

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21534-12pvxe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8C21334/CY8C21534

Contents

PSoC Functional Overview	3
The PSoC Core	3
The Digital System	3
The Analog System	4
Additional System Resources	4
PSoC Device Characteristics	5
Getting Started	5
Application Notes	5
Development Kits	5
Training	
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select Components	7
Configure Components	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pinouts	8
20-pin Part Pinout	8
28-pin Part Pinout	
Registers	
Register Conventions	10
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	14
Operating Temperature	14

DC Electrical Characteristics	15
AC Electrical Characteristics	18
Packaging Information	23
Thermal Impedances	24
Solder Reflow Specifications	24
Tape and Reel Information	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	
Accessories (Emulation and Programming)	
Ordering Information	
Ordering Code Definitions	
Acronyms	
Reference Documents	
Document Conventions	
Units of Measure	
Numeric Conventions	
Glossary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	
••	

PSoC Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based system components with one, low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, as illustrated in the Logic Block Diagram on page 1, comprises of four main areas: the core, the system resources, the digital system, and the analog system. Configurable global bus resources allow all the device resources to be combined into a complete custom system. Each CY8C21x34 PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 24 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

The PSoC Core

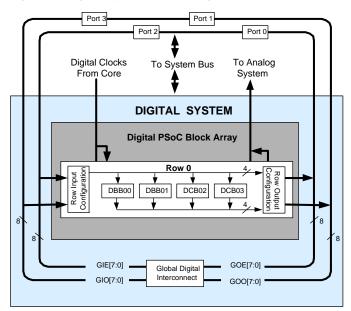
The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep, and watchdog timers, and an internal main oscillator (IMO) and internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 12 MHz. The M8C is a two-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor.

System resources provide additional capability, such as digital clocks for increased flexibility, I^2C functionality for implementing an I^2C master, slave, or multi-master, an internal voltage reference that provides an absolute value of 1.3 V to a number of PSoC subsystems, and various system resets supported by the M8C.

The digital system is composed of an array of digital PSoC blocks, which can be configured into any number of digital peripherals. The digital blocks can be connected to the GPIO through a series of global buses that can route any signal to any pin. This frees designs from the constraints of a fixed peripheral controller.

The analog system is composed of four analog PSoC blocks, supporting comparators and analog-to-digital conversion with up to 10 bits of precision.

The Digital System


The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals,

which are called user modules. Digital peripheral configurations include those listed.

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 24-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- Full or half-duplex 8-bit UART with selectable parity
- SPI master and slave
- I²C master, slave, or multi-master (implemented in a dedicated $I^{2}C$ block)
- Cyclical redundancy checker/generator (16-bit)
- Infrared Data Association (IrDA)
- PRS generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Figure 1. Digital System Block Diagram

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 5.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have a varying number of digital and analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC device covered by this data sheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[1]	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94 ^[1]	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A ^[1]	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45 ^[1]	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45 ^[1]	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34 ^[1]	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34 ^[1]	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Notes

- 1. Automotive qualified devices available in this group.
- 2. Limited analog functionality.
- 3. Two analog blocks and one CapSense® block.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions.

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate, Verify, and Debug

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more

digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (access by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition

to traditional single-step, run-to-breakpoint and watch-variable features, the debug interface provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

CY8C21334/CY8C21534

28-pin Part Pinout

Table 3. 28-pin Part Pinout (SSOP)

Pin	Ту	ре	Name	Description					
No.	Digital	Analog	Name	Description					
1	I/O	I, M	P0[7]	Analog column mux input					
2	I/O	I, M	P0[5]	Analog column mux input					
3	I/O	I, M	P0[3]	Analog column mux input, C _{MOD} capacitor pin					
4	I/O	I, M	P0[1]	Analog column mux input, C _{MOD} capacitor pin					
5	I/O	М	P2[7]						
6	I/O	М	P2[5]						
7	I/O	М	P2[3]						
8	I/O	М	P2[1]						
9	Po	wer	V _{SS}	Ground connection					
10	I/O	М	P1[7]	I ² C serial clock (SCL)					
11	I/O	М	P1[5]	I ² C serial data (SDA)					
12	I/O	М	P1[3]						
13	I/O	М	P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[5]					
14	Po	wer	V _{SS}	Ground connection					
15	I/O	М	P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[5]					
16	I/O	М	P1[2]						
17	I/O	М	P1[4]	Optional external clock (EXTCLK) input					
18	I/O	М	P1[6]						
19	Inț	out	XRES	Active high external reset with internal pull-down					
20	I/O	М	P2[0]						
21	I/O	М	P2[2]						
22	I/O	М	P2[4]						
23	I/O	М	P2[6]						
24	I/O	I, M	P0[0]	Analog column mux input					
25	I/O	I, M	P0[2]	Analog column mux input					
26	I/O	I, M	P0[4]	Analog column mux input					
27	I/O	I, M	P0[6]	Analog column mux input					
28	Po	wer	V_{DD}	Supply voltage					

 $\textbf{LEGEND} \ A = Analog, \ I = Input, \ O = Output, \ and \ M = Analog \ Mux \ Input.$

Figure 4. CY8C21534 28-pin PSoC Device

Note5. These are the ISSP pins, which are not high Z when coming out of POR. See the *PSoC Technical Reference Manual* for details.

Registers

Register Conventions

This section lists the registers of the automotive CY8C21x34 PSoC device. For detailed register information, reference the *PSoC Technical Reference Manual*.

The register conventions specific to this section are listed in Table 4.

Table 4. Register Conventions

Convention	Description			
R Read register or bit(s)				
W	Write register or bit(s)			
L Logical register or bit(s)				
С	Clearable register or bit(s)			
#	Access is bit specific			

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 5. Register Map 0 Table: User Space

Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0E			4F			8F			CF	
	10			50			90		CUR PP	D0	RW
	10			50			91		STK_PP	D1	RW
	11			52			92		STK_FF	D1 D2	
							92		IDX PP	D2 D3	RW
	13			53					_	D3 D4	
	14			54			94		MVR_PP		RW
	15		8	55		8	95		MVW_PP	D5	RW
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW	_	6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW	1	AC			EC	
DCB03DR1	20 2D	W	TMP_DR1	6D	RW	1	AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW	1	AE			EE	
DCB03CR0	2E	#	TMP_DR3	6F	RW		AF	<u></u>		EF	
2 3200010	30	rr -		70	1.17	RDIORI	B0	RW		F0	
	30		1	70		RDIOSYN	B0 B1	RW		F1	
	32		ACE00CR1	72	RW	RDIOIS	B1 B2	RW		F2	
	33		ACE00CR1 ACE00CR2	73	RW	RDI0LT0	B2 B3	RW		F2	
	33		AULUUURZ	73	INVV	RDIOLT0	В3 В4	RW		F3 F4	
	34 35			74		RDI0LT1 RDI0RO0	B4 B5	RW		F4 F5	
						RDI0RO0 RDI0RO1	B5 B6			F5 F6	
	36		ACE01CR1	76	RW	RUIURUT		RW			
	37		ACE01CR2	77	RW	l	B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	ЗA			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E			7E			BE		CPU_SCR1	FE	#
	02			7F							

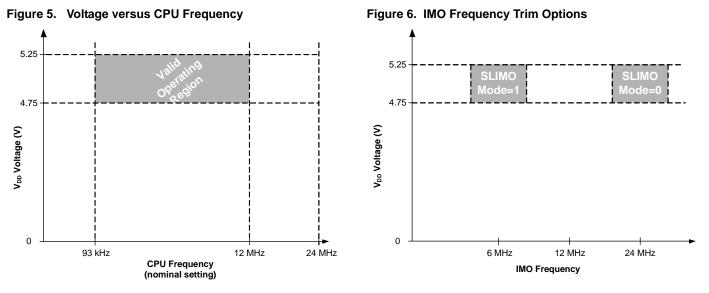
Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 6. Register Map 1 Table: Configuration Space

Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45		/ OE HORO	85			C5	
PRT1IC0	06	RW		46			86			C6	
											ļ
PRT1IC1	07	RW		47			87			C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0E			4E 4F			8F			CF	
	10			50					GDI_O_IN	D0	RW
							90				
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI_O_OU	D2	RW
	13			53			93		GDI_E_OU	D3	RW
	14			54			94			D4	
	15			55			95			D5	
	16		1	56			96			D6	
	17			57			97			D7	
	18			58			98		MUX_CR0	D8	RW
	19			59			99		MUX_CR1	D9	RW
	13 1A			53 5A			9A		MUX CR2	DA	RW
									_		
	1B			5B			9B		MUX_CR3	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
DDD0000	23	1.000	AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	23	RW	CMP_GO_EN	64	RW		A3 A4		VLT_CMP	E4	R
			CIVIF_GO_EN		RVV			-			
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B		CLK_CR3	6B	RW		AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	20 2D	RW	TMP_DR1	6D	RW	ł	AD			ED	
			_								
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	╞────
	2F		TMP_DR3	6F	RW		AF			EF	ļ
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		1	74		RDI0LT1	B4	RW		F4	
	35		1	75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B0 B7		CPU F	F7	RL
	38		NOLUTONZ	78	1.1.1		B7 B8		5, 5_1	F7 F8	
											l
	39			79			B9			F9	ļ
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
	3E		1	7E		1	BE		CPU_SCR1	FE	#
	3F			7E 7F			BF		CPU_SCR0	FF	#
		l	e accessed		l	# Access is bit			3. 0_0010		

Blank fields are Reserved and must not be accessed.


Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the automotive CY8C21x34 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 125 °C and T_J \leq 135 °C as specified, except where noted. Refer to Table 15 on page 18 for the electrical specifications for the IMO using slow IMO (SLIMO) mode.

DC Operational Amplifier Specifications

Table 11 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 11. DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA} ^[6]	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. T _A = 25 °C.
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} – 1	V	
G _{OLOA}	Open loop gain	_	80	-	dB	
I _{SOA}	Amplifier supply current	-	10	100	μA	

DC Analog Mux Bus Specifications

Table 12 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 12. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400	Ω	
RV _{DD}	Resistance of initialization switch to V_{DD}	_	1	800	Ω	

DC POR and LVD Specifications

Table 13 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 13. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V_{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b		2.36 2.82 4.55	2.40 2.95 4.70	V V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from watchdog.
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	$V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 111b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ VM[2:0] = 110b \\ VM[2:0] = 100 \\ VM[2:0] =$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[7] 2.99 ^[8] 3.09 3.20 4.55 4.75 4.83 4.95	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

- Atypical behavior: I_{EBOA} of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 pA.
 Always greater than 50 mV above V_{PPOR0} (PORLEV[1:0] = 00b) for falling supply.
 Always greater than 50 mV above V_{PPOR1} (PORLEV[1:0] = 01b) for falling supply.

DC Programming Specifications

Table 14 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 14.	DC Programming	Specifications
	Dorrogramming	opeomoutions

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	4.7	4.8	4.9	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	4.75	5.0	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	_	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	-	0.75	V	
V _{OHV}	Output high voltage during programming or verify	3.5	_	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[9]	100	_	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[9, 10]	12,800	_	-	-	Erase/write cycles.
Flash _{DR}	Flash data retention ^[11]	15	-	-	Years	

Notes

For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information. 9.

^{10.} The maximum total number of allowed erase/write cycles is the minimum $\text{Flash}_{\text{ENPB}}$ value multiplied by the number of flash blocks in the device. 11. Flash data retention based on the use condition of \leq 7000 hours at $T_A \leq$ 125 °C and the remaining time at $T_A \leq$ 65 °C.

AC Electrical Characteristics

AC Chip-Level Specifications

Table 15 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 125 °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 15.	AC Chip-Level	Specifications
-----------	---------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	IMO frequency for 24 MHz	22.8 ^[12]	24	25.2 ^[12]	MHz	Trimmed using factory trim values. See Figure 6 on page 13. SLIMO mode = 0.
F _{IMO6}	IMO frequency for 6 MHz	5.5 ^[12]	6	6.5 ^[12]	MHz	Trimmed using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU frequency (5 V V _{DD} nominal)	0.09 ^[12]	12	12.6 ^[12]	MHz	SLIMO mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V V _{DD} nominal)	0	24	25.2 ^[12]	MHz	Refer to Table 18 on page 20.
F _{32K1}	ILO frequency	15	32	64	kHz	This specification applies when the ILO has been trimmed.
F _{32KU}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C processor starts to execute, the ILO is not trimmed.
t _{XRST}	External reset pulse width	10	_	-	μS	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	_	12.6 ^[12]	MHz	
SR _{POWERUP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power up.
t _{POWERUP}	Time between end of POR state and CPU code execution	-	16	100	ms	Power-up from 0 V.
t _{JIT_IMO} ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900		N = 32
	24 MHz IMO period jitter (RMS)	-	100	400		

Notes

Accuracy derived from Internal Main Oscillator with appropriate trim for V_{DD} range.
 Refer to Cypress Jitter Specifications document, Understanding Datasheet Jitter Specifications for Cypress Timing Products, for more information.

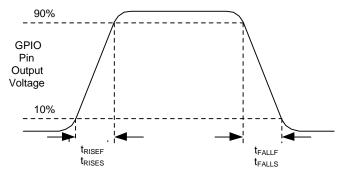

AC GPIO Specifications

Table 16 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 125 \degree C$. Typical parameters apply to 5 V at 25 $\degree C$ and are for design guidance only.

Table 16. AC GPIO Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.6 ^[14]	MHz	Normal Strong Mode
t _{RISEF}	Rise time, normal strong mode, Cload = 50 pF	2	-	22	ns	10% to 90%
t _{FALLF}	Fall time, normal strong mode, Cload = 50 pF	2	-	22	ns	10% to 90%
t _{RISES}	Rise time, slow strong mode, Cload = 50 pF	7	27	_	ns	10% to 90%
t _{FALLS}	Fall time, slow strong mode, Cload = 50 pF	7	22	_	ns	10% to 90%

Figure 7. GPIO Timing Diagram

AC Operational Amplifier Specifications

Table 17 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 17. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
COM	Comparator mode response time, 50 mV overdrive	_	_	150	ns	

AC Digital Block Specifications

Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	25.2 ^[16]	MHz	
Timer	Input clock frequency					
	No capture	-	-	25.2 ^[16]	MHz	
	With capture	-	_	25.2 ^[16]	MHz	
	Capture pulse width	50 ^[15]	-	-	ns	
Counter	Input clock frequency	•		•		
	No enable input	-	-	25.2 ^[16]	MHz	
	With enable input	-	-	25.2 ^[16]	MHz	
	Enable input pulse width	50 ^[15]	-	-	ns	
Dead Band	Kill pulse width	•		•		
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	50 ^[15]	-	-	ns	
	Disable mode	50 ^[15]	_	-	ns	
	Input clock frequency	-	-	25.2 ^[16]	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	-	25.2 ^[16]	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	25.2 ^[16]	MHz	
SPIM	Input clock frequency	-	_	4.2 ^[16]	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	_	2.1 ^[16]	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_ negated between transmissions	50 ^[15]	_	-	ns	
Transmitter	Input clock frequency	-	_	8.4 ^[16]	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	-	25.2 ^[16]	MHz	The baud rate is equal to the input clock frequency divided by 8.

Table 18. AC Digital Block Specifications

Note

15.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).
16. Accuracy derived from IMO with appropriate trim for V_{DD} range.

AC External Clock Specifications

Table 19 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 125 °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 19. AC External Clock Specifications

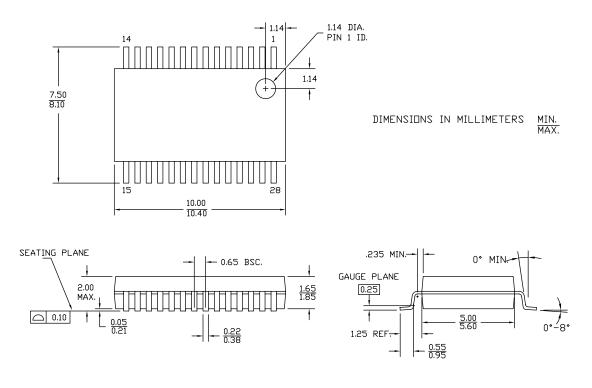
Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.24	MHz	
-	High period	20.6	-	5300	ns	
_	Low period	20.6	-	-	ns	
-	Power-up IMO to switch	150	_	-	μS	

AC Programming Specifications

Table 20 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ }^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125 \text{ }^{\circ}\text{C}$. Typical parameters apply to 5 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 20. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	_	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	_	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	10	40 ^[17]	ms	
t _{WRITE}	Flash block write time	-	40	160 ^[17]	ms	
t _{DSCLK}	Data Out delay from falling edge of SCLK	-	-	50	ns	
t _{PRGH}	Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	-	-	100 ^[17]	ms	$T_{J} \ge 0 \ ^{\circ}C$
t _{PRGC}	Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	-	-	200 ^[17]	ms	T _J < 0 °C


Note

17. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

CYPRESS*

51-85079 *F

Thermal Impedances

Table 22. Thermal Impedances per Package

Package	Typical θ _{JA} ^[20]	Typical θ _{JC}
20-pin SSOP	117 °C/W	41 °C/W
28-pin SSOP	96 °C/W	39 °C/W

Solder Reflow Specifications

Table 23 shows the solder reflow temperature limits that must not be exceeded.

Table 23. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
20-pin SSOP	260 °C	30 seconds
28-pin SSOP	260 °C	30 seconds

Tape and Reel Information

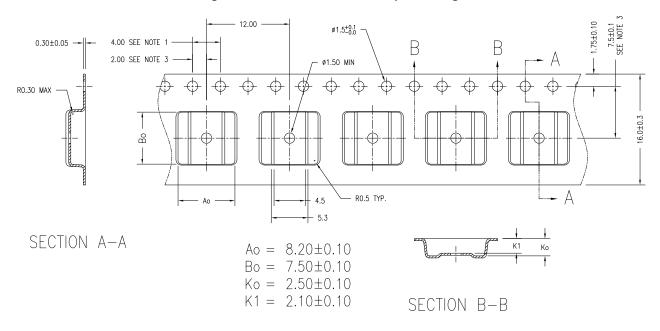


Figure 11. 20-Pin SSOP Carrier Tape Drawing

NOTES: 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2. CAMBER IN COMPLIANCE WITH EIA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

51-51101 *C

Device Programmers

All device programmers can be purchased from the Cypress Online Store. The online store also has the most up to date information on kit contents, descriptions, and availability.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide

Accessories (Emulation and Programming)

Table 25. Emulation and Programming Accessories

■ USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note: CY3207ISSP needs special software and is not compatible with PSoC Programmer. This software is free and can be downloaded from http://www.cypress.com. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Part Number	Pin Package	Pod Kit ^[21]	Foot Kit ^[22]	Adapter ^[23]
CY8C21334-12PVXE	20-pin SSOP	CY3250-21X34	CY3250-20SSOP-FK	Adapters can be found at
CY8C21534-12PVXE	28-pin SSOP	CY3250-21X34	CY3250-28SSOP-FK	http://www.emulation.com.

Notes

22. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{21.} Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.

 ^{23.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Document Conventions

Units of Measure

The following table lists the units of measure that are used in this document.

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	ms	millisecond
dB	decibel	mV	millivolt
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	W	ohm
kΩ	kilohm	pА	picoampere
MHz	megahertz	pF	picofarad
μΑ	microampere	ps	picosecond
μS	microsecond	V	volt
μV	microvolt	W	watt
mA	milliampere		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or '0x' are in decimal format.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states. 			
analog blocks	The basic programmable Opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.			
analog-to-digital converter (ADC)				
Application programming interface (API)				
asynchronous	signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.			
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.			
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum. 			
bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device. 			

Document History Page (continued)

Document Title: CY8C21334/CY8C21534, Automotive – Extended Temperature PSoC [®] Programmable System-on-Chip™ Document Number: 38-12038					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*H	3118809	BTK / NJF	08/11/2011	Updated I ² C timing diagram to improve clarity. Updated wording, formatting, and notes of the AC Digital Block Specifications table to improve clarify. Added V_{DDF} , V_{DDLV} , and V_{DDHV} electrical specifications to give more infor- mation for programming the device. Updated solder reflow temperature specifications to give more clarity. Updated the jitter specifications. Updated PSoC Device Characteristics table. Updated the F _{32KU} electrical specification. Updated DC POR and LVD Specifications to add specs for all POR and LVD levels. Updated note for R _{PD} electrical specification. Updated note for the T _{STG} electrical specification to add more clarity. Added Tape and Reel Information section. Updated Reference Information Section. Added F _{IMO6} electrical specification to give it a ±5% frequency accuracy. Updated F _{CPU1} , F _{BLK5} , F _{MAX} , and F _{GPI0} electrical specifications and all AC Digital Block Specifications to support a ±5% accuracy oscillator.	
*	3523799	SMYU	02/13/2012	Updated Tape and Reel Information (51-51100 and 51-51101)	
*J	3904247	JICG	02/14/2013	Updated Packaging Information (Updated Tape and Reel Information (spec 51-51101 – Changed revision from *B to *C)).	
*K	5166373	SNPR	03/08/2016	Updated Packaging Information: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated Tape and Reel Information: spec 51-51100 – Changed revision from *C to *D. Updated to new template. Completing Sunset Review.	
*L	5655080	SNPR	03/09/2017	Updated to new template. Completing Sunset Review.	