9. CY8C21634 32-pin Sawn PSoC Device Sawn

CY8C21434/CY8C21634 32-pin QFN Pin Definitions

Bin No ^[15]] Туре		Namo	Description				
FILLING.	Digital	Analog	Name	Description				
1	I/O	I, M	P0[1]	Analog column mux input, integrating input				
2	I/O	М	P2[7]					
3	I/O	М	P2[5]					
4	I/O	М	P2[3]					
5	I/O	М	P2[1]					
6	I/O	М	P3[3]	In CY8C21434 part				
6	Power		SMP	SMP connection to required external components in CY8C21634 part				
7	I/O	М	P3[1]	In CY8C21434 part				
7	Power		V _{SS}	Ground connection in CY8C21634 part ^[16]				
8	I/O	М	P1[7]	I ² C SCL				
9	I/O	М	P1[5]	I ² C SDA				
10	I/O	М	P1[3]					
11	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[17]				
12	Power	•	V _{SS}	Ground connection ^[16]				
13	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[17]				
14	I/O	М	P1[2]					
15	I/O	М	P1[4]	Optional external clock input (EXTCLK)				
16	I/O	М	P1[6]					
17	Input		XRES	Active high external reset with internal pull-down				
18	I/O	М	P3[0]					
19	I/O	М	P3[2]					
20	I/O	М	P2[0]					
21	I/O	М	P2[2]					
22	I/O	М	P2[4]					
23	I/O	М	P2[6]					
24	I/O	I, M	P0[0]	Analog column mux input				
25	I/O	I, M	P0[2]	Analog column mux input				
26	I/O	I, M	P0[4]	Analog column mux input				
27	I/O	I, M	P0[6]	Analog column mux input				
28	Power	•	V _{DD}	Supply voltage				
29	I/O	I, M	P0[7]	Analog column mux input				
30	I/O	I, M	P0[5]	Analog column mux input				
31	I/O	I, M	P0[3]	Analog column mux input, integrating input				
32	Power		V _{SS}	Ground connection ^[16]				

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Notes

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 All V_{SS} pins should be brought out to one common GND plane.
 These are the ISSP pins, which are not high Z at POR. See the *PSoC Technical Reference Manual* for details.

Table 3. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IF	05	RW		45			85			C5	
DDT1CS	06	DW/		46			86			C6	
	00			40			00			C0	
PRIIDIVIZ	07	RW DW		47			07			00	
PRIZDR	08	RW		48			88			68	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			СВ	
PRT3DR	0C	RW		4C			8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW		4E			8E			CE	
PRT3DM2	0F	RW		4F			8F			CF	
	10			50			90		CUR PP	D0	RW
	11			51			91		STK PP	D1	RW
	12			52			92		0	D2	
	12			53			03			D2	DW/
	13			55			93			D3	
	14			54			94		MVR_PP	D4	RW
	15			55			95		MVW_PP	D5	RW
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT CLR1	DB	RW
	1C			5C			9C		-	DC	
	1D			5D			9D		INT CLR3	DD	RW
	15 1F			5E			0E		INT MSK3	DE	RW
	15			55			0E			DE	
DDD00DD0	16	ш		JF CO			96		INT MOKO	DF	
DBB00DR0	20	#		60	RW		AU		INT_MSKU	EU	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0 CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1 CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			FA	
DCB02CR0	2B	#		6R			AB			FR	
	20	" #		60	RW/		AC			EC	
	20	·/		60	D\//						
DCDUJDKI	20										
DCB03DR2	2E	KVV	TMP_DR2		RVV		AE				
DCB03CR0	2⊦	#	TMP_DR3	0F	RW	DD14D1	AF	D 144			
	30			70		RDIORI	R0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	1
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU F	F7	RL
	38			78			B8		-	F8	
	30			79			BQ			. 5 FQ	
	20			7.5			D3				
	JA 2D			78			DA			FA	
	зв			7B			BB BB			FB	
	3C			7C			RC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E			7Ē			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#
										,	

Blank fields are reserved and must not be accessed.

Access is bit specific.

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	ů	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
^t BAKETIME	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch-up current	_	_	200	mA	

Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 29 on page 38. You must limit the power consumption to comply with this requirement.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C21x34 PSoC device. For up-to-date electrical specifications, visit the Cypress web site at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C as specified, except where noted.

Refer to Table 16 on page 26 for the electrical specifications for the IMO using SLIMO mode.

Figure 11. Voltage versus CPU Frequency

CPU

DC Electrical Characteristics

DC Chip-Level Specifications

Table 5 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at $25 \degree C$ and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.40	_	5.25	V	See Table 13 on page 24
I _{DD}	Supply current, IMO = 24 MHz	_	3	4	mA	Conditions are V_{DD} = 5.0 V, T _A = 25 °C, CPU = 3 MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz
I _{DD3}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.2	2	mA	Conditions are V_{DD} = 3.3 V, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{DD27}	Supply current, IMO = 6 MHz using SLIMO mode.	_	1.1	1.5	mA	Conditions are V_{DD} = 2.55 V, T _A = 25 °C, CPU = 3 MHz, clock doubler disabled. VC1 = 375 kHz, VC2 = 23.4 kHz, VC3 = 0.091 kHz
I _{SB27}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and internal slow oscillator active. Mid temperature range.	_	2.6	4	□µA	V_{DD} = 2.55 V, 0 °C \leq T _A \leq 40 °C
I _{SB}	Sleep (mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	2.8	5	μA	V_{DD} = 3.3 V, -40 °C \leq T _A \leq 85 °C
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V _{DD} V _{DD} = 3.0 V to 5.25 V
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.33	V	Trimmed for appropriate V _{DD} V _{DD} = 2.4 V to 3.0 V
AGND	Analog ground	V _{REF} – 0.003	V _{REF}	V _{REF} + 0.003	V	

Table 5. DC Chip-level Specifications

DC General-Purpose I/O Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 6. 5-V and 3.3-V DC GPIO Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	_	-	V	I_{OH} = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])
V _{OL}	Low output level	_	-	0.75	V	I_{OL} = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5]))
I _{ОН}	High level source current	10	-	_	mA	$V_{OH} = V_{DD} - 1.0 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	25	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	_	0.8	V	V _{DD} = 3.0 to 5.25
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25
V _H	Input hysteresis	-	60	-	mV	
I _{IL}	Input leakage (absolute value)	-	1	_	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 7. 2.7-V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 0.4	-	-	V	I_{OH} = 2.5 mA (6.25 Typ), V_{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA Typ combined I_{OH} budget)
V _{OL}	Low output level	-	_	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget)
I _{OH}	High level source current	2.5	_	-	mA	$V_{OH} = V_{DD} - 0.4 V$, see the limitations of the total current in the note for V_{OH}
I _{OL}	Low level sink current	10	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.75	V	V _{DD} = 2.4 to 3.0
V _{IH}	Input high level	2.0	-	-	V	V _{DD} = 2.4 to 3.0
V _H	Input hysteresis	-	90	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent Temp = 25 °C
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent Temp = 25 °C

Table 11. DC Switch Mode Pump (SMP) Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
E ₂	Efficiency	35	80	-	%	For I load = 1mA, V_{PUMP} = 2.55 V, V_{BAT} = 1.3 V, 10 µH inductor, 1 µF capacitor, and Schottky diode
F _{PUMP}	Switching frequency	-	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	-	50	-	%	

DC Analog Mux Bus Specifications

Table 12 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 12. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400 800	Ω	$V_{DD} \ge 2.7 V$ 2.4 V $\le V_{DD} \le 2.7 V$
R _{VDD}	Resistance of initialization switch to V _{DD}	-	-	800	Ω	

DC POR and LVD Specifications

Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 13. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vppor0 Vppor1 Vppor2	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, the reset from the XRES pin, or reset from watchdog
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD4 VLVD5 VLVD6 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[21] 2.99 ^[22] 3.09 3.20 4.55 4.75 4.83 4.95	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	$\begin{array}{l} V_{DD} \text{ value for pump trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.45 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	$\begin{array}{c} 2.62^{[23]}\\ 3.09\\ 3.16\\ 3.32^{[24]}\\ 4.74\\ 4.83\\ 4.92\\ 5.12\end{array}$	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

- 21. Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply. 22. Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply. 23. Always greater than 50 mV above V_{LVD0} . 24. Always greater than 50 mV above V_{LVD0} .

DC Programming Specifications

Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at $25 \degree C$ and are for design guidance only.

Table 14. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V_{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7		5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	_	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	_	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	_	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[25]	-	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[26]	1,800,000	-	-	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	-	_	Years	

DC I²C Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 15. DC I²C Specifications^[27]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	I	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	1	_	V	$2.4~V \leq V_{DD} \leq 5.25~V$

Notes

25. The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

26. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36×2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no single block ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC[®] Flash) for more information.
27. All GPIO meet the DC GPIO VII. and VII. specifications found in the DC GPIO Specifications sections. The ¹²C GPIO pipe also meet the above specifications.

27. All GPIO meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.

AC Programming Specifications

Table 26 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 26.	AC P	rogramming	Specifications
-----------	------	------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall time of SCLK	1	-	20	ns	
T _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash erase time (block)	-	10	-	ms	
T _{WRITE}	Flash block write time	-	40	-	ms	
T _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	3.6 < V _{DD}
T _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
T _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0$
T _{ERASEALL}	Flash erase time (Bulk)	-	20	-	ms	Erase all blocks and protection fields at once
T _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	100 ^[39]	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
T _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	200 ^[39]	ms	$-40~^\circ C \le Tj \le 0~^\circ C$

AC I²C ^[40] Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 27. AC Characteristics of the l	² C SDA and SCL Pins for $V_{DD} \ge 3.0 V$
---------------------------------------	--

Symbol	Description	Standar	d Mode	Fast Mo	Unite	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold time (repeated) start condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μs
T _{LOWI2C}	Low period of the SCL clock	4.7	-	1.3	-	μs
T _{HIGHI2C}	High period of the SCL clock	4.0	-	0.6	-	μs
T _{SUSTAI2C}	Setup time for a repeated start condition	4.7	_	0.6	-	μs
T _{HDDATI2C}	Data hold time	0	-	0	-	μs
T _{SUDATI2C}	Data setup time	250	-	100 ^[41]	-	ns
T _{SUSTOI2C}	Setup time for stop condition	4.0	-	0.6	-	μs
T _{BUFI2C}	Bus free time between a stop and start condition	4.7	-	1.3	-	μs
T _{SPI2C}	Pulse width of spikes suppressed by the input filter.	_	_	0	50	ns

Notes

39. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC[®] Flash) for more information.

40. Errata: The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep mode.

41. A Fast-Mode I²C-bus device may be used in a Standard-Mode I²C-bus system, but it must meet the requirement T_{SU:DAT} ≥ 250 ns. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line T_{rmax} + T_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Thermal Impedances

Table 29. Thermal Impedances per Package

Package	Typical θ _{JA} ^[42]	Typical θ _{JC}
16-pin SOIC	123 °C/W	55 °C/W
20-pin SSOP	117 °C/W	41 °C/W
28-pin SSOP	96 °C/W	39 °C/W
32-pin QFN ^[43] 5 × 5 mm 0.60 Max	27 °C/W	15 °C/W
32-pin QFN ^[43] 5 × 5 mm 1.00 Max	22 °C/W	12 °C/W
56-pin SSOP	48 °C/W	24 °C/W

Solder Reflow Specifications

Table 30 shows the solder reflow temperature limits that must not be exceeded.

Table 30. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
16-pin SOIC	260 °C	30 seconds
20-pin SSOP	260 °C	30 seconds
28-pin SSOP	260 °C	30 seconds
32-pin QFN	260 °C	30 seconds
56-pin SSOP	260 °C	30 seconds

Notes

^{42.} T_J = T_A + Power × θ_{JA}
43. To achieve the thermal impedance specified for the QFN package, refer to *Application Note EROS* - *Design Guidelines for Cypress Quad Flat No Extended Lead* (*QFN) Packaged Devices* available at http://www.cypress.com.

^{4.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Development Tool Selection

This section presents the development tools available for all current PSoC device families including the CY8C21x34 family.

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface allows you to run, halt, and single step the processor, and view the content of specific memory locations. Advance emulation features also supported through PSoC Designer. The kit includes:

- PSoC Designer software CD
- ICE-Cube in-circuit emulator
- ICE Flex-Pod for CY8C29x66 family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240 V power supply, Euro-Plug adapter
- iMAGEcraft C compiler
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. The board includes both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB board
- LCD module
- MIniProg programming unit
- Mini USB cable
- PSoC Designer and example projects CD
- Getting Started guide
- Wire pack

Ordering Code Definitions

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.			
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.			
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.			
Flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.			
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.			
frequency	The number of cycles or events per unit of time, for a periodic function.			
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.			
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.			
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).			
input/output (I/O)	A device that introduces data into or extracts data from a system.			
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.			
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution			
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.			
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.			
low-voltage detect (LVD)	A circuit that senses Vdd and provides an interrupt to the system when Vdd falls below a selected threshold.			
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.			
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .			

CY8C21X34 Errata Summary

The following table defines the errata applicability to available CY8C21X34 family devices. An "X" indicates that the errata pertains to the selected device.

Note Errata items, in the table below, are hyperlinked. Click on any item entry to jump to its description.

Items	Part Number	Silicon Revision	Fix Status
[1.]. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C21X34	A	No fix is currently planned.
[2]. I2C Errors	CY8C21X34	A	No fix is currently planned.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 °C to 70 °C. This problem does not affect end-product usage between 0 °C and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the datasheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 °C to +70 °C.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

No fix is currently planned.

2. I²C Errors

Problem Definition

The I²C block exhibits occasional data and bus corruption errors when the I²C master initiates transactions while the device is transitioning in to or out of sleep mode.

Parameters Affected

Affects reliability of I²C communication to device, between I²C master, and third party I²C slaves.

Trigger Condition(S)

Triggered by transitions into and out of the device's sleep mode.

Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

Workaround

Firmware workarounds are available in firmware. Generally the workaround consists of disconnecting the I^2C block from the bus prior to going to sleep modes. I^2C transactions during sleep are supported by a protocol in which the master wakes the device prior to the I^2C transaction

Fix Status

Will not be fixed.

Document History Page (continued)

Document Title: CY8C21634/CY8C21534/CY8C21434/CY8C21334/CY8C21234, PSoC [®] Programmable System-on-Chip™ Document Number: 38-12025								
Rev.	ECN	Orig. of Change	Submission Date	Description of Change				
*R	2762499	JVY	09/11/2009	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified F _{IMO6} and T _{WRITE} specifications. Replaced T _{RAMP} (time) specification with SR _{POWER_UP} (slew rate) specification. Added note [11] to Flash Endurance specification. Added I _{OH} , I _{OL} , DC _{ILO} , F _{32K_U} , T _{POWERUP} , T _{ERASEALL} , T _{PROGRAM_HOT} , and T _{PROGRAM_COLD} specifications.				
*S	2900687	MAXK / NJF	03/30/2010	Updated The Analog Multiplexer System. Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings. Removed DC Low Power Comparator section. Updated 5-V and 3.3-V AC Chip-Level Specifications. Removed AC Low Power Comparator and AC Analog Mux Bus sections. Updated note in Packaging Information and package diagrams. Added 56 SSOP values for Thermal Impedances, Solder Reflow Specifica- tions. Removed Third Party Tools and Build a PSoC Emulator into your Board. Updated Ordering Code Definitions. Removed inactive parts from Ordering Information Removed obsolete package spec 001-06392. Updated links in Sales, Solutions, and Legal Information.				
*T	2937578	VMAD	05/26/2010	Updated content to match current style guide and data sheet template. No technical updates.				
*U	3005573	NJF	09/02/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Template and styles update.				
*V	3068269	ARVM	10/21/2010	Removed pruned parts CY8C21434-24LKXI and CY8C21434-24LKXIT from Ordering Information.				
*W	3281271	VMAD	08/23/2011	Under Table 20 on page 28 "Notes" section, the text " $2.4 \text{ V} < \text{V}_{CC} < 3.0 \text{ V}$ " is changed to " $2.4 \text{ V} < \text{V}_{DD} < 3.0 \text{ V}$ ". Updated Solder Reflow Specifications. Changed package diagram from 51-85188 *D to 001-30999 *C for QFN32 package.				
*X	3383568	GIR	10/05/2011	The text "Pin must be left floating" is included under Description of NC pin in CY8C21001 56-pin SSOP Pin Definitions on page 14. Changed spec 001-30999 from 32-Pin (5 × 5 mm 0.93 Max) Sawn QFN to 32-Pin (5 × 5 mm 1.0 Max) Sawn QFN Removed pruned parts CY8C21434-24LCXI and CY8C21434-24LCXIT from the Ordering Information table.				
*Y	3659297	YLIU	07/26/2012	Updated Packaging Information (Removed spec 001-44368).				