

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	11
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 6x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1176agsp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

<R>

<R>

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C	, 2.4 V \leq AVDD = VDD \leq 3.6 V	/, Vss = AVss = 0 V)
---------------------	--	----------------------

(3/4)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD2 Note 2	HALT	HS (high-speed main) mode	$f_{\rm IH} = 24 \text{ MHz} \frac{\text{Note 4}}{10 + 85^{\circ}\text{C}}$	V _{DD} = 3.0 V			0.37	1.83	mA
		mode			V				0.05	
				$f_{\rm H} = 24 \text{ MHz} + 1000^{\circ} \text{ MHz}$	VDD = 3.0 V				2.00	
				TA = +63 (0 + 103 C	Voo = 3.0 V			0.36	1 38	-
				IIH = 10 MHZ 1000 +,	VDD - 3.0 V			0.30	1.50	
				fw = 16 MH - Note 4	$V_{DD} = 3.0 V$				2.08	
				$T_{A} = +85 \text{ to } +105^{\circ}\text{C}$	VDD - 3.0 V				2.00	
			IS (low-speed main) mode	fu = 8 MHz Note 4	$V_{DD} = 3.0 V$			250	710	ıιΔ
			(MCSEL = 0)	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	$V_{DD} = 2.0 V$			250	710	μΑ
			LS (low-speed main) mode	fu = 4 MHz Note 4	Vpp = 3.0 V			200	400	μА
			(MCSEL = 1)	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	$V_{DD} = 2.0 V$			204	400	μι
				fw = 4 MHz Note 7	Vpp = 3.0 V			40	250	
				$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	$V_{DD} = 2.0 V$			40	250	
			I.V. (low-voltage main) mode		Vpp = 3.0 V			425	800	пΑ
			EV (low-voltage main) mode	$f_{\rm H} = 3 \text{MHz} \text{Note 4},$	$V_{DD} = 2.0 V$			425	800	μΛ
				$I_A = -40 \text{ to } +85^{\circ}\text{C}$	V. 0.0.V			100	400	
			LP (low-power main) mode	$f_{\rm H} = 1 \text{ MHz} \log^{4} 4$,	VDD = 3.0 V			192	400	μΑ
				TA = -40 to +65 C	VDD = 2.0 V			192	400	
				fim = 1 MHz Note 7,	$V_{DD} = 3.0 V$			27	100	
				T _A = -40 to +85°C	VDD = 2.0 V	•		27	100	
			HS (high-speed main) mode	f _{MX} = 20 MHz Note 3,	V _{DD} = 3.0 V	Square wave input		0.20	1.55	mA
				T _A = -40 to +85°C		Resonator connection		0.40	1.74	
				f _{MX} = 20 MHz Note 3,	VDD = 3.0 V	Square wave input			2.45	
				T _A = +85 to +105°C		Resonator connection			2.57	
				f _{MX} = 10 MHz Note 3,	VDD = 3.0 V	Square wave input		0.15	0.86	
				T _A = -40 to +85°C		Resonator connection		0.30	0.93	
				f _{MX} = 10 MHz ^{Note 3} ,	Vdd = 3.0 V	Square wave input			1.28	
				$I_A = +85 \text{ to } +105^{\circ}\text{C}$	_	Resonator connection			1.36	
			LS (low-speed main) mode	f _{MX} = 8 MHz Note 3,	Vdd = 3.0 V	Square wave input		68	550	μA
			(MCSEL = 0)	T _A = -40 to +85°C		Resonator connection		120	590	
				f _{MX} = 8 MHz Note 3,	VDD = 2.0 V	Square wave input		68	550	
				T _A = -40 to +85°C		Resonator connection		120	590	
			LS (low-speed main) mode	$f_{MX} = 4 \text{ MHz } \text{Note } 3,$	VDD = 3.0 V	Square wave input		23	128	μΑ
			(MCSEL = 1)	$I_A = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		65	200	
				$f_{MX} = 1 \text{ MHz } Note 3,$	VDD = 2.0 V	Square wave input		23	128	
				$I_A = -40 \text{ to } +85^{\circ}\text{C}$		Resonator connection		65	200	
			LP (low-power main) mode	$f_{MX} = 4 \text{ MHz} \text{ Note } 3,$	VDD = 3.0 V	Square wave input		10	64	μΑ
			(INICSEL = T)	$I_A = -40 \text{ to } +85^{\circ}\text{C}$	N 0.0 V	Resonator connection		48	150	
				$f_{MX} = 1 \text{ MHz} \text{ Note 3},$	VDD = 2.0 V	Square wave input		10	64	
			Outerrate and all an emotion	IA = -40 10 +65 C		Resonator connection		48	150	
			Subsystem clock operation	ISX = 32.700 KHZ,		Square wave input		0.24	0.57	μΑ
				fax = 22 769 kHz		Squara waya input		0.42	0.70	-
				ISX = 32.700 KHZ,		Square wave input		0.30	0.57	
				$f_{A} = +23$ C Hele c		Resonator connection		0.34	0.76	-
				ISX = 32.700 KHZ,		Square wave input		0.35	1.17	-
				fox = 32 768 kHz		Square wave input		0.00	1.30	-
				$T_{A} = \pm 70^{\circ}C$ Note 5		Square wave input		0.42	2.16	-
				fox = 32 768 kHz		Square wave input		0.70	2.10	-
				$T_{A} = +85^{\circ}$ C. Note 5		Resonator connection		0.00	3.56	1
				fsy = 32 768 kHz		Square wave input		1 80	17 10	1
				$T_{A} = +105^{\circ}$ C Note 5		Resonator connection		2.20	17.10	1
				fu = 15 kH= T. = 40%	Note 6	. coonator connection		0.40	1.00	μA
				$f_{\rm H} = 15 \text{ km}^2$, $IA = -40^{\circ}$	C Note 6			0.40	1.22	μΑ
				IIL = 15 KHZ, IA = +25°				0.47	1.22	1
				τι∟ = 15 KHz, IA = +85°				0.80	3.30	1
				ti∟ = 15 kHz, Ta = +105	C NOTE P			2.00	17.30	

(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +10	5°C, 2.4	$V \leq AVDD = VDD$	\leq 3.6 V, Vss = AVss = 0 V)				(4/4)
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current	Idd3	STOP mode	TA = -40°C		0.16	0.51	μA
Note 1	Note 2	Note 3	TA = +25°C		0.22	0.51	
			TA = +50°C		0.27	1.10	
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Condi	tions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Lov main)	v-power mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	fмск > 16 MHz	8/fмск		—	—	—	—	—	_	ns
Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		6/fмск		
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		6/fмск and 500		6/fмск		6/fмск		6/fмск		
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—		6/fмск		6/fмск		6/fмск		
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_				
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_				
SCKp high-/ low-level width	tкн2, tкL2	$2.7~V \leq V_{DD} \leq 3.6~V$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$2.4~V \le V_{\text{DD}} \le 3.6~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		
		$1.8~V \leq V_{DD} \leq 3.6~V$		—								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		—		—		tксү2/2		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_		- 66		
SIp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{DD} \leq 3.6~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		1/fмск + 30								
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		_		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		+ 40		
SIp hold time (from SCKp↑)	tĸsı2	$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		+ 250		
Delay time from SCKp↓ to SOp	tĸso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
output Note 3			$2.4~V \leq V_{DD} \leq 3.6~V$		2/fмск + 75							
			$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—	1						
			$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—		2/fмск	
			$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—	1	+ 220	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol		Conditions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode) LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	—								
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	—		-		-		400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8~\text{V} \leq \text{V}_\text{DD} < 2.4~\text{V}$	_								
			$1.6~V \leq V_{DD} < 1.8~V$	-		—		—		1/fмск + 400		
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8~V \leq V_{\text{DD}} < 2.4~V$	—								
			$1.6~V \leq V_{DD} < 1.8~V$	—		—		—		1/fмск + 400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	—		1						
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	—		-		—		400]

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (hi main	gh-speed) Mode	LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter Symbo	Symbol		Conditions	HS (hi main	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 2}		Transmission	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		Note 1		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1.The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

$$Baud rate error (theoretical value) = \frac{1}{(\frac{1}{Transfer rate \times 2} - {-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})} \times 100 [\%]} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- Note 3. Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Baud rate error (theoretical value) =
$$\frac{1}{-\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym	Conditions	HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
	DOI		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) Note 1		$\label{eq:VD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 3.3 \mbox{ V}, \ 1.6 \mbox{ V} \leq \mbox{ V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b = 30 \mbox{ pF, } R_b = 5.5 \mbox{ k}\Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 3.3 \mbox{ V}, \ 1.6 \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b = 30 \mbox{ pF}, \ R_b = 5.5 \Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195		195	ns
output Note 1		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ \text{Note} \ 3, \\ C_{b} = 30 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25		25	ns
output Note 2		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \mbox{ < } 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{ V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b \mbox{ = } 30 \mbox{ pF}, \mbox{ R}_b \mbox{ = } 5.5 \Omega \end{array}$		25		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symb	lb Conditions		HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
	U			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCKp cycle	tксү2	$2.7~V \leq V\text{DD} \leq 3.6~V,~2.3$	20 MHz < fмск ≤ 24 MHz	16/fмск		—		—		—		ns
time Note 1		$V \le Vb \le 2.7 V$	16 MHz < fмск ≤ 20 MHz	14/fмск		_		—		_		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		—		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		-		Ι		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6$	20 MHz < fмск ≤ 24 MHz	36/fмск		_		_		_		ns
		V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		-		-		-		ns
			8 MHz < fmck \leq 16 MHz	26/fмск		_		_		_		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		_		_		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level	tкн2, tк∟2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$\leq Vb \leq 2.7 V$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
width		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V}$	\le Vb \le 2.0 V Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to	tsıĸ2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$\leq Vb \leq 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SCKp↑) Note 3		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V}$	\le Vb \le 2.0 V Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓	tkso2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	\leq Vb \leq 2.7 V,		2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
to SOp output Note 5		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	$T \le V_b \le 2.0 \text{ V Note 2},$		2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Sym	Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LP (Low main)	/-power mode	LV (low- main)	-voltage Mode	Unit
	DOI		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 100 \; \text{pF}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ \text{Note} \ \text{2}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \ 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	475		1550		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		1550		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time when SCLr	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	200		610		610		610		ns
= "H"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		ns						
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/fмск + 190 Note 3		ns						
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	0	355	0	355	0	355	0	355	ns
		$\label{eq:VDD} \hline $1.8 \mbox{ V} \leq V_{DD}$ < $3.3 \mbox{ V}, $1.6 \mbox{ V} \leq V_b \leq $2.0 \mbox{ V}$ Note 2,} $$C_b$ = $100 \mbox{ pF}, R_b = $5.5 \mbox{ k}\Omega$ }$	0	405	0	405	0	405	0	405	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than $f_{MCK}/4$.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Deremeter	Symbol	Conditions	HS (high-speed	d main) Mode	l Init
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 340 Note 3		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 760 Note 3		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/fмск + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDA0	VPOC0,	POC0, VPOC1, VPOC2 = 0, 0, 0, falling reset voltage		1.60	1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, falli	ng reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	voco, VPoc1, VPoc2 = 0, 1, 0, falling reset voltage			2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0, VPOC1, VPOC2 = 0, 1, 1, fall		ng reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, falli	2.64	2.75	2.86	V	
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0 Rising release reset voltage	2.81	2.92	3.03	V	
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

3.3 30-pin products

R5F117ACGSP, R5F117AAGSP, R5F117A8GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

K

ITEM	MILLIMETERS
A	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} 3°
Т	0.25
U	0.6±0.15

R5F117BAGFP, R5F117BCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

0.80

0.20

0.10

е

х

у

3.5 48-pin products

<R>

R5F117GCGFB, R5F117GAGFB

REVISION HISTORY RL78/I1D Datasheet

Rev Date			Description		
Rev.	Nev. Date	Page	Summary		
1.00	Aug 29, 2014	—	— First Edition issued		
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics		
		24, 26	Addition of description in 2.3.2 Supply current characteristics		
		26, 28	Modification of description in 2.3.2 Supply current characteristics		
		28	Correction of error in 2.3.2 Supply current characteristics		
		95	Modification of package drawing in 3.2 24-pin products		
2.20	Feb 20, 2017	ALL	The function name changed from real-time clock to real-time clock 2		
		5	Addition of product name in 1.3.1 20-pin products		
		6	Addition of product name in 1.3.2 24-pin products		
		7	Addition of product name in 1.3.3 30-pin products		
		8	Addition of product name in 1.3.4 32-pin products		
		9	Change of description and addition of product name in 1.3.4 32-pin products		
		10	Addition of product name in 1.3.5 48-pin products		
		13, 14	Change of description in 1.6 Outline of Functions		
		16	Change of 2.1 Absolute Maximum Ratings		
		22	Change of 2.3.1 Pin characteristics		
		24	Change of conditions in 2.3.2 Supply current characteristics		
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics		
		26	Change of conditions and unit in 2.3.2 Supply current characteristics		
		30	Change of note 3 in 2.3.2 Supply current characteristics		
		31	Addition of note 5 in 2.3.2 Supply current characteristics		
		92	Change of table in 2.8 Flash Memory Programming Characteristics		
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics		
		99	Change of package drawing in 3.5 48-pin products		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.