

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21534-12pvxet

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional microcontroller unit (MCU)-based system components with one, low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The PSoC architecture, as illustrated in the Logic Block Diagram on page 1, comprises of four main areas: the core, the system resources, the digital system, and the analog system. Configurable global bus resources allow all the device resources to be combined into a complete custom system. Each CY8C21x34 PSoC device includes four digital blocks and four analog blocks. Depending on the PSoC package, up to 24 GPIOs are also included. The GPIOs provide access to the global digital and analog interconnects.

The PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep, and watchdog timers, and an internal main oscillator (IMO) and internal low-speed oscillator (ILO). The CPU core, called the M8C, is a powerful processor with speeds up to 12 MHz. The M8C is a two-million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor.

System resources provide additional capability, such as digital clocks for increased flexibility, I^2C functionality for implementing an I^2C master, slave, or multi-master, an internal voltage reference that provides an absolute value of 1.3 V to a number of PSoC subsystems, and various system resets supported by the M8C.

The digital system is composed of an array of digital PSoC blocks, which can be configured into any number of digital peripherals. The digital blocks can be connected to the GPIO through a series of global buses that can route any signal to any pin. This frees designs from the constraints of a fixed peripheral controller.

The analog system is composed of four analog PSoC blocks, supporting comparators and analog-to-digital conversion with up to 10 bits of precision.

The Digital System

The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals,

which are called user modules. Digital peripheral configurations include those listed.

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 24-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- Full or half-duplex 8-bit UART with selectable parity
- SPI master and slave
- I²C master, slave, or multi-master (implemented in a dedicated $I^{2}C$ block)
- Cyclical redundancy checker/generator (16-bit)
- Infrared Data Association (IrDA)
- PRS generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Figure 1. Digital System Block Diagram

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 5.

The Analog System

The analog system is composed of four configurable blocks, allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are listed.

- ADCs (single or dual, with up to 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3 V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34 devices provide limited functionality type 'E' analog blocks. Each column contains one CT type 'E' block and one SC type 'E' block. Refer to the *PSoC Programmable System-on-Chip Technical Reference Manual* for detailed information on the CY8C21x34's type 'E' analog blocks.

Figure 2. Analog System Block Diagram

The Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins can be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and ADCs. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combination.

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful for complete systems. Brief statements describing the merits of each system resource are presented.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I²C module provides communication up to 400 kHz over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-V voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have a varying number of digital and analog blocks. The following table lists the resources available for specific PSoC device groups. The PSoC device covered by this data sheet is highlighted in Table 1.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66 ^[1]	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94 ^[1]	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A ^[1]	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45 ^[1]	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45 ^[1]	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34 ^[1]	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34 ^[1]	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Getting Started

For in-depth information, along with detailed programming details, see the $PSoC^{\textcircled{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Notes

- 1. Automotive qualified devices available in this group.
- 2. Limited analog functionality.
- 3. Two analog blocks and one CapSense® block.

CY8C21334/CY8C21534

28-pin Part Pinout

Table 3. 28-pin Part Pinout (SSOP)

Pin	Ту	ре	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I, M	P0[7]	Analog column mux input
2	I/O	I, M	P0[5]	Analog column mux input
3	I/O	I, M	P0[3]	Analog column mux input, C _{MOD} capacitor pin
4	I/O	I, M	P0[1]	Analog column mux input, C _{MOD} capacitor pin
5	I/O	М	P2[7]	
6	I/O	М	P2[5]	
7	I/O	М	P2[3]	
8	I/O	М	P2[1]	
9	Po	wer	V _{SS}	Ground connection
10	I/O	М	P1[7]	I ² C serial clock (SCL)
11	I/O	М	P1[5]	I ² C serial data (SDA)
12	I/O	М	P1[3]	
13	I/O	М	P1[1]	I ² C serial clock (SCL), ISSP-SCLK ^[5]
14	4 Power		V _{SS}	Ground connection
15	I/O	М	P1[0]	I ² C serial data (SDA), ISSP-SDATA ^[5]
16	I/O	М	P1[2]	
17	I/O	М	P1[4]	Optional external clock (EXTCLK) input
18	I/O	М	P1[6]	
19	Inț	out	XRES	Active high external reset with internal pull-down
20	I/O	М	P2[0]	
21	I/O	М	P2[2]	
22	I/O	М	P2[4]	
23	I/O	М	P2[6]	
24	I/O	I, M	P0[0]	Analog column mux input
25	I/O	I, M	P0[2]	Analog column mux input
26	I/O	I, M	P0[4]	Analog column mux input
27	I/O	I, M	P0[6]	Analog column mux input
28	Po	wer	V_{DD}	Supply voltage

 $\textbf{LEGEND} \ A = Analog, \ I = Input, \ O = Output, \ and \ M = Analog \ Mux \ Input.$

Figure 4. CY8C21534 28-pin PSoC Device

			1
AI, M, P0[7] =	1	28	u V _{DD}
AI, M, P0[5] 🗖	2	27	= P0[6], M, Al
AI, M, P0[3] =	3	26	= P0[4], M, Al
AI, M, P0[1] =	4	25	= P0[2], M, Al
M, P2[7] =	5	24	= P0[0], M, Al
M, P2[5] =	6	23	= P2[6], M
M, P2[3] =	7 8500	22	= P2[4], M
M, P2[1] =	8 330F	21	= P2[2], M
V _{SS} =	9	20	= P2[0], M
I2C SCL, M, P1[7] =	10	19	■ XRES
I2C SDA, M, P1[5] 🗖	11	18	= P1[6], M
M, P1[3] =	12	17	P1[4], M, EXTCLK
I2C SCL, M, P1[1]	13	16	= P1[2], M
V _{SS} =	14	15	P1[0], M, I2C SDA

Note5. These are the ISSP pins, which are not high Z when coming out of POR. See the *PSoC Technical Reference Manual* for details.

Registers

Register Conventions

This section lists the registers of the automotive CY8C21x34 PSoC device. For detailed register information, reference the *PSoC Technical Reference Manual*.

The register conventions specific to this section are listed in Table 4.

Table 4. Register Conventions

Convention	Description					
R	Read register or bit(s)					
W	Write register or bit(s)					
L	Logical register or bit(s)					
С	Clearable register or bit(s)					
#	Access is bit specific					

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XIO bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and must not be accessed.

Table 5. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access									
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRT0IE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		CUR_PP	D0	RW
	11			51			91		STK_PP	D1	RW
	12			52			92			D2	
	13			53			93		IDX_PP	D3	RW
	14			54			94		MVR_PP	D4	RW
	15			55			95		MVW_PP	D5	RW
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW		AC			EC	
DCB03DR1	2D	W	TMP_DR1	6D	RW		AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW		AF			EF	
	30			70		RDIORI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_D	FD	RW
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 6. Register Map 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
-	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0E			4F			8E			CF	
	10			50			90		GDLO IN	D0	RW
	11			51			91		GDLE IN	D1	RW
	12			52			92			D2	RW
	12			53			93			D3	RW
	14			54			94		221_2_00	D4	
	15			55			95			D5	
	16			56			95			De	
	17			57			90			D7	
	17			58			97		MUX CRO		RW/
	10			50			90		MUX_CR1	D0	RW/
	13			54			99		MUX_CR2		RW/
	18			58			9A OR		MUX_CR2	DR	DW/
	10			50			9D		NOX_CR3	DB	KW.
	10			50			90		OSC CO EN	DC	D\//
	10			50			9D		OSC_GO_EN		
	IE 1E			JE			9E		OSC_CR4	DE	
	1F			DF CO	D\//		9F		OSC_CR3	DF	
	20	RW	CLK_CRU	60	RW		AU A1		OSC_CRU	EU	
DBB00IN	21	RW	CLK_CRI	61	RW		AI			EI	RW
DBB0000	22	RW	ABF_CRU	62	RW		AZ			EZ	RW
	23	DW	AMD_CRU	63	RW		A3			E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLI_CMP	E4	R
DBB01IN	25	RW		65	DIA		A5		ADC0_TR	E5	RW
DBB0100	26	RW		66	RW		A6		ADC1_TR	E6	RW
DODOOFN	27	DIA	ALI_CRU	67	RW		A7			E7	14/
DCB02FN	28	RW		68			A8			E8	VV
DCB02IN	29	RW		69			A9		ILU_IR	E9	VV
DCB02OU	2A	RW	0116 050	6A	514		AA		BDG_TR	EA	RW
DODOOTH	28		ULK_UR3	6B	RW		AB		ECO_IR	EB	VV
DCB03FN	20	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	20	KW		6D	KW		AD			ED	
DCB0300	2E	κw	TMP_DR2	6E	RW		AE			EE FF	
	2F		INIP_DR3	0F	KW	DDIADI	AF				
	30			/0			R0	RW		F0	
	31			/1		KDIUSYN	B1	RW		F1 F2	
	32		ACEUUCR1	/2	RW		B2	RW		F2	
	33		ACE00CR2	73	RW	RDIOLTO	B3	RW		F3	
	34			/4		KDIULI 1	B4	RW		⊢4	
	35		40504054	/5	D	KDIUKUU	85	RW		+5	
	36		ACE01CR1	/6	RW	KDIUKO1	В6	RW		+6	6.
	37		ACE01CR2	/7	RW		В7		CPU_F	F7	КL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Blank fields are Reserved and must not be accessed.

Access is bit specific.

AC GPIO Specifications

Table 16 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 125 \degree C$. Typical parameters apply to 5 V at 25 $\degree C$ and are for design guidance only.

Table 16. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.6 ^[14]	MHz	Normal Strong Mode
t _{RISEF}	Rise time, normal strong mode, Cload = 50 pF	2	-	22	ns	10% to 90%
t _{FALLF}	Fall time, normal strong mode, Cload = 50 pF	2	-	22	ns	10% to 90%
t _{RISES}	Rise time, slow strong mode, Cload = 50 pF	7	27	_	ns	10% to 90%
t _{FALLS}	Fall time, slow strong mode, Cload = 50 pF	7	22	-	ns	10% to 90%

Figure 7. GPIO Timing Diagram

AC Operational Amplifier Specifications

Table 17 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 17. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{COMP}	Comparator mode response time, 50 mV overdrive	-	-	150	ns	

AC Digital Block Specifications

Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Units	Notes
All functions	Block input clock frequency	-	-	25.2 ^[16]	MHz	
Timer	Input clock frequency	•		•		
	No capture	-	_	25.2 ^[16]	MHz	
	With capture	-	-	25.2 ^[16]	MHz	
	Capture pulse width	50 ^[15]	-	_	ns	
Counter	Input clock frequency			1		
	No enable input	-	-	25.2 ^[16]	MHz	
	With enable input	-	_	25.2 ^[16]	MHz	
	Enable input pulse width	50 ^[15]	-	_	ns	
Dead Band	Kill pulse width			1		
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	50 ^[15]	_	_	ns	
	Disable mode	50 ^[15]	-	_	ns	
	Input clock frequency	-	-	25.2 ^[16]	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	-	25.2 ^[16]	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	25.2 ^[16]	MHz	
SPIM	Input clock frequency	-	_	4.2 ^[16]	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	2.1 ^[16]	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_ negated between transmissions	50 ^[15]	-	-	ns	
Transmitter	Input clock frequency	-	_	8.4 ^[16]	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	-	25.2 ^[16]	MHz	The baud rate is equal to the input clock frequency divided by 8.

Table 18. AC Digital Block Specifications

Note

15.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).
16. Accuracy derived from IMO with appropriate trim for V_{DD} range.

AC External Clock Specifications

Table 19 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 125 °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 19. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.24	MHz	
-	High period	20.6	-	5300	ns	
-	Low period	20.6	-	-	ns	
-	Power-up IMO to switch	150	-	-	μS	

AC Programming Specifications

Table 20 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 125 \degree C$. Typical parameters apply to 5 V at 25 $\degree C$ and are for design guidance only.

Table 20. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	_	10	40 ^[17]	ms	
t _{WRITE}	Flash block write time	-	40	160 ^[17]	ms	
t _{DSCLK}	Data Out delay from falling edge of SCLK	_	-	50	ns	
t _{PRGH}	Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	-	-	100 ^[17]	ms	$T_{J} \ge 0 \ ^{\circ}C$
t _{PRGC}	Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	-	-	200 ^[17]	ms	T _J < 0 °C

Note

17. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

AC I²C Specifications

Table 21 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C $\leq T_A \leq 125$ °C. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 21. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Unite	Notos
Symbol	Description	Min	Max	Min	Max	Units	NOICS
F _{SCLI2C}	SCL clock frequency	0	100 ^[18]	0	400 ^[18]	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.		-	0.6	-	μs	
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS	
t _{HDDATI2C}	Data hold time	0	-	0	-	μS	
t _{SUDATI2C}	Data setup time	250	-	100 ^[19]	-	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μs	
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	-	-	0	50	ns	

Figure 8. Definition for Timing for Fast/Standard Mode on the I²C Bus

Notes

- 18. F_{SCLI2C} is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the F_{SCLI2C} specification adjusts accordingly
 19. A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement t_{SUDATI2C} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDATI2C} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Packaging Information

This section illustrates the packaging specifications for the automotive CY8C21x34 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Figure 9. 20-Pin SSOP (210 Mils)

51-85077 *F

CYPRESS*

51-85079 *F

Thermal Impedances

Table 22. Thermal Impedances per Package

Package	Typical θ _{JA} ^[20]	Typical θ _{JC}
20-pin SSOP	117 °C/W	41 °C/W
28-pin SSOP	96 °C/W	39 °C/W

Solder Reflow Specifications

Table 23 shows the solder reflow temperature limits that must not be exceeded.

Table 23. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C	
20-pin SSOP	260 °C	30 seconds	
28-pin SSOP	260 °C	30 seconds	

Tape and Reel Information

Figure 11. 20-Pin SSOP Carrier Tape Drawing

NOTES: 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2. CAMBER IN COMPLIANCE WITH EIA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

51-51101 *C

Figure 12. 28-Pin SSOP Carrier Tape Drawing

51-51100 *D

 Table 24. Tape and Reel Specifications

Package	Cover Tape Width (mm)	Hub Size (inches)	Minimum Leading Empty Pockets	Minimum Trailing Empty Pockets	Standard Full Reel Quantity
20-pin SSOP	13.3	4	42	25	2000
28-pin SSOP	13.3	7	42	25	1000

Development Tool Selection

This section presents the development tools available for the automotive CY8C21x34 family.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store. The online store also has the most up to date information on kit contents, descriptions, and availability.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the contents of specific memory locations. Advanced emulation features are also supported through PSoC Designer. The kit includes:

- ICE-Cube Unit
- 28-Pin PDIP Emulation Pod for CY8C29466-24PXI
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Samples (two)
- PSoC Designer Software CD
- ISSP Cable
- MiniEval Socket Programming and Evaluation board
- Backward Compatibility Cable (for connecting to legacy Pods)
- Universal 110/220 Power Supply (12 V)
- European Plug Adapter
- USB 2.0 Cable
- Getting Started Guide
- Development Kit Registration form

CY3280-BK1

The CY3280-BK1 Universal CapSense Control Kit is designed for easy prototyping and debug of CapSense designs with pre-defined control circuitry and plug-in hardware. The kit comes with a control boards for CY8C20x34 and CY8C21x34 devices as well as a breadboard module and a button(5)/slider module.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store. The online store also has the most up to date information on kit contents, descriptions, and availability.

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, an RS-232 port, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3235-ProxDet

The CY3235-ProxDet CapSense Proximity Detection Demonstration Kit allows quick and easy demonstration of a PSoC CapSense-enabled device (CY8C21x34) to accurately sense the proximity of a hand or finger along the length of a wire antenna. The kit includes:

- Proximity Detection Demo Board w/Antenna
- I2C to USB Debugging/Communication Bridge
- USB Cable (6 feet)
- Supporting Software CD
- CY3235-ProxDet Quick Start Guide
- 1 CY8C24894 PSoC device on I2C-USB Bridge
- 1 CY8C21434 PSoC device on Proximity Detection Demo Board

CY3210-21X34 Evaluation Pod (EvalPod)

PSoC EvalPods are pods that connect to the ICE In-Circuit Emulator (CY3215-DK kit) to allow debugging capability. They can also function as a standalone device without debugging capability. The EvalPod has a 28-pin DIP footprint on the bottom for easy connection to development kits or other hardware. The top of the EvalPod has prototyping headers for easy connection to the device's pins. CY3210-21X34 provides evaluation of the CY8C21x34 PSoC device family.

Document Conventions

Units of Measure

The following table lists the units of measure that are used in this document.

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	ms	millisecond
dB	decibel	mV	millivolt
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	W	ohm
kΩ	kilohm	pА	picoampere
MHz	megahertz	pF	picofarad
μΑ	microampere	ps	picosecond
μS	microsecond	V	volt
μV	microvolt	W	watt
mA	milliampere		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or '0x' are in decimal format.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable Opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital converter (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog converter (DAC) performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary (continued)

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitted data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an <i>oscillator</i> so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power-on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip [™] is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied value.
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a known state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

Document History Page (continued)

Document Title: CY8C21334/CY8C21534, Automotive – Extended Temperature PSoC [®] Programmable System-on-Chip™ Document Number: 38-12038				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*Н	3118809	BTK / NJF	08/11/2011	Updated I ² C timing diagram to improve clarity. Updated wording, formatting, and notes of the AC Digital Block Specifications table to improve clarify. Added V_{DDP} , V_{DDLV} , and V_{DDHV} electrical specifications to give more infor- mation for programming the device. Updated solder reflow temperature specifications to give more clarity. Updated the jitter specifications. Updated PSoC Device Characteristics table. Updated the F _{32KU} electrical specification. Updated DC POR and LVD Specification. Updated note for R _{PD} electrical specification. Updated note for the T _{STG} electrical specification to add more clarity. Added Tape and Reel Information section. Updated Reference Information Section. Added F _{IMO6} electrical specification to give it a ±5% frequency accuracy. Updated F _{CPU1} , F _{BLK5} , F _{MAX} , and F _{GPI0} electrical specifications and all AC Digital Block Specifications to support a ±5% accuracy oscillator.
*	3523799	SMYU	02/13/2012	Updated Tape and Reel Information (51-51100 and 51-51101)
*J	3904247	JICG	02/14/2013	Updated Packaging Information (Updated Tape and Reel Information (spec 51-51101 – Changed revision from *B to *C)).
*К	5166373	SNPR	03/08/2016	Updated Packaging Information: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated Tape and Reel Information: spec 51-51100 – Changed revision from *C to *D. Updated to new template. Completing Sunset Review.
*L	5655080	SNPR	03/09/2017	Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-12038 Rev. *L

[©] Cypress Semiconductor Corporation, 2005–2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.